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We demonstrate that, at low shear rates, the scattering peak in the structure factor of sheared polymer
solutions results from the combined effects of advection and flow-induced concentration fluctuation enhance-
ment. Using time-resolved small angle light scattering, the distance of the peak from the origin of the recip-

rocal space is shown to scale as '/

PACS number(s): 61.25.Hq

A strong flow field can couple with the long-lived internal
degrees of freedom of a fluid system and enhance the con-
centration fluctuations. This effect of flow-induced concen-
tration fluctuation enhancement has recently motivated much
research in complex fluids including lyotropic liquid crystals,
swollen gels, and polymer fluids [1-9]. Light scattering ex-
periments show that dramatic fluctuation enhancement is
also produced when a semidilute polymer solution is sub-
jected to an external uniform shear flow [5—8]. In this case,
the light scattering patterns are characteristically distin-
guished by an intermediate broad peak. Helfand and
Fredrickson (HF) [1] unraveled the mechanism of fluctuation
enhancement in polymer solutions. Yet, the origin of the
scattering peak remains poorly understood. Predicting the
presence of this scattering peak is thus a crucial test for any
dynamical theory that describes polymer solutions brought
outside of equilibrium by an external flow field. The goal of
this Rapid Communication is to demonstrate experimentally
that the scattering peak results from combined effects of HF
fluctuation enhancement and advection of the fluctuations.

The original HF dynamic model does not predict the ex-
istence of a scattering peak in the structure factor of sheared
polymer solutions. Recently, Milner [3] added a phenomeno-
logical equation of motion for the fluid strain to the original
HF dynamical equation for the concentration field. Milner’s
model predicts that the scattering peak is independent of
shear rate, and corresponds to the crossover from a simple
binary fluid to a transient gel network [10]. A major improve-
ment of the HF model seen in Milner’s theory is the predic-
tion that light scattering is sharply reduced at large scattering
angles, as is observed experimentally [5—8]. However, sig-
nificant discrepancies between these models and our experi-
mental observations remain. They include qualitative dis-
agreement between measured and calculated positions and
orientations of the scattering peak and scattering patterns
with respect to the flow direction.

To compare our experimental findings to results previ-
ously published in the literature, we chose the widely used
[5-8] semidilute solution of polystyrene in dioctyl phtalate
(PS-DOP) for our polymer-solvent system. The molecular
weight of the polymer is M, =1 850000, with an index of
polydispersity of M,,/M,=1.06 (M, is the number-average
molecular weight). The polymer concentration, ¢ =6 wt %, is
larger than the semidilute crossover concentration. This poly-
mer solution is sheared in a Couette flow cell composed of
two concentric cylinders (gap width =0.36 cm, optical path
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, where 7 is the shear rate of the flow.

length=1 cm), maintained at a constant temperature T
(*0.1°C), between the cloud point temperature 7. and the
6 temperature of the solution, T.=11°C<T=16°C
<0=22°C. T, separates the one-phase region from the two-
phase region of the polymer solution; 6 is the temperature
corresponding to the Flory compensation point [11] where
the excluded volume interaction between polymer segments
vanishes. The evolution of the scattering patterns is moni-
tored by time-resolved small-angle light scattering (SALS) in
the flow-shear plane, normal to the incident light of a He-Ne
laser (A=632.8 nm). Images of the scattering patterns are
acquired via a charge coupled device (CCD) camera and a
frame grabber at a rate of up to 3 frames per second. The
position of the scattering peak and the orientation of the
patterns are computed using the SALS computer software
developed by van Egmond, Werner, and Fuller [5]. Further
details regarding the SALS setup, the flow cell, the image
acquisition procedure, and the polymer-solvent system can
be found in Refs. [5,12].

Figure 1 displays steady state scattering patterns both for
a quiescent PS-DOP solution and for the same solution sub-
jected to two increasing (low) shear rates. These scattering
patterns are isointensity contours of light scattered by the
sheared polymer solution. In the absence of flow, light scat-
tering is isotropic; in the presence of a shear flow, light scat-
tering is anisotropically enhanced. The corresponding flow-
induced enhancement of the concentration fluctuations is due
to an effective coupling between the polymer concentration
field and the fluctuating viscoelastic stress via concentration-
dependent transport coefficients (shear viscosity, normal
stress coefficients, elasticity constants [1,2]. Further, Fig. 1
reveals that, in the reciprocal Fourier space, the distance of
the peak from the g-space origin is increased from g=0 in
the absence of shear, to an intermediate distance
9= qpeax(y7) for increasing rates of shear. These experimen-
tal observations contradict Milner’s model. Indeed, Milner’s
model predicts that, even in the presence of shear, the peak
remains at a fixed “magic length” [2,3,10] given by
N peak= 27/ qpeax=27(7D)"2. D is the mutual diffusion co-
efficient and 7 is the stress relaxation time of the polymer.
Both constants were measured by van Egmond, Werner, and
Fuller [5] at T=16 °C: D =0.02 um?s and 7=0.995 s, which
yields the fixed distance qpeq=7.1 um ™. As shown in Fig.
1, this value does not agree with our peak position measure-
ments.

R1755 © 1994 The American Physical Society



RAPID COMMUNICATIONS

R1756 DENIS WIRTZ 50
¥ = 0.09s’! ¥ = 035!
4.66 4.66 4.66
Vu Vu
o2 o~ t——>“ \ o~ [—J
§. 0.00 §. 0.00 » § 0.00 s
>~ >~ >
< -2.33 & -2.33 S 233
-4.66 -4.661 -4.66
4.66 -233 00 12.33 4.66 466 233 00 233 466 466 233 00 235 466
qy (um™] q.[um™”] Gy [um™]

FIG. 1. Measured light scattering patterns in the flow-shear plane in the absence of flow and for two increasing shear rates. The scattering
patterns rotate towards the flow direction and the distance of the scattering peak from the g-space origin increases with increasing shear rates

(at low shear rates).

Figure 2 displays the measured distance of the scattering
peak from the origin of the Fourier space as a function of
shear rate. Two types of measurements of the scattering peak
position are feasible. The scattering peak is given either by
the point where maximum scattering occurs in the plane nor-
mal to the incident light, gpes=qpeak> OF is computed by
scattering average, gpeak= qpeak -
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Io(q) is the scattering intensity in the absence of flow, ¢; is
the angle of orientation of the major axis of the scattering
pattern with respect to the flow direction, and ¢(q) is the
azimuthal angle in the plane normal to the incident light.
Figure 2 shows that the distance of the scattering peak from
the g-space origin is increased for augmenting (but small)
shear rates. Both types of peak position measurements con-
firm this important result. Therefore one can assert that cur-
rent models [1—-4] are unable to reproduce scattering experi-
ments even in the low shear rate regime.
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FIG. 2. Distance of the scattering peak from the g-space origin
as a function of shear rate. The position of the peak is measured by
scattering average (q;:ak) and by maximum intensity detection
(gpea)- The curve in bold corresponds to a square root fit of the
data.

We now show that, at low shear rates and at low scatter-
ing angles, the presence of a scattering peak in the structure
factor can be explained by the HF model as long as advec-
tion is added to the original HF description. The measured
steady state SALS intensity /(q) is proportional to the struc-
ture factor S(q), which is the Fourier transform of the equal-
time correlation function of the concentration fluctuations.
The original HF equation of motion for S(q) [Eq. (10) in
Ref. [2]] in a uniform shear flow u= yye, can be rewritten

_ d R ;
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The first term in this equation describes HF flow-induced
fluctuation enhancement, where ¢ is the quiescent correlation
length and Sygp(q) is the steady state HF structure factor in
the absence of advection given by Eq. (13) in Ref. [2]. The
second term describes the advection of the fluctuations,
where Pe=7§2/D is the Péclet number. This number com-
pares the relative strengths of advection and diffusion effects
in the transport of the concentration fluctuations under shear,
with y the shear rate. In Eq. (2), q; denotes the Cartesian
coordinates of the scattering vector q. The term on the right-
hand-side of Eq. (2) is thermal noise and is assumed to pos-
sess Gaussian statistics. In the absence of advection [see
Figs. 3(a) and 3(c)], the structure factor S(q,Pe=0) assumes
the HF form Sygp(q). In this case, the scattering peak is lo-
cated at the origin of the g space, with a discontinuity at
q=0. Figures 3(b) and 3(c) display the structure factor
S(q,Pe#0) when advection is included, obtained by numeri-
cal solution of Eq. (2). Figure 3 demonstrates that advection
suppresses the small-g long-lived fluctuations, enhances the
scattering intensity, and further rotates scattering patterns in
the flow direction, even for very small values of Pe. As a
result, a scattering peak appears at an intermediate g value.
According to Eq. (2), this new scattering intensity peak cor-
responds to the point where diffusion and advection effects
cancel. Hence the peak is the locus of points in g space given
by 2¢°£%Syp (q)=Peq, /q, . This last equality predicts that
the distance of the peak from the g-space origin scales as
Gpeak™ £ 'PeV(1 — yrdm/de)~V? for y7<1. Here, ¢ and 7
are the polymer volume fraction and the (dimensionless) vis-
cosity of the polymer solution, respectively [1]. Figure 2
shows that indeed gpe.c~ 7" at low shear rates [13], which
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FIG. 3. Calculated isointensity contours and scattering profiles of the steady state structure factor in the flow-shear plane: (a) without
advection, Pe=0; (b) with advection, Pe=0.01; (c) S(q.,qy,9,=0) vs g with and without advection. y7=0.34, k£=0.26,
om/de=0.66, 3V /dp=1.31, I¥,/dpo=—0.4 [8,1]. The structure factors are scaled by S(q=0); k is the wave vector of the probing light,
¥, and V¥, are the first and second normal stress coefficients of the polymer solution [1].

confirms that advection is responsible for the transport of the
peak from the origin. However, the distance g, reaches a
maximum value when the shear rate attains a threshold value
¥=0.4 s™! and decreases for shear rates ¥=0.4 s~'. This
effect cannot be explained by the above linear theory. In
addition, as pointed out by Milner [3], the HF model on
which Eq. (2) is based is oversimplified since the scattering
intensity at large scattering angles is not only decreased by
the term g ¢ in Eq. (2), but also by the important dynamics of
polymer elastic strain at large g. It is important to note that
numerical integration of the coupled equations of motion for
the concentration field and the polymer strain (see Fig. 3,
Ref. [3]) does show both the onset of the scattering peak and
the displacement of the peak from the origin for increasing
shear rates when advection is included. Yet, even when an
equation for the polymer strain is added to the HF model,
calculated scattering patterns do not possess an intermediate
peak in the absence of advection (see Fig. 5, Ref. [3]).

We analyze next the orientation of the scattering patterns
in the flow-shear plane. The steady state scattering angle of
the major axis of the scattering patterns with respect to the
flow direction is evaluated by

HF theory (ref 1)

Milner's theory (ref 3ﬂ
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FIG. 4. Measured and calculated orientation angles of the scat-
tering peak with respect to the flow direction as a function of shear
rate. The pattern orientation angle becomes negative for
y7=1.85.
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where (q:q9;)=/dqI(q)q;q;/fdqI(q). Figure 4 displays
both the orientation angle of the major axis with respect to
strain rate measured by SALS using Eq. (3) and the orienta-
tion angle calculated using both HF and Milner’s models
[1,3]. At vanishing shear rates, patterns are oriented at 45°
with respect to the flow direction; the patterns rotate towards
the flow direction for increasing shear rates. No quantitative
agreement between measured and calculated pattern orienta-
tion angles is obtained at low shear rates: The calculated
angle always exceeds the measured angle. Furthermore, no
qualitative agreement is observed at large shear rates since
measured pattern orientation angles become negative for
y71=1.85, unlike calculated pattern orientation angles which
are always positive. The rotation of the patterns towards the
flow direction for increased shear rates is usually explained
by normal stress effects [1—-4]. Advection accentuates en-
semble rotation of the scattering patterns towards the flow
direction, as shown in Fig. 3. However, current theories are
unable to explain the mechanism by which the patterns rotate
beyond the flow axis at high shear rates as shown in Fig. 4.
Finally, upon the cessation of flow and for large shear rates,
a strong scattering overshoot occurs, whose intensity in-
creases with shear rate. This nonlinear viscoelastic effect
cannot be predicted because current analytical theories em-
ploy simple linear constitutive equations to describe the
polymer stress. In conclusion, theoretical advancement is
necessary to explain our measurements of both position and
orientation of the scattering peak present in the structure fac-
tor of sheared polymer solutions.
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