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Spectral decompositions of the evolution operator for probability densities are obtained for the
most general one-dimensional piecewise linear Markov maps and a large class of repellers. The
eigenvalues obtained with respect to the space of functions piecewise analytic over the minimal
Markov partition equal the reciprocals of the zeros of the Ruelle zeta functions. The logarithms of
the zeros correspond to the decay rates of time correlation functions of analytic observables when
the system is mixing. The space can also be extended to include piecewise analytic observables
permitted to have discontinuities at the elements of any given periodic orbit(s), so that local behavior
of observables can be considered. The new spectra associated with the extension are surprisingly
simple and are related to the relative stability factors of the given orbit(s). Finally, arbitrarily slowly
decaying periodic and aperiodic nonanalytic eigenmodes are constructed.

PACS number(s): 05.45.+b, 02.50.—r, 05.20.—y, 03.20.+i

I. INTRODUCTION

Sensitivity to initial conditions, together with the fact
that experimental or numerical determination of the
state of a physical system cannot be determined with in-
finite accuracy, entails that a statistical description is a
natural approach to systems undergoing chaotic dynam-
ics. At the basis of the statistical description is a linear
equation governing the evolution of probability densities,
which for discrete time systems such as one-dimensional
recurrences is known as the Frobenius-Perron equation.
The central question, then, is to determine the eigen-
values and associated eigenstates of the associated linear
evolution operator U—the Frobenius-Perron operator [1].
This depends, in turn, both on the underlying dynamics
and the choice of space of functions F on which this oper-
ator is acting. Once this information is available, a vari-
ety of properties, such as time correlation functions, can
be evaluated for observables compatible with the choice
of F. Moreover, the dynamical evolution of almost point-
like initial conditions can be simply described, both be-
fore and after the Lyapounov time, if F includes initial
densities having as support small regions of phase space.

The spectral properties of the Frobenius-Perron op-
erator have received considerable attention in the past
[2—4], especially for the particular class of maps known
as Markov analytic maps [5]. While the spectra cannot
lie beyond the unit circle in the complex plane, their na-
ture can vary, depending on the choice of F, &om being
continuous within the unit circle when F is a Hilbert
space [6] to being discrete when F is a space of functions
piecewise analytic over a particular discrete partition of
phase space known as the minimal Markov partition [5].
The choice of a given functional space is thus far from
academic. For instance, as is well known, the spectra
are related to characteristic times of the system. For
example, the logarithm of the absolute value of a point

eigenvalue defines the decay rates of corresponding time
correlation functions. Furthermore, F is connected with
the scales of the phenomena that can be probed in phase
space through the probabilistic description.

In general, U acts on an infinite dimensional space.
Describing its properties for arbitrary densities is impos-
sible, even for dynamical systems as simple at first sight
as piecewise linear maps. In the present paper the condi-
tions for reducing this infinite dimensional problem to a
finite one are analyzed by identifying finite dimensional
function spaces that are invariant under U. Each invari-
ant space F is spanned by a basis of functions and, if U
acts on a basis function, the result is a linear combina-
tion of the basis. The action of U on any basis function
is thus equivalent to that of a finite dimensional matrix
R' acting on a vector. Therefore, any function lying in F
can be represented in terms of the basis as a vector and
evolved with R'. Moreover, the eigenvalues and eigen-
vectors of W define the eigenvalues and eigenfunctions of
U residing in F. The choice of space F depends both on
the nature of the initial densities or measurable functions
of interest and the invariance requirement.

One particular way to reduce the study of U to a fi-

nite dimensional problem is to perform a coarse graining,
wherein distributions p(x) at each time step are locally
averaged in the cells of a finite partition of the system's
phase space. For an M cell partition 7, a linear operator
E performing the coarse graining can be defined

where yc, (x) equals one if x belongs to the ith cell C,
and is zero otherwise, and A, is the size of C;.

% hen the relation

(EUE)" = EU"E
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is valid, the coarse grained description of the evolution is
generated by a time independent finite dimensional ma-
trix W = EUE and a Markov coarse graining (MCG) is
said to be possible [7]. A sufficient (but not necessary)
condition for this is that the coarse graining and evolu-
tion operators commute when acting on coarse grained
functions

[E,U]E = (EU —UE)E = EUE —UE = 0.

Concrete examples of MCG's have been constructed both
for conservative and dissipative dynamical systems. One
class of such examples, which is the chief concern of this
paper, are piecewise linear maps on the unit interval [7,8]
whose nondifferentiable points fall in a finite number of
iterations onto a periodic orbit(s). Such maps are called
piecewise linear Markov maps. The set of iterates of the
nondifferentiable points forms a minimal Markov [5] par-
tition and with respect to this partition, a MCG exists.
Indeed, in this case, EUE —UE = 0. That is, initial
densities that are piecewise constant over the partition
remain so for all tixne. Thus the space F of functions
piecewise constant over the cells of the partition is in-
variant under U, and the eigenvalues and right eigen-
vectors of W define eigenvalues and eigenfunctions of U
restricted to F. Hence invariant densities are easily cal-
culated [9]. The logarithms of the absolute values of the
spectra equal the decay rates observed in time correla-
tion functions of measurable functions lying in the same
space F. Finer scale descriptions can be easily made by
adding to the points defining the minimal Markov par-
tition either a finite number of successive inverse images
of one or more of these points or all the points of a finite
number of periodic orbits of the iterative law f (x) Both.
methods of partition refinexnent can be done simultane-
ously. With respect to the new partition, a MCG also
exists. We notice, in this respect, that fine scale behav-
ior attracts increasing interest in statistical mechanics in
connection, for instance, with transport properties such
as diffusion coefffcients and escape rates [10] and low di-
mensional systems [11].A simple generalization of spaces
of piecewise constant functions are spaces of piecewise
polynomials, that is, spaces of functions that are poly-
nomial within each cell of 'P but are permitted to have
discontinuities at each cell boundary. As it turns out,
piecewise polynomial spaces of any order are also invari-
ant under U. Therefore eigenfunctions and eigenvalues
are again easily calculated. Moreover, any function g(x)
that is piecewise analytic (whose derivatives for all orders
are bounded) over 'P can be expressed piecewise over each
partition cell in terms of a uniformly convergent Taylor
expansion. Alternatively, g(x) can be expanded in terms
of the basis of the corresponding eigenspaces of U. Thus
spectral decompositions of U can be obtained. The ex-
tension of classical coarse graining to this more general
and representative function space is the principal goal of
the present work.

The outline of the rest of the paper and principal re-
sults are as follows. In Sec. II we define piecewise linear

Markov maps and repellers and generalize the notion of
Markov coarse graining to obtain a spectral decomposi-
tion of U. In this case, U is restricted to the space of
functions that can be expressed, exactly or up to a good
approximation, over each cell of 'P as a finite Taylor ex-
pansion. The spectra are arranged in groups correspond-
ing to the order of the piecewise monoxnial space.

In Sec. III we consider the case where P is the mini-
mal Markov partition. In this case, the logarithms of the
absolute values of the spectra equal the decay rates of
the time correlation functions of all analytic measurable
functions. We prove this by showing that they equal the
reciprocals of the zeros of the corresponding zeta func-
tions [12].

In Sec. IV we consider the case of refined partitions
suitable for local statistical descriptions. In particular,
we derive a simple formula for their spectra. Each eigen-
value corresponds to a given periodic orbit and the asso-
ciated time correlation functions exhibit a periodic decay.
The results of Secs. III and IV are illustrated in Sec. V
with simple examples of maps &om the tent family.

In Sec. VI the eigenvalues associated with measur-
able functions that are generalized piecewise polynomials
(powers of 2: raised to a fractional or to a complex expo-
nent) are considered. It turns out that exponents can be
chosen so that the corresponding spectra lie anywhere in
the unit circle. Arbitrarily slowly decaying eigenstates
can thus be constructed which are highly localized about
the periodic orbits.

There exists extensive literature about piecewise linear
Markov maps. The main subjects of concern have been
the behavior of time correlation functions and the calcu-
lation of invariant measures rather than a full analysis
of the Frobenius-Perron operator. In the context of the
present paper, the works of Mori et al. [8] and Gyorgi
and Szepfalusy [13] are particularly relevant. They in-
vestigated the properties of time correlation functions of
polynomial observables by considering the correspond-
ing eigenvalue problem of U. In a related work [14] ev-
idence was provided that certain piecewise linear xnaps
that do not possess finite minimal Markov partitions can
be well approximated as Markov maps, which is impor-
tant because the Markov property is rarely satisfied ex-
actly. However, this problem has not yet been resolved
conclusively [15,16]. Roeperstorff [17] and later others
[18,19] obtained a spectral decomposition of U for r-adic
maps (e.g. , Bernouili shift map). An additional motiva-
tion for studying piecewise linear maps is that many of
the results obtained for such systems can be generalized
to everywhere expanding maps (with curvature) [16] and
certain higher dimensional conservative hyperbolic maps
[20]

The present paper extends this earlier work to all piece-
wise linear Markov maps and repellers and to a wider
class of function spaces such as spaces of piecewise an-
alytic functions. Further, it reveals the existence of a
wider class of eigenvalues related to the unstable peri-
odic orbits. Finally, it provides a systematic algorithm
for constructing the transition matrix governing the evo-
lution of probability vectors, which are the representation
of the densities in each function space.
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II. CENERALIZED MARKOV
COARSE GRAINING

IN A PIECEWISE MONOMIAL BASIS

A piecewise linear or analytic map f: I m I, where

I = [0, 1], is Markovian if it has the following properties

(i) The number of nondiff'erentiable

dy) d2). . . ) d» is finite.
points

(ii) Their iterates form a finite set of points 'P~
(ao, aq, . . . , aN }, where as ( ai, +i, ao ——0 and
G»r = 1.

(iii) There exists an integer k such that
l &

f"—(z) l
& 1

for some k & 1 and Vx E I.

The set of points P~ can be used to partition the unit
interval into cells C; = [a; q, a;]. The resulting partition
is referred to as the minimal Markov partition. We re-

mark that in some cases the minimal Markov partition
may consist of only one cell, the unit interval itself.

The probability density p„(z) at time n, descriptive
of the statistical state of the system, assumed to be an

function, evolves according to the Frobenius-Perron
operator

1

p +&(z) = &~-(z) = b(* —f(g))~-(g)dg
0

= ) .n-(f '(z))
d

f (x) (4)

where f (z) denote the inverse branches of f(z) It.
is understood that if an inverse branch f (z) is not
defined for a point x, then the corresponding term in the
sum Eq. (4) is set equal to zero at this point. Throughout
the rest of this paper derivatives will often be indicated

by the following suffices: & f(x) = f'(x) and
& „f(x) =

f (tL) (z)
%'e shall also be interested in the properties of a class

of piecewise linear repellers. I et f (z) denote the map of
any system belonging to this class. f (z) has the following

properties.
(i) The unit interval I is mapped onto a union of itself

and another set of points D, where I and D are mutually

disjoint

f(I) = ILID

(ii) Points that leave I never return

f"(D)QI =((I Vn. (6)

(iii) The iterates of nondifferentiable points of f(x)
that are in I are finite in number and de6ne P~. This
implies that the iterates of nondifFerentiable points that
remain in I are mapped onto one or more periodic orbits.

(iv) There exists a k such that] &
f"(x) l

& 1 for some

k & 1 and Vx e I.
We shall restrict the Frobenius-Perron operator U so that

it acts only on functions whose support is not outside the
unit interval, thus ignoring what happens to densities af-
ter they have left I. The set of points 7 ~ for repellers
will electively form, for our purposes, a minimal Markov
partition of I. From here on, f (x) denotes a map belong-
ing to either of the above classes.

We now need to de6ne the type of function basis and
its dual which shall be used in the representations of U.
As shall be clear shortly, each possible basis is associ-
ated with any M-cell Markov partition P of the follow-

ing class: the minimal Markov partition and re6nements
formed by adding to the points defining P~ either (a) a
6nite number of successive inverse images of one or more
of these points or (b) all the points of a finite number
of periodic orbits of f(x) Bo.th methods of partition
re6nement can be done simultaneously.

We de6ne the monomial family whose support is the
cell C, = [a; q, a;] as

(x —a, i)" if z e C,
0 otherwise,

where n = 0, 1, 2, . . . . Let 4» be the function
space spanned by the set of monomial families of or-
der N associated with the partition 7, (P;(n, z):
1,2, . . . , M; n = 0, 1, . . . , N}. The dual functional to a
monomial of order n, having support in the cell C; =
6 y, a', ls

P, (n, z) = lim, b(z+c —a; i).
(-1)" d"

&~0+ n'. dX"

The above functionals define the functional space C»t,
which is the dual space to 4~. We notice that the set of

P; 's simply gives the expansion coefficients of the Taylor
series of a function g(x) evaluated at the left boundary
a, q of the cell C,

Qt(n, z)g(z)dz = lim —g("l(a;, + g).
0 ~-+0+ nf

Note that to avoid ambiguities at the cell boundaries only
upper derivatives are considered, and Dirac b-function
distributions are de6ned as

(10)

It is straightforward to show that P, (n, z) and the corre-

sponding dual form a biorthonormal set

f
1

Qt(n, x)$, (m, x)dx = b(i, j)b(n, m).
0

We now need to identify the sort of function g(x) that
can be represented, finitely with respect to our basis,
either exactly or up to a good approximation. This will

certainly be the case if the expansion of g(x) in each cell

C; is uniformly convergent. A suHicient condition for this
is obtained by simply using Taylor's mean value theorem
with Lagrange's form of remainder and demanding that
the remainder be very small. If the nth derivative of g(x)
exists for a11 x E C;, then
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where

g(a; g + z) = S„(z)+ R„(z),

n —1

~-(z) = ) .—,g'"'(a*- )

z"
R„(z) = —g" (a; g + Hz),n!

(12)

(is)

ajl are expansion coefficients. As these points are finite
in number, their exclusion has no measurable efFect af-
ter integration. Note that the coefficients of P~(n, z) in
Eq. (18) equal one.

(iv) Using identities (15)—(18) one can easily show that
the functional space @„is invariant under U. That is,

[E„,U]E„=E„UE„—UE„= 0,

where the projector E„acting on a function g(z),

IR-(z)l & „, m~[lg'"'(a'-~+ gz)l]

(14)

where b, = a; —a, q & 1. As lgi"l(a; q + Hz)l is finite,
uniform convergence of R„ to zero is guaranteed. Sim-
ilarly, it follows that the space of piecewise monomials
of the unit interval is dense in the space = of functions
which are piecewise analytic over 'P and whose infinite
order derivatives are bounded. Thus a finite piecewise
Taylor expansion of any function of:" can be made to
any degree of accuracy.

We shall now compile a number of identities needed
for the following sections which are valid for all piecewise
linear Markov maps and repellers and the aforementioned
partitions.

(i) Any inverse branch f ~(z) of a map f(z) has the
properties

and 0 & 8 & 1. In fact, it is easy to show that, if 'P con-
sists of more than one cell, the Taylor expansions of func-
tions piecewise analytic (whose infinite order derivatives
are finite) over P are uniformly convergent. It suffices to
show that an upper bound R„on lR„(z) l

exists which is
uniformly decreasing with increasing n. Specifically,

le M (
E„g(z) = ) ) l

Pt(t, , y)g(y)dy l P~(l, z), (20)
l=O ~=1

j

can be viewed as a generalized coarse graining operator.
Therefore, UP;(I, , z) is a linear combination of the basis
elements, which implies that U can be represented as a
time independent transition matrix when acting on these
states. More specifically,

U&'(n z) = ).&'(n f. '(z))lf. ' (*)I
a
n M

= ) ) W)~„;P~(l, z).
l=O j=1

(2i)

For expository convenience we have written the expan-
sion coefficients Wlj„;as a fourth-order tensor, although
they really form a matrix. A crucial property of this
basis is that monomial families of order N can undergo
transitions to linear combinations of monomial families of
order no higher than N. As a result, if the basis elements
are ordered according to

f '(C;)l lC, $8w f '(C;) c C, VC;, C, . (15)

A corollary of the first identity is that for each cell C, ,
f(C;) is a union of cells.

(ii) The derivatives of the inverse branches are piece-
wise constant over each cell,

f '(z) =—c Vz E C;,

where c is a constant.
(iii) Consider a monomial of order n whose support is

over the union of k adjacent cells of a partition,

(
0 otherwise.

One can easily show that

i+%—1 n —1

j =i l=o
(18)

except perhaps at the points a;, a;+1, . . . , aI, 2, where

y] (n, z), $2(n, z), ..., $M (n, z), ...,

the matrix W has the block form

( e(0)
0 w(1)
0 0 m(2)
0 0 0
0 0 0 0 m(4))

(23)

where the m(i) and the dots denote M x M matrices and
M is the number of cells in the relevant partition. We
can immediately use standard results of linear algebra to
explore the properties of U through its matrix represen-
tation W when acting on the above states. In particular,
the fact that the basis functions and their corresponding
dual distributions form a biorthonormal set [Eq. (11)]
leads to the following results.

(i) The right (left) basis elements for which W is in
its Jordan form give the expansion coefficients for the
basis of functions (distributions) for which U restricted
to @t 4 is in its Jordan form.

(ii) This canonical basis of functions (v;(z)) and its
dual (vt(z)) form a biorthonormal set, that is,
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(24)
det(1 —zT) = exp(Tr [ln(1 —zT)])

(= exp —) —Tr (T )n
(27)

Thus the eigenfunctions or eigendistributions of U re-
stricted to @t 4 can be calculated in a finite number
of algebraic manipulations.

III. EIGENVALUE PROBLEM OF THE
TRANSITION MATRIX W AND CONNECTION

WITH THE ZETA FUNCTION FORMALISM

In Sec. II a simple method for obtaining spectral de-
compositions for piecewise analytic spaces was presented.
Initial densities residing in this space evolve with a time
independent matrix and the equilibrium density or mea-
sure (when unique) can be straightforwardly obtained.
Thus all the statistical moments associated with long
time averages for observables (for exaxnple, position z) in
this functional space can be easily calculated, including
time correlation functions and their corresponding decay
properties. It is therefore natural to inquire about the
connection between this method and one of the most ele-

gant methods yet developed for investigating the statisti-
cal properties of a hyperbolic dynamical system, namely,
the zeta function formalism developed by Ruelle and oth-
ers [4]. The formalism has been successfully applied by
several authors [21,22,12]. The purpose of the present
section is to establish the nature of this connection.

The zeta function or thermodynamic formalism pro-
vides a means to calculate all statistical moments asso-
ciated with long time averages of analytical observables,
such as the Kolmogorov-Sinai entropy, Lyapounov expo-
nents, Hausdorf dimensions, etc. , provided the equilib-
rium measure is known. Independent of a knowledge of
the equilibrium measure, it also gives the decay rates of
time correlation functions of such observables. There are
a variety of zeta functions. The most commonly used one
is known as the Selberg-Smale zeta function Z(z), which

for Markov analytic maps can be easily derived &om the
Fredholm determinant of the Frobenius-Perron operator
U [5]. That is,

det(W —AI) = det[u)(k) —AI].
I 4 ~

k=o

Let us now apply formula (27) to v)(k):

det[l —zu)(k)] = exp (Tr (in[1 —zv)(k)]))

= exp —) —Tr [u)(k)"]
n=1

(28)

(29)

To calculate the trace of v)(k), g, v),;(k), where u), ;(k) is
the coefFicient of transition of P;(k, z) to itself, we notice
that the relevant terms in Eq. (21) satisfy

f '(C, ) PC, g 8.

It follows that

& I)f.
' (x)ldx. (31)

On the other hand, we notice that Eq. (3Q) implies that
there is a fixed point of f(z) contained in f i(C, ). Let
us denote it by x, . Then from Eqs. (15) and (16)

valid for the Fredholm determinant of nuclear operators
T of order zero and nonsingular matrices [5). The func-
tions (i, (z) are known as Ruelle zeta functions. Mayer has
proved for analytical Markov maps that

&~ &

is a mero-

morphic function on the entire complex plane. The poles
of &~ ~

are reciprocals of the eigenvalues of U acting on
the space 0 of piecewise analytical functions associated
with P~. The space 4 of piecewise monomial functions
associated with 'P~ is a subspace of the O. Therefore,
the eigenvalues of U restricted to C should be elements of
the spectrum of U restricted to O. %e shall now prove
that the spectra are identical, by deriving the Smale-
Selberg zeta function &om the matrix representation R'
of U restricted to 4„.The proof consists of showing that
the eigenvalues of W are the reciprocals of the poles of

&~ ~. The secular equation of W, for a piecewise mono-

mial space of order N, reduces to

Z(z) = det(l —zU) = .-" G(z)
'

A:=0

(25)
+c VxcC, ,' xe

{32)

Z
(26)

and g„,n~, and A„denote the product over all periodic
orbits, the period of the pth periodic orbit, and its rela-
tive stability or instability factor f'(xi) f'(x2) f'(z„),
respectively. Equation (25) can be derived using the for-
mula

where c is a constant. Therefore,

( x (*-) + ')"
&*( f. '( ))If. ' ( ) =

]f ( )]

..,~, f'"(* )If'(x )I
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Thus

1

.. f'"(z )If'(z )I

is a divisor of n by Np/n. We shall adopt the argument
and notation of Artuso et uL [12]. In general, the nth
order trace picks up contributions from Np/n. Therefore

One can show in a similar fashion that

Tr [m(k)"] = )
y-( .)=*.~"' (z )If"'(z )I

(36)
where

Tr [ur(k)"] = ) Nptp"',
N~/n

(37)

where the sum is now over fixed points of f"(z)
Let us now come back to Eq. (29). m,",(k) is nonzero

only if the cell C; contains an element(s) of a periodic
orbit p, of period N„, such that N„ is a divisor of n We.
shall denote the set of all periodic orbits whose period Np

1

fNp (z )kffNp (z )f
(38)

and z, is a fixed point of f~&(z, ). Let p = +. We can
P

express Eq. (29) as

.".(
"~„)"l

det[1 —ztg(k)] = exp —) )
p r=1

= exp
z~.

ln(1 —z 'tp) = (1 —z 'tp) =
~

1—
a ~ i ~ & si ~ ~ i ~ s 1Vp g k gp g

1

Ca(z)'
(39)

We conclude that all the zeros of (g(z), and there-
fore the poles of Z(z), can be obtained f'rom Eq. (28). A
more informative conclusion is that we can identify which

(g(z) are relevant for a given set of measurable functions.
That is, if a set of measurable functions can be expressed
(exactly or up to a good approximation) as linear com-
binations of piecewise monomials (associated with 'P~)
of order no higher than N, only the (g(z) for k & N are
relevant for the correspondiag time correlation functions.
Thus the nature of the link between our method and the
zeta function formalism is clearly established.

One advantage of our method compared to the zeta
function formalism for piecewise linear Markov maps is
that our method is far easier to implement. Furthermore,
we can evaluate explicitly all time correlation functions
whose corresponding observables are piecewise analytic
(whose infinite order derivatives are bounded), whereas
with the zeta formalism only the corresponding decay
rates are calculated in practice.

IV. EFFECT OF REFINEMENT
OF THE MINIMAL MARKOV PARTITION

WITH PERIODIC ORBITS

The investigation of the properties of statistical sys-
tems at different length scales has attracted much inter-
est recently [10]. It is therefore desirable to consider this
problem for simple models amenable to analytical calcu-
lations. This is the main theme of the present section.

The study of local statistical behavior involves the cal-
culation of statistical moments associated with observ-
ables having support over local regions. This is not pos-
sible with analytic observables whose support is over the

1
A (I"(z~)l"'}"p

1=
([fpl( )]„+,),/

exp('~~i/p) (4o)

[&"'(*)]"+'
2 otherwise, (41)

where k = 0, 1,2, 3, .. . ; j = 1,2, 3, . . . ,p; and xg belongs
to a periodic orbit of period p.

entire interval, because the calculation of their statistical
moments entails an integration over all of phase space.
Consequently, they can only describe essentially global
aspects of the system. Such "global" aspects were the
subject of Sec. III, where we characterized the spectra
of spectral decompositions associated with 'P~. To de-
scribe local statistical behavior, we shall now use the re-
sults of Sec. II to characterize the eigenvalues of spectral
decompositions associated with refined partitions. The
partitions are formed by adding to the points defining
P~ all the points of a finite number of periodic orbits.
The periodic orbits are chosen so that the points de6n-
ing the new partition P lie on or close to the boundaries
of the local regions of interest. We shall establish the
following properties.

(i) There exists a countable infinity of eigenvalues of
U associated with each periodic orbit (zq, z2, . . . , zp).

(ii) Corresponding to each eigenvalue there is a unique
eigenfunction which is contained in the space of mono-
mial families associated with the partition 'P.

(iii) The eigenvalues are
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~( )
(x —z)" ifzC[x a ]
0 otherwise, (42)

where C;. denotes a cell of p~ such that z, E C,, =
[a;, q, a,,] and k = 0, 1,2, . . . , N. We extend the space
C„ to a space @„by adding the monomials [Eq. (42)]
as new basis functions to the set spanning 4„. The new
additional dual basis distributions are

g,. (n, z) =, [h(x —z, ) —b(z —a.. .)).(-1)" d"
(43)

One can readily verify that the extended basis and its
dual form a biorthonormal set. By Eqs. (15)—(18) @„is
an invariant functional space of U. Therefore, denoting
for convenience the new basis by (P, (n, z)} we have, in
analogy to Eq. (21),

They describe a decaying oscillatory mode with period p
if the argument of the pth root is positive and 2p if it is
negative. They play no role for time correlation functions
of observables that are piecewise analytic with respect to
P~. However, they are relevant for the statistical mo-
ments of measurable functions, where each function has
the following properties. (i) It can be well approximated
over each cell of Pa's a finite Taylor series. (ii) It has at
least one discontinuity (or discontinuity in a derivative
of lower order than the order of truncation in the Taylor
expansion) at or close to an element of one of the periodic
orbits used to refine P~.

We now proceed to the proof of the above statements.
Let 4„=(P;(n, z)}denote the functional space spanned
by the basis of monomial families of order N associated
with a 'P~ having M cells. For each point of the peri-
odic orbit z, define the set of monomials having support
x;, a;, as

yt(n, x)V@;(n,*)dx

@,'(n z)@'(n f. '(x))lf. '(x)ldz

(46)

Consider the following arrangement of the basis functions
for k = 0, 1, 2, . . . , n,

Pg (k, x), $2(k, x), . . . , P (k, z),

@g(k, x), @2(k,x), . . . , gp(k, x),

that is, for each value of k, the basis functions associ-
ated with P~ occur first, followed by the basis functions
associated with the periodic orbit. Then the nth order
block of the matrix representation W of U for this basis
has the schematic form

( A(n) B(n) &

(48)

A(n) is a M x M matrix giving the transition coefficients
of elements of (P;(k, x)}going to elements of (Pi(k, x)}.
B(n) is a px M matrix giving the transition of elements of
(g;(k, z)}going to elements of (Pz (k, z) }.C(n) is a p x p
matrix giving the transition coeKcients of elements of
(@,(k, z)}going to elements of (@i(k, z)}.If the periodic
orbit is a fixed point x, (i.e., p = 1), then C(n) is a 1 x 1

matrix, so that C(n) = f' ~"+ ~( )z. For any orbit of
higher period, C(n) has the form

V4'(n, x) = ).4'(n f. '(*))lf '.(*)I

n M+1
= ).) . Wi 'P (I, x), (44)

0
~(zg)

C(n) =

o

0 0
0 0

~(x2) 0

0
0 0
0 r(z„g)

(*,) ~

0

0
o )

(49)

where R'~~„; is the matrix representation of U in this
basis. A monomial @;(n,z) of order n having a discon-
tinuity at x, , will have a discontinuity at z;+q after one
iteration, but not at any other points of the periodic or-
bit. Furthermore, Vg, (n, x) is a linear combination of
monomials, including @;+q(k, x), where k = 0, 1, 2, . . . , n
Discontinuities at x;+q in the sum Eq. (44) only occur
for the term whose corresponding inverse branch f (x)
maps x,+z to x;. Using this fact together with Eqs. (15)—
(18) one can easily show that

(45)

where T consists of terms which do not contribute to the
transition to g,+q(n, x). Indeed,

fW —%If =

k=O

fm(k) —AI
f

f A(k) —AI
f f C(k) —AI f,

so the eigenvalues arising &om the refinements are the
eigenvalues of C(k). These are precisely the ones listed
in Eq. (40). In fact, there are strong analytical reasons to
believe that the results of this section can be generalized
to everywhere expanding piecewise analytic maps which
do not have to possess a minimal Markov partition [16]
and certain higher dimensional hyperbolic conservative
maps [23].

where r(z) = f' ~"+ 1(x) and, as before, monomial fam-
ilies of order n cannot undergo transitions to higher or-
ders. Therefore, the secular equation reduces to

k=N
~ P



50 GENERALIZED MARKOV COARSE GRAINING AND SPECTRAL. . . 995

V. EXAMPLES &(z) = b(z —z, ) —h(z). (58)

We shall now illustrate the results of the preceding
sections on simple chaotic maps. Let us first consider
the tent map

One can readily show that the extended basis and its
dual form a biorthonormal set. Equation (40) states that
for each periodic orbit of period p new eigenvalues are
obtained,

mx if 0 & 2: & 0.5
m(1 —x) otherwise (51)

for m & 2. If m & 2, then the map is a repeller, so
that the support of the invariant measure is a cantor set
[24]. However, the only effect in the evolution of ini-
tially smooth densities [25] is that at each iteration their
norm can decrease if part of the density leaves the interval
I = [0, 1]. That is, within the interval the evolving den-
sity never has a &actal support. The Frobenius-Perron
operator takes the form

1

([f"'(z )]"")"
1= —exp(iz pj/p),m

where k = 0, 1,2, 3, . . .; j = 1, 2, 3, . . . , p; and

1 if [f~'(z.)]
"+' ( 0

2 otherwise.

~

~

~

(60)

1 (z't
+ (*) = —

c I,
—

) + ~ I,
——

) . (52)

2 31) x) 'g ) g ) ~ ~ 4 z ) ~ ~ ~ )

and their corresponding duals

We are only concerned with the evolution of densities (or
portions thereof) while they remain in the interval [0, 1].
The efFective minimal Markov partition coincides with
the»~it interval itself. Following Sec. II, a biorthonormal
set is provided by the monomials with support the unit
interval, i.e,

f m2' m '
—1—m

—2Tn

2~ '
m-~
rn-~

The first few eigenvalues generated by the above refine-
ment are then:, ~, ~, . . . and the overall transition
matrix has the form of Eq. (23),

d 2h(*) ——~(z) (-1)' ~(*)
dx ' dx2

(54)

(61)

For this basis it is easy to see that the transition matrix
is upper triangular, with diagonal elements

2 1 1
m' ' m3' ' m5

while each successive 2 x 2 block along the diagonal has
the form of Eq. (48). Actually for this map W is diago-
nalizable so that the right (left) eigenvectors of W define
eigenfunctions (dual eigendistributions) of the Frobenius-
Perron operator U, which can be normalized to form
a biorthonormal set. More generally, W with respect
to its canonical basis reduces to its Jordan form. The
eigenfunctions corresponding to the first four eigenvalues

The diagonal terms are just the eigenvalues and their re-
ciprocals equal the poles of the zeta function Z(z) defined
in Sec. III. When m & 2, the eigenvalue —gives the es-
cape rate out of the unit interval for an initially uniform
distribution. The zero eigenvalues show that monomials
of odd order cannot undergo transitions to themselves in
one iteration, which is due to the symmetry of the map
about 2. Let us now refine the minimal partition with
the addition of the fixed point x, = z+ and extend the
basis with monomials having as support [x„1],i.e.,

&(-..i)(z) (*—z.)X(-.,i)(z), "., (*—z.)"X(...i)(z) ".,
(56)

the new dual basis elements being

vi (x) = X[o,i] (z)

v2(x) =
3

+ y( q(z),
—

X(o,q(*)

zX(o, i) (z)
vs(x) = X(o,i)(x)—

m y(o, )(x) my(
(2m —l)(1 + m) 1 + m
—»(o, i)(z) + (z —* )X(*.,q(x).

(62)

where

h(z) -~h(z) ". (-1)"
d „~(z) "d- „d"-

(57)
The dual eigendistributions can be expanded in terms of
the dual basis. For the eigendistributions corresponding
to the eigenfunctions above, the first four terms in the
expansion are
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t 1- 1d
vi(z) = b(x) + -b(z) ———b(x)

3 2dx
2(3 —m) l-

b(x) + .
3(2m —1) dx

that the initial density or observable should be analytic,
it is natural to inquire about the spectral properties of
U when acting on nonpiecewise analytic functions. Con-
sider first a simple generalization of a monomial, x raised
to a noninteger power a, @(x) = x, and the tent map
with m & 2. We have then

vs(z) = —2—8(z) —2—b(x) +
Qx dx

(63)

tv (x) = ——8(z) +4 dx

where h(z) is the same as before. Let g(z) be any func-
tion which can be well approximated with the first two
terms of a Taylor series [see Eq. (12)] over each cell of the
partition. g(x) can be expanded in terms of the eigen-
functions of Eq. (62),

g(z) =- ) I v,'(~) g( g) dgl v'(z)
)

The eigenvalues associated with the fixed point are

—1 1 —1
m' m2' m3 (66)

The eigenvalues corresponding to the minimal Markov
partition, and thus the zeros of the zeta function
[Eq. (29)] are

1.0944im
—1 —1
m3' m3

—1.0944i7r
m3'

VI. EXTENSIONS TO NONANALYTIC
BASIS FUNCTIONS

So far we have described the properties of U acting
cn spaces of piecewise analytic functions associated with
the minimal Markov partitions and its refinements. We
have seen explicitly that the choice of partition and cor-
responding function space determines the possible spec-
tra and thus characteristic times that can be observed
in time correlation functions. Since there is no reason

It is straightforward to extend this treatment to higher
orders and to other periodic orbits.

For values of m less than 2 the tent map no longer
sends the unit interval onto itself. However, for m )~2
the interval [f(f(2)),f(2)] = [a, b] is mapped onto itself,
so that our results will be directly applicable if the critical
point is mapped onto a periodic orbit or fixed point. A

slope value for which the analysis is particularly simple

is m = ~2. The minimal Markov partition is (a, 2, b)
Again we can refine the partition with the fixed point
x„and in addition consider the dynamics in the interval

[0, a], so that the new Markov partition is (0, a, 2, x„b, ).
The analysis proceeds as in the previous example. The
eigenvalues associated with the decay out of the region

[0, a] are simply

(65)

~~( )
(=*) (' —=*)

(68)

(x —a, i + e) if g = L, x q C,
Q(a, q, c, z) = ) (a; —x+c) ifi1=R, zqC,

0 otherwise,
(69)

where e & 0 and the index g has two possible values L
and R to denote each of the nonzero functions of Eq. (69).
In the folio'wing we shall refer to these functions as gener-
alized piecewise monomials (GPM's) if c = 0 and gener-
alized piecewise polynomials (GPP's) if c j 0. We shall
show that no matter how many times U is applied to
a GPM with exponent a, the resulting density can be
expanded in terms of a finite number of GPM's, GPP's,
and piecewise monomials. The key element of the proof is
that if U is applied to a GPP, the result is a linear combi-
nation of GPP's having the same exponent o., but a larger
c. Let mp z denote the value of

l f'(f& (x))], x F C~. If
the functions in Eq. (40) are evolved one time step one
finds

The first term is proportional to @(z), while the second
is expandable as an infinite power series. No exact repre-
sentation of U in terms of a finite matrix can now be ex-
pected. However, since m ) 1 and x C [0, 1], we can still
apply the method of Sec. II since the expansion converges
uniformly and calculate the new eigenfunction to any
desired accuracy. The new eigenvalue is clearly m +,
which has the same form as the eigenvalues associated
with monomials having the unit interval as support. For
—1 & a & 0, 1b(z) is divergent at zero but nevertheless
integrable. We can choose a so that the corresponding
eigenvalue lies anywhere between zero and one. Indeed,
if n is complex with its real part greater than —1, g(z)
remains integrable [with integrable singularities at zero
if Re(n) & 0] and eigenvalues can be obtained anywhere
in the unit circle, implying that the corresponding char-
acteristic times can be arbitrarily long. We can extend
the basis to include the function (1—z), finding that its
corresponding eigenvalue is zero. Notice a general simi-

larity with the analysis of Feigenbaum et aL [24] of scaling
properties of multi&actal repellers. They are able to map
this problem into an eigenvalue problem of an operator
reminiscent of, but not identical to, the Frobenius-Perron
operator. In our analysis we are concerned exclusively
with the eigenvalue problem of the Frobenius-Perron op-
erator.

Let us now consider the problem of general piecewise
linear Markov maps. We need to define functions that
are a generalization of noninteger powers of x and then
show how a finite invariant functions space containing
them can be constructed. Therefore, let
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for and

x«., f (C.)I™IC,S&, (*-xi) X(*„...)(x)

where

c=cmpg if az y E f& (Cg) or a~ E f& (Cg),

c ) c mp, g otherwise,

(71)

as easily proved using relations (15) and (16). If c )
as —as q, Q~ (n, c, x) can be expressed as a uniformly
convergent power series in z, for all x g |~. Moreover,

if c g 0, U"g~ (n, c, x) can be expanded in a similar fash-
ion, after a finite number of iterations since c is growing
exponentially quickly. In fact, after a maximum of

corresponding to each point of the periodic orbit, whereas
in Sec. IV there is only one piecewise monomial for ev-

ery integer exponent k. The definition of a;, was given
directly after Eq. (42). C(n) of Eq. (49) is now replaced
with a 2p x 2p matrix C'(n). C'(n) can be written as a
p x p matrix having essentially the same form as C(n),
except that each element is a 2 x 2 matrix. It follows im-

mediately that the eigenvalues are roots of the equations

A"+ ~ p/

If ( )I ( )
= f ( )

(75)
(

ayftay
)

(72)

iteration c is either zero or greater than the width of the
largest cell. Here Aq, 42, m~, and m2 denote the width
of the largest and smallest cells, the maximum slope, and
the minimum slope, respectively, and N is an upper
bound. Therefore if an initial density is a given GPM,
in the subsequent evolution it can be expressed as a lin-
ear combination of piecewise monomials, a finite number
GPM's and GPP's (where the number of different values
of c is finite). Thus an invariant functional space can be
constructed having the above functions as a basis. Only
certain transitions between the basis functions are possi-
ble, as indicated in the following table.

GPM GPP PM
GPM yes (a) no no
GPP yes (b) yes (d) no
PM yes (c) yes (e) yes (f)

(73)

where PM denotes piecewise monomials. Thus the ma-
trix W generating the evolution of the states has the
schematic form

( x o 0 )
B D 0

(c z z)
(74)

where the matrix blocks A, B,C, D, E, and F correspond
to transitions (a)—(f) listed in table (73) and the eigenval-
ues of W are the eigenvalues of A, D, and F, respectively.
The eigenvalues of F are just the eigenvalues of U act-
ing on the space of piecewise monomial functions. All the
eigenvalues of D are zero, because a GPP as it evolves can
never undergo a transition to itself [see Eq. (71)]. The
eigenvalues of A when P is the minimal Markov par-
tition are difBcult to characterize for general piecewise
linear Markov maps. However, if P is a refined partition
of the type considered in Sec. IV, the eigenvalues associ-
ated with periodic orbits can be easily calculated. The
derivation is very similar to that of Sec. IV, except that
for every exponent o. there are two GPM's,

where x~ is any element of the periodic orbit. Therefore
the eigenvalues are

1 (mj)
, exp

I

—
I

if f"'(x~) ) 0,
If"(x~) I

"
j = 0, 1, 2, . . . , p, p+ 1, . . . , 2p —1, (76)

, exp
I

—
I

if f~'(x() ( 0,
If"(x,)I "

j = 0, 1, 2, . . . , p —1,p, p + 1, . . . , 2p —1. (77)

The eigenmodes describe a periodic oscillatory decay if
the imaginary part of o, is given by

g 2K

»[If"(x~) I]
' (78)

where g is any &action, and an aperiodic oscillatory de-
cay otherwise. Again, if the real part of a, a~, is close
to —1, then the eigenvalues decay arbitrarily slowly. Of
course, as observables are normally real valued, when o;

is complex the basis [see Eq. (69) (c = 0)] needs to be
extended for its complex conjugate o,". In this case the
observables or initial densities of interest are typically of
the form

g;(n, L, O, x) + g;( oL, O, )x

= 2(x —a; q)
"cos[ar ln(x —a; q)]y;(x). (79)

A striking property of this type of function is that it
oscillates infinitely quickly as x approaches a; q if o.y is
nonzero.

Let us illustrate the latter results with the tent map,
choosing the partition (0, x„1},so

(xi-x) X(... „.,)(*)
m

a0 ——O, aq ——x, = ) a2 —1m+ 1
(80)
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and

gi(a, L, 0, x) = x y[p ) (x),

gi(a, R, O, x) = (x. —x) g[p .j(z),

@2(a,L, O, x) = (x —x, ) g[ i)(x),
vj 2( a, R, 0, x) = (1 —x) y(, )(x).

Evolving each of these functions once we obtain

(=) (1 —=)-
Upi(a, L, 0, x) = +

m m

Upi(a, R, O, z) = + y[,j(x),
(* —=) (* *)

m m

(z.—z)a
U42(a, L, o, *) = X[p,*.~(x)m

(—*)
UP2(a, R, O, x) = g[p j(x).

(82)

The right-hand sides of each of the last four equations
can be written as linear combinations of the functions
Eq. (81) and the monomials

x"&[p,*.)(x) (x —x )"&[...i)(x) (83)

where k = 0, 1, 2, . . . . Again we can find a value of k such
that the monomial expansions have converged suKciently
so that truncation produces a negligible error. Thus we
can find a finite dimensional functional space including
the generalized piecewise monomials [Eq. (81)] that up
to an arbitrary approximation is invariant under U. The
new eigenvalues corresponding to the fixed point are

1

I&'(x ) I

+' (84)

VII. CONCLUSION

Spectral decompositions of the Frobenius-Perron oper-
ator have been obtained for all piecewise linear Markov
maps and associated repellerlike maps. This was
achieved by restricting the operator to an invariant space
spanned by a piecewise monomial basis associated with
any Markov partition ~ of the following class: the min-
imal Markov partition, its self-refinements, and refine-
ments made with the addition of the elements of a fi-
nite number of periodic orbits. This representation is
relevant for all initial densities or measurable functions,
which, over each cell of a 'P, can be expressed (or suit-
ably approximated) as a finite Taylor series, and includes
all functions piecewise analytic over T. The main results
are the following.

(i) The spectra and right eigenfunctions for the zeroth
order monomial projection correspond to those obtained

in earlier work using a Markov coarse graining projection
[7,26].

(ii) The eigenvalues can be grouped into sets [Eqs. (23)
and (39)), each corresponding to a zeta function and a
piecewise monomial space of a given order.

(iii) Right and left eigenfunctions or eigendistributions
associated with periodic orbits have been constructed
and a simple general formula for their spectra [Eq. (40)]
has been given. This construction enables local behav-
ior to be predicted, in particular the characteristic times
of time correlation functions, which generally exhibit a
periodic oscillatory decay.

(iv) The decay rates associated with observables that
are generalized piecewise polynomials (powers of x raised
to a fractional or to a complex exponent) have been con-
sidered [Eq. (69)]. Eigenvalues [Eqs. (76) and (77)] and
methods for obtaining eigenfunctions have been given.
Exponents can be chosen so that the corresponding spec-
tra lie anywhere in the unit circle, thus arbitrarily slowly
decaying eigenstates can be constructed which are highly
localized about the periodic orbits.

Our results confirm further the conclusion of recent work
[2,19] that the spectra of the Frobenius-Perron operator,
and thus the possible measurable characteristic times for
chaotic maps, depend critically on the functional space
under consideration. More importantly they show how
invariant functional spaces can be constructed in a sys-
tematic and efficient manner according to the set of ob-
servables that are of immediate interest. Numerical in-
vestigations and analytic work suggest that the analysis
can be extended using an approximation technique to
chaotic piecewise linear non-Markov maps and, to some
extent, everywhere expanding maps. This problem will
be the subject of a future publication [16], where higher
dimensional systems will also be explored (see also [27]
for related references).

Note added. After submission of this paper, G. Vattay
informed us that he had also related the spectra of U
acting on functions piecewise analytic over the minimal
Markov partition to the Ruelle zeta function [28]. He also
drew our attention to Ref. [20], which we recommend to
the reader.
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