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Quasistatic crack propagations in a thin plate are studied theoretically. The Griffith theory is applied to

determine a crack extension condition and the motion of crack tips in straight propagation. A linear stability

problem for the straight propagation is formulated, based on the assumption that the crack tip moves in such

a way that a singular shear stress is made to vanish. It is shown that straight propagations become unstable

under certain conditions and that an oscillatory propagation appears. The critical conditions are calculated

quantitatively, and the results are compared with the corresponding experiments.

PACS number(s): 05.90.+m, 62.20.Mk, 46.30.Nz

The study of fracture has developed greatly since Griffith
wrote a breakthrough paper in 1920 [1].This progress, how-

ever, has been mainly in the fields of engineering science.
Phenomena at the most fundamental level of the physical
processes involved, such as crack speed, crack branching,
dynamical instability, etc., have not yet been fully under-
stood [2,3].One of the obstacles to this understanding is that
well-controlled experiments are difficult to perform. Re-
cently, however, Yuse and Sano have carried out a nice ex-
periment by which they were able to make reproducible
crack patterns in a thin glass plate [4].In their experiment, a
heated thin glass plate with a notch is dipped into cold water
at a constant velocity v. It was observed that various forms
of crack patterns developed depending on the velocity U and
the temperature difference BT between the heater and the

water. Nothing happens when BT and U are small enough,

but as these parameters are increased, a straight crack starts
to extend along the center line of the strip of glass at a
certain point. If the parameters are increased further, a tran-
sition from the straight crack to a wavy crack occurs. Being
motivated by the experiment, numerical simulations based
on simple models have been performed [5,6], and the transi-
tions have been simulated in these systems. The experiment
has also been analyzed theoretically [7], and the velocity
dependence of the fracture energy has been estimated from

(q.p)
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FIG. 1. Schematic figure of an experimental configuration. The
glass plate is submerged in the cold bath represented by the dotted

region.
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the experimental data for transition points to the wavy crack.
In this paper, we will present a theoretical analysis for the
experiment and show that the transition to an oscillatory
propagation can be understood as a Hopf bifurcation.

The experimental configuration we will analyze is illus-
trated in Fig. 1. The coordinate system (x,y) is fixed on the
infinitely long strip of thin glass whose boundaries are lo-
cated at y = ~ W/2. The portion satisfying x(s(t) of the

glass plate is in a cold bath, where t denotes the time. As the
interface at x=s(t) moves upward (right in the figure) at
ds/dt = v, the crack tip also advances at an average speed v.
This fact implies that the crack tip moves adiabatically with
respect to the change of the external conditions. We thus

parametrize the time evolution of the position of the crack tip

by s as (q(s),p(s)). Such a fracture is called a quasistatic
fracture, because the time t comes into the problem only
through s(t)

The problem we address is to derive an equation of mo-
tion for the crack tip. In order to solve it, we focus on infi-

nitely narrow cracks for mathematical simplicity. Then, in

the linear elastic theory, stresses o.;, diverge at the crack tip.
Using a polar coordinate system (r, e), we can expand o.;, in

Pr around the crack tip, and the singular part of the stress is
known to be characterized by stress intensity factors K& and

K» related with basic "modes" of crack-surface displace-
ment called mode I (opening mode) and mode II (sliding
mode), respectively as

(sing) 1 g(1)( g) + 11 g(2)( 6))
$2 mr /2m r

where X;, (8) and X;, (8) are universal functions [8]. We
will express the equation of motion for the crack tip using
these stress intensity factors in the next paragraph.

According to the Griffith theory [1], when the strain-

energy release rate G exceeds the energy needed to create a
new surface l, the crack begins to extend at a speed which is
on the order of the propagation of sound. If a temperature
profile were fixed, however, the crack would be arrested im-

mediately at a position where G equals I, because elastic
forces arising from nonuniform thermal expansions are local-
ized around a region where the temperature gradient is large.
Then, if a temperature profile were translated infinitesimally
along the plate, the crack tip would move, because G~1,
and then stop again at G=l after infinitesimal extension.
Since the translation velocity U is much smaller than the
sound velocity in glass, the crack propagates so as to main-

tain the equality 6=I . Another condition, which is neces-
sary to determine the crack tip position (q(s),p(s)), is given
from observations that a crack in brittle material extends to-
ward the direction where the shear stress vanishes [9].This
leads to the condition that the equality

sity factor K, as G=Ki/E, where E is a Young modulus

[10].By introducing a critical stress intensity factor K', such

that K', = /I'E, the equation G=I is reduced to

(2) and (3) are our basic equations describing crack propa-
gations in quasistatic fracture. Note that the equations define
a non-Markov dynamical system because K& and K» depend
on the crack pattern which is identical to the history of the
crack tip. We will discuss motion of the crack tip based on

Eqs. (2) and (3).
First, we describe an outline of our analysis. Suppose that

a crack is positioned on the center line of a glass plate where
the shear stress vanishes. Then, the equality K»= 0 holds for
the straight crack. Since Ki is a function of q(s) —s due to
translational symmetry in the x direction, we obtain

q(s) =s+q(),

where q„is a constant given by (3). Note that there are two
solutions, if they exist, but only the larger one is physically
relevant because it corresponds to the position where K& de-
creases for infinitesimal crack extension [11].When there is
no solution of (4), the crack cannot extend. Therefore the
critical condition for the straight crack extension is given by
an existence condition for solutions of Eq. (3). We next in-

vestigate the linear stability of the straight propagation. We
can define an eigenvalue problem for the equation obtained

by linearizing (2) in p, and the long time behavior of p(s) is
characterized by the eigenvalue with the largest real part,
denoted by z„,such that p(s)-exp(sz, ) for s~~. When
the real part of z„,Re(z~), is positive, the straight propa-
gation is unstable, and the crack tip deviates against the cen-
ter line. Then, if Im(z„) 4 0, the crack tip oscillates with a

wavelength 2m/Im(z, ). Therefore the oscillatory instability
observed in experiments can be explained by checking the

change of the sign of Re(z~) and finiteness of Im(z, ). The
transition point to the oscillatory propagation is given by the
condition Re(z, ) = 0.

Now, we will express the stress intensity factors K& and

K» in terms of the stresses a,,- on glass plates without cracks.
Since the existence of a crack alters only the boundary con-
ditions, the stresses on the glass plate with a crack are given

by o,,+ cr,*, , where o.,*, are the stresses without the tempera-
ture gradient but with fictitious external forces introduced so
as to satisfy the boundary conditions along the crack. Then, a

singularity appears in the stresses cr,,-, but it is not easy to

calculate n.
,
*.,- under the proper boundary conditions for the

plate with a finite width 8'. For a plate with infinite width,
however, the expression for the stress intensity factors has
been given within the linear approximation in p [9], and in

the present configuration they are

K»= 0 (2)

is maintained while the crack extends smoothly [9]. In this
case, the energy release rate G is related to the stress inten-

o." (q„,0)
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1 t'" o„„(q„,O) —o. (q„,O)
du 3/2 [p(s„)—p(s)],

1 Bo.„„(q„,O) 1 dp(s)
du p(s) + —o. (q„,O) +

Bu 2 "' ds 2m& o

(6)

where we employ the abbreviated notations q„—=s+qo —u

and s„—=s —u. Note that K& has no linear term in p and the

apparent s dependence of Ki is deceptive because o.
, (q„,0)

depends only on q„—s = qo
—u. The validity of this "infinite

plate approximation" will be discussed later. Here, the ex-
pressions for the stresses o„,(x,O) and tr (x,0) are easily
derived in the form [12]

7oo

rr„„(x,0) = Ea —dke' T(k)f (k), (7)

and

tr (x,0) = En-
) —oo

dke'"'T(k) [1 f+(—k)], (8)

with

k Wcosh(k W/2) ~ 2sinh(k W/2)

kW+ sinh(kW)

T(x, t) = 8(x s) hT(1 —ex—p[ —(x —s)/do]), (10)

where 8(x) stands for the step function and we have intro-
duced a thermal diffusive length: do=D/U.

Using expressions (5) and (7)—(10), we can numerically
calculate qo from (3). Then, substituting p(s) =exp(sz) into
K„=Owith the expression (6), we obtain the eigenvalue
equation:

where u is a thermal expansion coefficient, and T(k) is a
Fourier mode of the temperature field T(x) relative to the
cold bath. We assume that T(x) is given by a steady moving
solution at a velocity v of the diffusion equation

B,T = DDT, where D is a thermal diffusion constant. That is,

We now introduce two dimensionless control parameters
defined by R =Ea BTW" /Kt' and p, = W//do, which are pro-

portional to the temperature difference and dipping speed,
respectively. We further define $ as the ratio of the crack
length out of the cold bath to the system width W:
g= qo / W. Then, Ki and Q(z) are expressed as

Kt=KtRFt(/z, g), Q(z)=Kt'RFtt(p„,g, z)/W, where Fi and

F&& are dimensionless functions calculated numerically, and
z=zW. We first fix the parameter value p, =100. For suffi-

ciently small R, there is no solution g satisfying

RF,(p„,g) =1, which is equivalent to Ki=K,'. In this case,
the crack cannot extend. For R)Rt'), RF,(p„,g) =1 has a
solution (, and then z~ is determined from the equation

Ftt(iM„g,z~)=0. When the temperature difference is in-

creased, the g increases, and Re[z~] becomes positive be-

yond R, , as shown in Fig. 2. That is, the straight propaga-
tion is stable for R,' &R&R, , while unstable for
R)Rt ). We have also found that Im[z~] 4 0, which

means that a Hopf bifurcation occurs at R, with a critical

wavelength k, =2mW/Im[z~]. Here, Rt'), Rt ), and k,
were computed as R,' =3.7, R~ =11.8, and P, =0.06W.
Similarly, by calculating R,' and R, for several values of
p, , we can draw a phase diagram in a p, -R space. Our phase
diagram shown in Fig. 3 is qualitatively the same as that
obtained by experiments [4].

In order to see the correspondence with experiments more
quantitatively, we use the following values of material con-
stants typical for glass plates: a= 7.7X 10 [K '],
E=7.1X10' [Pa], I =8 [Jm ], and D=4.7X10
[cm /s]. Then, for glass plates with W= 2.4 [cm],
p, = 100 corresponds to U = 2.0 [mm/s], and the critical tem-

0.04

Q (z)=Qo+ Q iz+ ~Q(z) = 0,

where

B,o„,(q„,O) 1du, Q, =—K, (12)
Jo u

and

~Q(z) = 1 t
" o.„(q„,O) —rr (q„,O)

27T '

du 3j27Tjo

0.00
3.0

i

8.0
R

X (e "'—1). (13)

Note that Q(z) does not depend on s for the same reason as
above. Solving numerically the eigenvalue equation (11)
with (12),(13) and (7)—(10), we can find the eigenvalue with
the largest real part, z~.

FIG. 2. ( versus R (solid line) aud Re(z~W) versus R (dotted
line). Vertical axes of solid and dotted lines are graduated on the left

and right, respectively. These graphs start from R,', and

Re(z, W) is positive for R ~R, . Here, R,' = 3.7, and

R, =11.8. The dotted graph is kinked at R=6.7 and R=11.7,
where the eigenvalues with the largest and second largest real part
are interchanged.
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FIG. 3. Phase diagram in a p, -R space. A crack can extend in the

region above the broken line. The transition to oscillatory propaga-
tion occurs at the curve defined by the dots. Below this curve,

straight propagation is stable.

peratures b'Tt, ' and BT( ) are computed as 8T, '=33 [K. ],
and bT, =105 [K]. In the experiment [4], T(" is in good

agreement with our result, while T, is somewhat less than

ours. (For example, under the same condition as ours,

BT,') and 8T( were measured as about 30 [K] and 80 [K],
respectively. ) Further, in our theory, the critical wavelength

X, turns out to be proportional to 8' for the limiting case
p, ~~. Thts scaling relation was found experimentally [4]
and also confirmed by the numerical simulation [6]. Unfor-

tunately, however, our value of k, /W, which is calculated as
0.05, is substantially smaller than the corresponding experi-
mental value 0.3.

The only approximate treatment in our theoretical frame-
work is the "infinite plate approximation" for the stress in-

tensity factors in expressions (5) and (6). The approximation

works better for larger W/l, where l is a decay length of the

stresses o,,(x,O). In the present problem, however, since l is

proportional to 8' for the case p, &&1, our approximation does
not give a precise value for any asymptotic cases. This
should be the reason why the discrepancy in wavelength
arises. It is important to improve this approximation.

Recently, Marder attempted to explain the oscillatory in-

stability [7] using the Cotterell and Rice criterion (CR crite-
rion) for the instability of straight cracks [9],which is differ-
ent from the one we have used here. The CR criterion states
that straight crack propagations along the x direction are un-

stable when the nonsingular part of cr, at the crack tip is
positive. We can show that the present formulation leads to
the CR criterion if we ignore the x dependence of o.;,(x,0)
and replace a,"(x,O) by the values at the crack tip in (6)—
(13). We believe that our formulation determines the transi-

tion more precisely than the CR criterion. Also, it should be
pointed out that the CR criterion itself cannot be used to
derive the oscillatory propagation. More detailed explanation
of the correspondence between the two theories will be pre-
sented in a separate paper.
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