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For the quantum kicked top we study numerically the distribution of Hilbert-space vectors evolv-

ing in the presence of a small random. perturbation. For an initial coherent state centered in a
chaotic region of the classical dynamics, the evolved perturbed vectors are distributed essentially
like random vectors in Hilbert space. In contrast, for an initial coherent state centered near an
elliptic (regular) fixed point of the classical dynamics, the evolved perturbed vectors remain close
together, explore only a few dimensions of Hilbert space, and do not explore them randomly. These
results support and extend the results of earlier studies, thereby providing additional support for a
characterization of quantum chaos that uses concepts from information theory.

PACS number(s): 05.45.+b, 89.70.+c, 03.65.—w

I. INTRODUCTION

In a series of previous papers [I—4], two of the authors
introduced a characterization of Hamiltonian chaos which
is directly applicable to quantum as well as to classical
systems. This characterization, formulated in the &ame-
work of statistical mechanics, is based on the following
question: How much information is needed to predict an
evolved system state in the presence of random perturba-
tions'? General arguments [2] and an investigation of the
symbolic dynamics of the baker's map [4] provide strong
evidence that chaotic classical Hamiltonian systems show
what we call hypersensitivity to perturbation, i.e. , a rapid
increase with the number of time steps of the information
needed to describe the perturbed time evolution of a sys-
tem state, the information attaining values exponentially
larger than the increase of ordinary entropy that results
&om averaging over the perturbation.

Hypersensitivity to perturbation explains quantita-
tively how information about the state of a system is
lost through interaction with an incompletely known en-
vironment and therefore is important for understanding
why entropy necessarily increases in systems that are not
perfectly isolated. The connection of this work on chaos
with statistical physics is developed in Sec. VI. In addi-
tion to its straightforward motivation in statistical me-
chanics, the concept of hypersensitivity to perturbation
may provide a more physical way to characterize quan-
tum chaos [2]. Numerical simulations [1] show that the
quantum baker's map [5] displays hypersensitivity to per-
turbation.

In this paper, we analyze how hypersensitivity to per-
turbation arises in the quantum kicked top [6,7], a sys-
tem whose classical dynamics has both chaotic and reg-
ular regions. To shed light on the reason for the rapid
increase of information associated with the property of
hypersensitivity to perturbation, we perform a detailed
numerical analysis of how the vectors arising from dif-
ferent perturbation histories (realizations of the random

perturbation) are distributed in Hilbert space. For an
initial coherent state centered in a chaotic region of the
classical dynamics, the evolved perturbed vectors are dis-
tributed essentially like random vectors in Hilbert space.
In contrast, for an initial coherent state centered near an
elliptic (regular) fixed point of the classical dynamics, the
evolved perturbed vectors remain close together, explore
only few dimensions of Hilbert space, and do not explore
those dimensions randomly.

Quantum systems show no "sensitivity to initial con-
ditions, " due to unitarity, but they show what one might
call sensitivity to parameters in the Hamiltonian, as has
been demonstrated for the kicked top by Peres [8]. Peres
compares the time evolution of the same initial Hilbert-
space vector for two slightly different values of the twist
parameter in the kicked-top Hamiltonian (see Sec. II).
He finds that, after a fixed number of time steps, the
two evolved vectors are far apart if the initial vector is
a coherent state centered in a chaotic region of the clas-
sical dynamics, but the two evolved vectors stay close
together if the initial coherent state is centered near an
elliptic fixed point of the classical dynamics.

Our approach to quantum chaos could be viewed as a
generalization of Peres's work: while Peres studies time
evolution due to an incompletely known Hamiltonian, we

analyze the distribution of vectors arising Rom time evo-
lution under a stochastic Hamiltonian. There is, however,
a fundamental difference in philosophy between the two
approaches, which can be understood fully only in the
context of statistical mechanics. This difference becomes
apparent in Sec. VI.

The quantum kicked top, its classical limit, and the
concept of a coherent state are reviewed in Sec. II. Sec-
tion III defines the perturbations used in the numerical
simulations. In Sec. IV we explain how the distribution
of vectors in Hilbert space is connected to questions of
information and entropy and how the numerical data are
compiled into figures. Section V contains the numerical
results of this paper. Finally, in Sec. VI, we discuss the
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implications of our results for the foundations of statisti-
cal physics.

II. THE KICKED TOP

The quantum model of the kicked top [6,7] describes a
JL

spin- J particle —i.e., an angular momentum vector hJ =
h(J, J„,J,), where [J;,J~] = ie;~i, Js w—hose dynamics
in (2J+ 1)-dimensional Hilbert space is governed by the
Hamiltonian

H(t) = (hp/T) J, + (hk/2J) J ) b(t —nT) . (2.1)

I&-) = U."]&0) (2.2)

where Up is the unitary Floquet operator:

Us = exp [
—i(k/2 J)J ] exp (—in J,/2) . (2 3)

The classical Poincare map corresponding to the quan-
tum map is obtained by introducing the unit vector
ur = (X, Y, Z)—:J/ J and performing the limit J -+ oo.
One obtains [7]

X'= -Y,
Y' = Xcos kY + Z sinkY,
Z' = Z cos kY —X sin kY .

(2.4)

The map (2.4) is an area-preserving map of the unit
sphere, i.e., an area-preserving map on the configuration
space of a classical spin with fixed magnitude. Depend-
ing on the value of the twist parameter k, this map has
regions of chaotic behavior interspersed with regular re-
gions associated with elliptic cyclic points. In this paper,
we are interested in two cyclic points of the map for k = 3.
One is an elliptic fixed point of period 1 located at [9]

The free precession of the spin around the z axis (first
term in the Hamiltonian) is interrupted periodically by
sudden kicks or tmist8 at times nT with twist parameter
k (second term in the Hamiltonian). The angle of free
precession between kicks is given by p. In this paper we
always use p = n/2.

We look at the time evolution of an initial Hilbert-
space vector ]ps) at discrete times nT. After n time
steps, the evolved vector is given by

S = i exp—(—in.J,) (2.S)

and which permits factorization of the matrix represen-
tation of the operator U into two blocks. Starting &om
a state with definite parity, the whole dynamical evolu-
tion occurs in the invariant Hilbert subspace with the
given parity. For half-integer J, the dimension of the
even-parity subspace (eigenspace of S with eigenvalue 1)
is J+ 2. In this paper, we work with J = 511.5 in the
512-dimensional even-parity subspace. We consider only
the projection of the initial vector in the even subspace.
Numerical evidence and syinmetry considerations [8] sug-
gest that no additional insight is gained by including the
odd-parity subspace. In any case, the restricted model
can be regarded as a quantum map in its own right, which
can be investigated independently of the behavior of the
complete kicked-top model.

We want to choose initial vectors for the quantum evo-
lution that correspond as closely as possible to the classi-
cal directions (2.5) and (2.7). For this purpose, coherent
states [10—12] are appropriate. The coherent state ]8, p)
is defined by the relation

n J]8, (p) = J]8,y), (2.9)

where n is the unit vector pointing in the direction given
by 8 and y. All coherent states can be generated by
an appropriate rotation of the state

~
J, M = J) = ~8 =

n/2, y = 0), where ]J, M) (M = —J, . . . , J) is the com-
mon eigenstate of J2 and J, with eigenvalues J(J + 1)
and M, respectively. In calculations, it is convenient to
use the explicit representation

2J
e, v) = ) v'r~(e, n)e'" IJ, n J), —(2.10)

where

(2J) (1+arccosel " t'1 —arccos8&"

We choose the two fixed points (2.5) and (2.7) instead of
the extreme elliptic (p = nn/4, Z = 0) and hyperbolic
(Z = +1) points described in Ref. [9], because the latter
suffer accidental invariance with respect to one or both
of the perturbation operators considered in Sec. III.

The model has a conserved parity, which for half-
integer J takes the form

Z = cos 8 = 0.455719, p = 3n/4,

where we have used spherical coordinates

8 = arccos Z, y = arctan Y/X .

(2.5)

(2.6)

Z = cos 8 = 0.615950, y = n/4 . (2.7)

The elliptic fixed point (2.5) is surrounded by an oval-
shaped regular region, extending about 0.3 rad in the y
direction and about 0.5 rad in the 8 direction. The other
cyclic point of interest to us is a hyperbolic fixed point
of period 4, which has a positive Lyapunov exponent. It
is located in the middle of a chaotic region at [9]

(2.11)

In the following we need a metric on Hilbert space.
The distance between two normalized vectors ]pi) and
~g2) is defined as the Hilbert-space angle

8 1 ) 2 = COS 1 (2.12)

between the two vectors [13]. Consider two coherent
states ]8, y) and ]8', rp'). In terms of the angle a between
the directions (8, p) and (8', p'), the distance between
the two coherent states is given by [14]
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«s[s(16 ~) l~' ~'))] = l(~ ~ I

~' ~')
I

= [cos(a/2)] exp( —Ja /4),
(2.13)

where the approximation is valid for large J. Two coher-
ent states can therefore be regarded as roughly orthog-
onal if a + 2J ~ [8]. The size of the coherent state
IO, y) is conveniently defined in terms of the Q function

Qs, g(~' v') —= l(e' v'
I

~ v)l' = [«s(~/2)]" —= &(~)

(2.14)

Since Q(2J i~2) e 2Q(0), the Q function of the co-
herent state IH, rp) is very small outside a region of ra-
dius 2J i~2 centered at the direction (O, p). For the
value J = 511.5 used in this paper, one finds a radius
of 2J / 0.09 rad, less than the size of the regular
region around the elliptic fixed point (2.5).

For perturbation strengths we use ~ = 0.03 and
0.003 for the twist perturbation and c = 0.003

for the turn perturbation. For a twist parameter k + ~

the zenithal location of the fixed points (2.5) and (2.7)
changes slightly to Z = 0.443579 and Z = 0.619848 for
~ = 0.03 and to Z = 0.454497 and Z = 0.616341 for
~ = 0.003. This corresponds to changes in the zenithal
angle 0 of 40 0.014 rad and 60 0.005 rad for

0.03 and to 60 0.0014 rad and 68 0.0005
rad for ~ = 0.003. All these angles, as well as the an-
gle ~ = 0.003 we use for the turn perturbation, are very
small compared to the size of the elliptic region around
the fixed point (2.5) and are also much smaller than the
size of a coherent state.

IV. DISTRIBUTION OF VECTORS
AND INFORMATION

III. PERTURBED EVOLUTION

Our goal is to quantify how much information is re-
quired to track the state of a system when, instead of
being wholly isolated, it is perturbed by interaction with
its enviroament. In classical physics, interactions with
an incompletely known environment can be described by
a stochastic Hamiltonian, each realization of which cor-
responds to a particular initial condition for the envi-
ronment. The situation is more complicated in quantum
mechanics. Due to the possible entanglement of system
aad environment, there is no way to associate a unique
perturbation history with a given initial condition of the
environment. An upcoming work discusses how to study
hypersensitivity to perturbation in a realistic model of
a quantum system interacting with an environment. For
the present paper we restrict ourselves to the special case
of quantum time evolution under a stochastic Hamilto-
nlan.

The problem is simplified further by considering only
two possible unitary time evolutions at each step. These
two time evolution operators we denote by U+ aad U
A perturbed time step consists in applying either U+
or U with equal probability. After n time steps, the
number of different perturbation sequences is 2", each
sequence having probability 2

We use two different perturbations: (i) the twist per-
turbation, defined by choosing the twist parameter k at
random &om step to step, the two possible Floquet op-
erators being given by [8]

U+ =UA. , U =UA, +, , (3.1}

U+ = exp( —ieJ, ) Ui, , U = exp(+ieJ, ) Ui, . (3.2)

Notice that the time-evolution operators (3.1) and (3.2)
commute with parity (2.8) and hence do not couple odd-
and even-parity subspaces.

and (ii) the turn perturbation, defined by rotating the
spin by a small angle e around the z axis after each un-
perturbed step U~, the two possible Floquet operators
being given by

The 2" different perturbation sequences obtained by
applying every possible sequeace of U and U+ for n
time steps lead to a list of 2" vectors, each having prob-
ability 2 ". In this section, we explain how the distri-
bution of these 2" vectors in Hilbert space is related to
information and entropy.

Let us start with a slightly more general situa-
tion. Imagine we are given a list of % vectors in D-
dimensional Hilbert space, lgi}, . . . , IQN), with proba-
bilities pq, . . . , p~. Together with our knowledge of the
system Hamiltonian aad boundary conditions, the list
of vectors with their probabilities constitutes our back-
ground information. We ask for the average information
needed to specify a single one of these vectors, given the
background information. The information to specify a
particular vector can be quantified either via conditional
algorithmic information [15] or by the length of a code
word in some coding scheme [16]. In both cases, it is
a consequence of the variable-length coding theorem [16]
that the information averaged over all vectors, or average
information, is bounded below by

N

AI = —) p, logzp, . (4.1)

(Throughout this paper, information and entropy are
measured in bits. ) There exist coding schemes —an ex-
ample is Huffman coding [17]—where BI+1 is an upper
bound for the average information or code word length.
It can be shown [18] that there exists a universal com-
puter for which AI+ 1 is an upper bound for the average
algorithmic information as well. Therefore, we call AI
the average information, in the sense that the actual av-

erage information is within one bit of AI if an efBcient
coding scheme is used. In the case of 2 equiprobable
vectors the average iaformation is AI = n.

Suppose some of the N vectors I@;) are very close to-
gether in Hilbert space, so that they form a small group.
If one is interested in lowering the amount of iaformation
AI, one may choose to provide just enough information
to specify that the actual vector is located in that group,
the price being that the entropy of the group is generally
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larger than zero. To be more specific, we introduce a
coarse graining on Hilbert space defined by a resolution
angle P. Vectors less than an angle P apart are grouped
together. More precisely, groups are formed in the fol-
lowing way. Starting with the first vector in the list, ~Qi),
the first group is formed of ~Qi) and of all vectors in the
list that are within an angle P of ~Qi). The same proce-
dure is then repeated with the remaining vectors to form
the second group, then the third group, continuing until
no ungrouped vectors are left. This grouping of vectors
corresponds to a partial averaging over the perturbations.
To describe a vector at resolution level P amounts to av-
eraging over those details of the perturbation that do not
change the final vector by more than an angle P.

For a given resolution P, there are N(P) groups. We
denote by N~ the number of vectors in the jth group

(g. i N~ =N). . The N~ vectors in the jth group

and their probabilities are denoted by ~@~i), . . . , ~Q~~ ) and

p~i, . . . ,p~, respectively. Knowing that the system state
is in the jth group, but not knowing which state in the
jth group is the actual state, corresponds to describing
the system by the density operator

(4.2)

where

(4.S)

is the probability of the jth group given only the back-
ground inforination. For P = m/2, there is only one
group, whose density operator, denoted by p(vr/2), cor-
responds to a complete average over the perturbations.

The average information needed to specify which group
a vector is in—i.e., the average information needed to
specify the system state at resolution level ~is given
by

(4.4)

uncertainty about the system state increases on the av-
erage to a degree quantified by the trade-off entropy.

As a further characterization of the way the vectors are
distributed in Hilbert space, we want to define a quantity
that indicates how many dimensions of Hilbert space are
explored by the vectors in a group. One such quantity
would be the dimension of the subspace spanned by the
vectors, which is equal to the number of nonzero eigen-
values of p~. In practice, however, this is not a very useful
measure because it cannot discriminate between the case
in which all dimensions are occupied with equal weight
(all eigenvalues of p~ roughly equal) and the case in which
most vectors are concentrated in a low-dimensional sub-
space (all eigenvalues of p~ nonzero, but of strongly vary-
ing magnitude).

A possible measure of the number of explored dimen-
sions, which takes into account the small weight of di-
mensions corresponding to relatively small eigenvalues,
is the exponential of the entropy 2+H . This quantity
is bounded above by D~ if the vectors are confined to a
D~-dimensional subspace and gets smaller if the dimen-
sions are occupied with different weights. For example, if
two eigenvalues of p~ are close to 2 and all the others are

close to zero, then 2+~ 2, indicating that the vectors
are essentially confined to a two-dimensional subspace.
Unfortunately, for small resolution angles P, b,H~ is nec-
essarily small just because all the vectors in the group lie
along roughly the same direction in Hilbert space; this
is true even if the orthogonal components of the vectors
are evenly distributed over all the orthogonal directions
in Hilbert space. For example, the density operator de-
scribing a uniform distribution of vectors within a sphere
of radius P « vr/2 has one dominating eigenvalue close
to 1 and D —1 eigenvalues that are all equal and close
to zero (see Appendix B). Clearly, in this case 2+~ is
not an adequate measure of the number of dimensions
explored. On the other hand, if one could disregard the
largest eigenvalue in this example, then the exponential
of the entropy would still be a useful measure of the num-
ber of explored dimensions.

We therefore introduce the Spread EH2~ as the entropy
calculated with the largest eigenvalue of p~ omitted. The
spread is defined as

The entropy of the jth group is given by the von Neu-
mann entropy

(4 7)

(4.5)

w(y)
b,H(P) = ) q AH~. (4.6)

If one chooses to describe the set of vectors not exactly,
but only at resolution level P, the average information
needed to specify the system state decreases. There is,
however, a price: with increasing resolution angle, the

and the average entropy, called tmde og entropy in the-
following, is

where A~ & Az & -. & AD are the nonzero eigenvalues
of the density operator p~. The average spread is

(4.S)

For a given resolution angle P, the entropy b,H~ is
bounded above by the entropy H~ m (P) of Eq. (810),
which for small P has the value HD, (P)
P log2[e(D —I)/(PI. The spread h, Hz, on the other
hand, can attain its maximum value AH&~ ——log2(D —1)
for arbitrary resolution angles P. Indeed, the entropy and
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the spread are related by

b.H~ = —Ai log2 Ai —(1 —
A~i ) log2 (1 —A, )

+(1 —A~i) AH2, (4.9)

which indicates how, when there is one dominating eigen-
value, a large spread does not lead to a large entropy.

By giving difFerent weight to dimensions corresponding
AH~to different eigenvalues of p~, the quantity [2 &] turns

out to be a good indicator of the number of Hilbert-space
dimensions explored by the vectors in a group, indepen-
dent of the size of the region occupied by the group. ([z]
denotes the smallest integer greater than or equal to z.)
In our analysis of the numerical results, we identify the
number of dimensions explored by the total set of N vec-
tors with the integer ng =

]
2+

By determining the information DI(P), the trade-off
entropy 6H(P), and the average spread b, H2(P) as func-
tions of the resolution angle P, a rather detailed picture
emerges of how the vectors are distributed in Hilbert
space. The information summarizes the distribution of
group sizes at the given resolution. The trade-off en-

tropy and the average spread indicate how the vectors
are distributed inside the groups.

It is easy to see that information and trade-off entropy
obey the inequalities

is the volume contained within a sphere of radius P in
D-dimensional Hilbert space and VD = m+ i/(D —1)!
[Eq. (A22)] is the total volume of Hilbert space. The
maximum of g(P) is located at P = arctan(i/2D —3); for
large-dimensional Hilbert spaces, g(P) is very strongly
peaked near the maximum, which is located at P ir/2—
1/i/2D —3, very near s /2 (see Fig. 1).

V. NUMERICAL RESULTS

In this section we describe the numerical results, which
are shown in the 6gures. In all numerical examples, we

use spin J = 511.5 and unperturbed twist parameter
k = 3. The calculations are done in the 512-dimensional
even-parity subspace [eigenspace of the parity (2.8) with
eigenvalue 1], i.e. , effectively in a 512-dimensional Hilbert
space. Throughout this section, we use only two difFerent
initial states. The first one, the coherent state ]8, &p) with
8 and y given by Eq. (2.5), is centered in a regular re-

gion of the classical dynamics; we refer to it as the regular
initial state. The second one, referred to as the chaotic

bits

12

and

b,I(0) & b,I($) & AI(vr/2) = 0 (4.10) 10

0 = b, H(0) & 6H(P) ( AH(vr/2) . (4.11)

The first inequality in (4.10) follows from the fact that
any group at resolution P is the union of groups at res-
olution P = 0; in words, the average information needed
to specify a group at resolution P = 0 is equal to the
average information needed to specify a group at reso-
lution P plus the average information needed to specify

P = 0 groups within the groups at resolution P. The last
inequality in Eq. (4.11) is a consequence of the concavity
of the von Neumann entropy [19,20]. A general theorem
about average density operators [19,20] shows that, for
all

0
0

bits

10 &

o Al(Q)
WH(4)

+ ~H, (4)

g(4)

I +

AI(P) + b,H(P) & b,H(~/2) . (4.12)

In general, b,I(g) is a decreasing function of P, whereas
AH(P) is increasing. This monotonicity can sometimes
be violated, however, because of discontinuous changes
in the grouping of vectors.

As a still further characterization of our list of vectors,
we calculate the distribution g(P) of Hilbert-space angles

P = s(]g), 1$')) = cos i([(@1vP')[) between all pairs of
vectors ]Q) and 1''). For vectors distributed randomly in
D-dimensional Hilbert space, the distribution function

g(P) is computed in Appendix A:

g($) = ' ' = 2(D —1)(sin P) cos P (4.13)
Vi)

[Eq. (A24)]. Here VD(p) = (sing) ( ')VLi [Eq. (A18)]

K/4
Hilbert-space angle p

FIG. 1. Distribution of 2 vectors randomly chosen in
D-dimensional Hilbert space. Each diagram shows, as a func-
tion of the angle P, the distribution g(P) of Hilbert-space an-

gles (unnormalized, in arbitrary units), the average informa-

tion bI(4&) to specify a vector at the resolution given by P
(in bits), the trade-off entropy EH(P) (in bits), and the aver-

age spread b,Hz(g) (in bits). For a precise definition of these
quantities, see Sec. IV. (a) n = 12, D = 512. (b) n = 10,
D =62.
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irltfial state, is the coherent state ~e, y) with 8 and y
b E ~~2.7~&. the chaotic initial state is centere in

a chaotic region of the classical dynamics. Sections V
and VB describe results for the twist perturbation wit
two different perturbation strengths e. Section V C con-
tains results for the turn perturbation.

A. Twist perturbation: e = 0.03

Applying all possible n-step perturbation sequences,
i.e., all possible sequences of n Floquet operators U
and U+, to an initial state ~go) generates a set o
equally likely states, as considered in Sec. IV. In Fig.
the quantities defined in Sec. IV are computed for the
twist perturbation (3.1) with perturbation strength s =
0.03. Figure 2 shows results after 8 and 12 steps for both
the chaotic and the regular initial conditions.

In the chaotic case in Fig. 2(a), where the total num-
ber of vectors is 2 = 256 (8 steps), the distribution o

Hilbert-space angles g(P) is concentrated at large an-
gles, i.e., most pairs of vectors are far apart firom each
other. The small peak of g(P) at P z/16 corresponds
to 128 pairs of vectors, the two vectors in each pair be-
ing generated by perturbation sequences that differ only

at the first step. The somewhat larger peak of y(P) at
3z'/16 similarly indicates the existence of 64 quartets

of vectors, generated by perturbation sequences differing
only in the first two steps. The information AI needed
to track a perturbed vector at resolution level P is 8 bits
at small angles where each group contains only one vec-
tor. At P vr/16 the information drops to 7 bits and at

3m/16 it drops to 6 bits, refiecting the grouping of
the vectors in pairs and quartets, respectively. For larger
resolution angles, the information stays constant before
dropping rapidly to zero at angles P & 3z'/8. Just as
the information begins to drop rapidly, there is a su-
den drop to about 5 bits, re8ecting a further, approx-

ated bt ouping into 32 octets of vectors, genera e y
rst threeperturbation sequences that differ only in the firs ee

steps. The final drop in the information coincides with
the main peak in the angle distribution g(P) and wit
the rising of the trade-ofF entropy to its maximum value
of AH 4 bits. The number of explored dimensions is
rl = p~Hs&s»&] = Ig

If the number of steps is increased to 12 [see Fig. 2(c)],
the main features of Fig. 2(a) are preserved. The discon-
tinuous drops in information —from 12 to 11 and &om
ll to 10 bits —due to the formation of pairs and quar-
tets are obvious, but the corresponding peaks in g(P) are

bits

8 & I00000

~eeeeeo
{a}

bits I

12 & gl0eee0

eeeee0
10

o m(f)
o m(4)

aH (0)
g(4)

o
o J

'~

o ~r(f)
o m(Q)

g(4)

~ &I~ ~ I ~ I ~ I ~-. ~ ~ ~ ~ ~

.~ I sl ~ I ~ I ~ I ~
II ~ I ~ I ~ I ~ ~ r

I 0= ~ ~ ~ ~ ~ ~ ~ I ~ I ~ I I I I I 'slslslslsls:~ II I ~ I ~ I ~
'

I I I I ~ ~ ~ ~ ~ ~ ~

bits
8~1

7 o
(b)

bits
12 &g

10
o

5 -o
o

4 - eo)
o

6
o

~ ~ ~ ~ I
+I ~ I' I ~ I' II ~ I ~ ~ I ~ ~ ~ ~ ~ ~

W WW WWW'W'W

7E/4
Hilbert-space angle f

xg2 p K/4
Hiibert-space angle g

ion of Hilbert-space vectors for the perturbed kicke pto with J = 511.5 andFIG. 2. Results characterizing the distribution o er -spa
ation (3.1) with e = 0.03. The same quantities as an ig. are sF' 1 are shown. (a) Chaotic

E (2 7) D' t 'b t' f il 28te ~8 &
centered in the chaotic region with 8 and y given y q.case, i.e., initial coherent state ~, y& cen ere in

'al h t t t centered at the elliptic fixed point given. () g
by Eq. (2.5). All 2 vectors generated after 8 perturbed step . ( )ste s. &c~ Chaotic case. s eps, a
steps, aH 2 vectors.12
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now almost invisible due to the larger scale produced by
the larger total number of pairs of vectors. There is now
little evidence of a further grouping into octets. Indeed,
Fig. 2(c) suggests that, apart from the organization into
pairs and quartets, there is not much structure in the
distribution of vectors for a chaotic initial state. The
1024 quartets seem to be rather uniformly distributed in
a n~ = [2+ '( ~ &] = 65-dimensional Hilbert space. In
order to check that the quartets are indeed more or less
randomly distributed in Hilbert space, Fig. 2(c) should
be compared to Fig. 1(b), where 1024 random vectors
in a 62-dimensional Hilbert space are shown. The ran-
dom vectors are chosen at random Rom an ensemble dis-
tributed uniformly over Hilbert space [21]. The number
of dimensions 62 was chosen by trial and error so that the
total entropy EH(vr/2) came out to be the same in Figs.
2(c) and l(b). Although the angles between the random
vectors are concentrated somewhat more towards larger
angles, there is a striking similarity between these two
figures.

As further evidence of the nearly random character of
the distribution in Fig. 2(c), Fig. 3 compares the eigen-
values of the density operators p(m/2) corresponding to
Fig. 2(c) and to the random vectors in Fig. 1(b). The 62
largest eigenvalues in the chaotic case are almost identical
to the 62 eigenvalues corresponding to random vectors in
62-dimensional Hilbert space.

The distribution of perturbed vectors starting from

the regular initial state is completely different from the
chaotic case. Figure 2(b) shows the regular case after
eight steps. The angle distribution g(P) is conspicuously
nonrandom: it is concentrated at angles smaller than
roughly x/4 and there is a regular structure of peaks

and valleys. The information drops rapidly, with little
plateaus corresponding to the valleys in the angle distri-
bution. The number of explored dimensions is ng ——2,
which agrees with results of Peres [8] that show that the
quantum evolution in a regular region of the kicked top
is essentially confined to a two-dimensional subspace.

Figure 2(d) shows the regular case after 12 steps. The
average information and the trade-o6' entropy show a be-
havior similar to the 8-step case. The plateaus in the
information are washed out, corresponding to less pro-
nounced minima in the distribution of angles. This ap-
pearance of formerly forbidden angles is expected as the
number of vectors increases; it would occur even for a
completely regular array of vectors. The eigenvalues of
the density operator p(m/2) corresponding to the 4096
vectors in Fig. 2(d), shown in Fig. 3, confirm the restric-
tion to a two-dimensional subspace. The third-largest
eigenvalue, measuring the relative weight of the third ex-
plored dimension, is of order only 10

The results shown in Figs. 2 and 3 display a striking
difference in the distribution of vectors in the chaotic and
regular cases. In the chaotic case, the vectors, aside from
the quartet structure, are distributed randomly in a sub-
space whose dimensionality increases with the number
of steps. The information needed to track a perturbed
vector after n steps is of the order of n bits, similar to
the information needed to specify a vector out of a set
of 2" random vectors. By contrast, in the regular case
the vectors do not get far apart in Hilbert space, explore
only few dimensions, and do not explore them randomly.

B. Tw'ist perturbation: e = 0.003
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FIG. 3. Eigenvalues of the density operators formed by av-

eraging over random vectors (squares), vectors generated by
the perturbed kicked top in the chaotic case (diamonds), and
vectors generated by the perturbed kicked top in the regular
case (crosses). The density operator in the random case was
generated by averaging over 1024 vectors randomly chosen in
62-dimensional Hilbert space. The density operators in the
chaotic and regular cases frere formed from the 2 vectors in
Figs. 2(c) and 2(d), respectively. The main diagram shows,
for all three cases, the largest 62 eigenvalues greater than
10 . The inset showers all eigenvalues greater than 10 for
the chaotic case (solid line) and the regular case (dashed line).

Figure 4 shows the distribution of vectors arising from
perturbed evolution with a very small twist perturbation
of strength e = 0.003. Here, after 12 steps the vectors are
not spread very far in Hilbert space. This is true even in
the chaotic case, shown in Fig. 4(a), where a typical an-

gle between vectors is P = vr/8, the information decreases
rapidly with the resolution angle, and only ng ——6 dimen-
sions are explored. Even so, the chaotic case can be easily
distinguished from the regular case, shown in Fig. 4(b),
where the perturbation has almost no effect on the time
evolution of the vectors.

To get a picture of the distribution of vectors for a
larger number of steps, Fig. 4(c) shows 4096 vectors se-
lected randomly &om the 2 vectors after 200 steps in
the chaotic case and Fig. 4(d) shows 1024 vectors se-
lected randomly &oIn the 2 vectors after 200 steps in
the regular case. In the chaotic case, the 4096 vectors fi11

an np ——373-dimensional subspace quasirandomly, as can
be checked by comparison with Fig. 1(a), where results
for 4096 random vectors in 512 dimensions are shown. In
the regular case, shown in Fig. 4(d), even after 200 steps
not more than ng ——2 dimensions are explored. The vec-
tors remain very close together and the information drops
rapidly with increasing resolution angle. The difference
between the chaotic and regular cases is as striking as in
the preceding subsection.

Although the data shown in Fig. 4(c) establish that
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FIG. 4. Same as Fig. 2, but using the twist perturbation (3.1) with e = 0.003. (a) Chaotic case. 12 steps, all 2 vectors. (b)
Regular case. 12 steps, all 2 vectors. (c) Chaotic case. 2 vectors randomly chosen after 200 perturbed steps. (d) Regular
case. 2 vectors randomly chosen after 200 perturbed steps.

the 4096 vectors selected from the available 2 vectors
in the chaotic case fill a large-dimensional space quasi-
randomly, they by no means establish that the distribu-
tion of all 2 vectors is similar to the distribution of
22o random vectors. For example, Fig. 4(c) would look
exactly the same whether the 2 vectors were randomly
distributed or were organized into 2 randomly dis-
tributed groups, each consisting of 2 tightly bunched
vectors, provided that the probability to select more than
one vector from any group is negligible, i.e., provided
that (4096)2/22M = 2 ~ s

&& I, which is satisfied
for m & 170. Indeed, in view of the data in Sec. VA,
one expects the vectors to be organized on sxnall angular
scales into pairs and quartets and perhaps into somewhat
larger groups that persist from the first few steps.

To characterize the angle distribution completely
would require the computation of the angles between all
pairs among the 2 vectors, which would exhaust the
storage and computing power of any computer now and
in the foreseeable future. Our results are thus rigorous
only up to 12 steps, where we are able to coxnpute the
angles between all pairs of vectors. Nonetheless, our re-
sults provide some support for the conjecture that the
distribution in the chaotic case is essentially random for
large numbers of steps. In order to give an approxixnate
picture of such a random distribution, we have developed
approximations, shown in Fig. 5, for the information and
the trade-ofF entropy for 2 randoxn vectors in a 512-

dimensional Hilbert space.
These approximations are based on knowing

ND (P), the maximum number of disjoint spheres
of radius P that D-dimensional Hilbert space can ac-
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FIG. 5. Upper bounds for the average information BID,
and for the trade-ofF entropy HD, for 2 random vec-
tors in 512-dimensional Hilbert space, as given by Eqs. (5.2)
and (B10). The curve for EIo „ is an excellent approxi-
mation to the average information DI(P), except for a small
region around 4I&. The trade-oIF entropy b,H(p) is well ap-
proximated by the curve for Ho, (P) for angles above Pz,
but goes to zero rapidly for angles below ItI&.
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ND, max(4') =
~~)

= (sin 4') (5.1)

It is worth emphasizing just how enormous Hilbert
space is by noting that the number of spheres of ra-
dius P = O.lrad that can be accommodated within a

~ —2(D —x)D-dimensional Hilbert space is NLi max
102(+ ~); for the 512-dimensional Hilbert space consid-
ered in this paper, this is 10 spheres.

Suppose N vectors, distributed randomly in D-
dimensional Hilbert space, are grouped at resolution level

P. The number of groups at this resolution N(P) cannot
be larger than N, the total number of vectors, nor larger
than N~ (P), the maximum number of groups. For
the average information, this entails

AI(p) & log2N($) & b, I~ „(p)
= min[log2 Nri „(P),log2 N] .

(5.2)

One expects a large number of random vectors to fill

Hilbert space almost uniformly. For angles P for which

commodate. In Appendix A we compute the volume

V~(P) = (sing) l+ ilV~ contained within a sphere of
radius P in D-dimensional Hilbert space [Eq. (A18)] and
the total volume Vii = 7r /(D —1)!of D-dimensional
Hilbert space [Eq. (A22)], from which it follows that

ND ~~(P) && N, there are close to NLi m~(P) groups
with roughly equal numbers of vectors in each group;
therefore, for those angles P, AI(P) log2ND „(P)
For angles g for which N~ (P) )) N, there is just one
vector in each group, whence EI(P) log2N for those
angles. This means that the upper bound b, Iri „(P) is
an excellent approximation to b,I(g) everywhere except
for a small region near the sharp bend located at the
angle Ps determined by NLi „(P&) = N. The upper
bound AI~ „(P) is plotted in Fig. 5 for D = 512 and

2200

The trade-oK entropy, on the other hand, cannot be
larger than the maximum entropy of a group, i.e. ,

b, H(g) & HD ((j&) = H~(P) 1
(5.3)

where H~ „(P) [Eq. (810)] is the maximum possible
entropy for a density operator constructed &om vectors
that lie within a sphere of radius P in D-dimensional
Hilbert space, and H&(P) [Eq. (86)] is the entropy of
a uniform distribution of vectors within a sphere of ra-
dius P. For large-dimensional Hilbert spaces, there is

no appreciable difference between Hri ~ „(P)and Hri (P).
The maximum entropy H~ „(P) is plotted in Fig. 5 for
D = 512.

For angles P for which Nri „(P) « N, where the
number of vectors per group is large enough —say, larger
than D—the distribution of vectors within each group
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approximates a uniform distribution and thus 6H(g) is
well approximated by H~(P) and hence by HD ~s„(P).
This means that there is a region to the right of Ps in
Fig. 5, where Hri (P) is not only an upper bound, but
is also a good approximation to the trade-oÃ entropy. For
angles to the left of Ps, the number of vectors in a typical
group rapidly approaches 1, which Ineans that the trade-
ofF entropy is very close to zero in the region where the
average information saturates.

C. Turn perturbation: e = 0.003

Figure 6 displays results for the turn perturbation,
showing the same range of behavior as in the preced-
ing subsections. Figure 6(a) shows how the 2i~ vectors
generated after 12 perturbed steps in the chaotic case 611
an np ——46-dimensional Hilbert space randomly, except
for a grouping into pairs, quartets, and perhaps octets,
corresponding to the discontinuous drops in BI(P). By
contrast, in the regular case after 12 steps, displayed in
Fig. 6(b), the vectors remain close together and fill just
ng = 2 dimensions. Figures 6(c) and 6(d) show 2io vec-
tors chosen randomly out of the 2 vectors generated
after 30 perturbed steps. In the chaotic case, the distri-
bution can barely be distinguished &om the distribution
of random vectors in Fig. 1(a). In the regular case, the

vectors are spread a little further apart in comparison
with Fig. 6(b), but they still fill only nq = 2 dimensions.

Our results establish well the nearly random character
of the distribution of vectors in the chaotic case. This
is the main result of this paper, providing numerical ev-
idence for hypersensitivity to perturbations in the quan-
tum kicked top. It is more difficult (and less interesting)
to give a general characterization of the distribution of
vectors in the regular case. One reason for this is the 6-
nite size of the regular region on the classical unit sphere,
which makes possible a sort of diH'usion of a perturbed
vector out of the regular region into the chaotic region.
Figure 7 investigates this kind of behavior by showing
the distribution of 2 vectors randomly chosen after 100
[Fig. 7(a)] and 200 [Fig. 7(b)] steps in the regular case.
It is apparent that the vectors drift more and more apart
and begin to explore more dimensions of Hilbert space,
although even after 200 steps, the number of explored
dimensions is still only np ——5.

Figure 7(c) shows the eigenvalues of the density oper-
ators obtained by averaging over 2 vectors randomly
chosen after 30, 100, and 200 perturbed steps in the reg-
ular case. The eigenvalues provide a more precise picture
of the way additional dimensions are explored, since they
are a measure of the relative weight with which the di-
mensions of Hilbert space are explored. One sees a slow
leaking of probability into additional dimensions. This
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leaking is due to the fact that, with an increasing number
of perturbed steps, the probability increases for a state to
have significant support outside the regular region, i.e.,
in the chaotic region. The part of the wave function that
is in the chaotic region is subject to chaotic time evolu-
tion and therefore &ee to explore alxnost all dimensions
of Hilbert space.

VI. CONNECTION % ITH STATISTICAL
PHYSICS

Consider a physical system, classical or quantum, with
a known Hamiltonian. The state of the systexn at time
t = to represents the observer's knowledge of the way
the system was prepared. In classical physics, states are
described xnathematically by a probability density p(x)
in phase space, while in quantum mechanics, states can
be represented either by a Hilbert-space vector ~g) or,
more generally, by a density operator p, depending on the
preparation procedure. Observers with different knowl-
edge assign diferent states to the system; the state is
therefore not a property of the system alone, but reflects
the observer's state of knowledge about the system.

The entropy (in bits) of a system state, defined in the
classical case as H = —f dl'p(x) log2[p(x)], where dl' is
the usual phase-space measure, and in the quantum case
as H = —Tr[plog2(p)], xneasures the information miss-
ing toward a complete specification of the system. The
classical entropy is defined up to an arbitrary additive
constant, reflecting the fact that an infinite amount of
information would be needed to give the exact location
of a single point in phase space. The quantum entropy
vanishes for a pure state p = ~g)(g~, which is meaning-
ful because no information beyond that contained in the
wave function exists about a quantum system. As a con-
sequence of Liouville's theorem, both classical and quan-
tum entropy remain constant under Hamiltonian time
evolution.

To make the connection with thermodynamics, we as-
sume that there is a heat reservoir at texnperature To,
to which all energy in the form of heat must eventually
be transferred, possibly using intermediate steps such as
storage at some lower temperature. In the presence of
this fiducial heat reservoir, the &ee energy or maximum
average extractable work for an equilibrium state is given
by Fo ——E —Tpk~ ln2H, where E is the mean internal
energy of the state. (More precisely, it is the difference
between the Fo values of two states that determines how
much work can be extracted in a transformation between
the two states. ) It is the main premise of this section
that the maximum average extractable work, &om now
on called available work, is given by Fo ——E—Tok~ ln2H
for any state, even outside equilibrium. This means that
each bit of missing information costs one 70k~ ln2 of
available work. General arguments for this premise will
be given elsewhere [18]; here we discuss just one im-
portant case. If the nonequilibrium state was formed
through reversible Hamiltonian time evolution starting
from an initial equilibrium state, the amount of work
Fo ——E —Tok~ ln2H can in principle be extracted on

average if the system is made to evolve back into the ini-
tial equilibrium state using time reversal. This argument
is equivalent to I oschmidt's famous UmkeIxreixxxoand [22].
Although time reversal appears to be ixnpractical in most
situations —a remarkable exception is spin echo—there
are no known fundamental reasons for excluding it.

Since entropy is a measure of the state of knowledge
about the system, and since available work is determined
by the entropy, the only way the available work can
change (except for changes in the energy levels) is via
a change in the state of knowledge. Hamiltonian time
evolution of an isolated system does not lead to a change
in the state of knowledge; entropy and available work
remain unchanged. This is a consequence of Liouville's
theorem and is true for regular as well as for chaotic
systexns: Hamiltonian time evolution in isolated chaotic
systems does not lead to information loss [1,2,4]. The
following paragraphs discuss the three ways in which in-
formation about the system can change: measurement,
deliberate discarding of information, and interaction with
an incompletely known environment.

Available work can increase if an observation is made
on the system. The accompanying decrease in entropy
does not constitute a violation of the second law of ther-
modynamics, however, because the physical state of the
observer changes in the course of the observation. Lan-
dauer [23], following seminal work by Szilard [24], has
provided a simple and elegant quantitative description of
the change in the state of the observer. If the observer
wants to use additional information about the system
to increase the available work, he must keep a physical
record of the information. According to Landauer's prin-
ciple, the erasure of a bit of information in the presence
of a reservoir at temperature To is necessarily accompa™
nied by dissipation of at least an amount Tok~ ln 2 of en-

ergy. If this thermodynamic cost of erasing information
is taken into account as a negative contribution to &ee
energy, no observation can increase the total available
work on the average [25—27]. Information that the ob-
server possesses about the system therefore plays a role
complementary to the entropy or missing information.
Entropy or missing information about the system reduces
the available work through the usual entropy term in
the &ee energy; information the observer actually pos-
sesses must be stored physically, thus reducing further
the available work due to the Landauer erasure cost. To-
tal available work is determined by the sum of entropy
and inforxnation [25—27,2].

Available work can decrease if information about the
system is lost. Information loss is equivalent to entropy
increase. There are two main mechanisms leading to in-
formation loss: deliberate discarding of information and
loss of information through interaction with an incoxn-

pletely known environxnent. It must be emphasized that
the well-known sensitivity to initial conditions in classical
chaotic systems does not entail information loss because
statistical physics is concerned with the time evolution
of probability distributions governed by Liouville's equa;
tion, not with trajectories of single phase-space points.

Deliberate discarding of information was used by
Jaynes [28—30] to derive traditional thermodynamics.



50 HYPERSENSITIVITY TO PERTURBATION IN THE QUANTUM. . . 983

Jaynes showed how equilibrium thermodynamics follows
eH'ortlessly &om Liouville's equation if only information
about the values of the macroscopic variables defining a
thermodynamic state is retained. In Jaynes's approach,
irrelevant information is discarded by means of the prin-
ciple of maximum entropy. Another way to discard in-
formation considered irrelevant is coarse graining, where
all details of a state below a certain scale are ignored.

In contrast to these examples where information is dis-
carded deliberately, an actual loss of information can oc-
cur in a system that, rather than being perfectly isolated,
interacts with an incompletely known enviro~ment. The
interaction with the environment leads to a perturbed
time evolution of the system. Predictions for the sys-
tem state are made by tracing out the environment, i.e.,
by averaging over the perturbations, which is generally
accompanied by an entropy increase.

Nothing forces one, however, to average over the per-
turbations. Alternatively one could, by making obser-
vations on the environment, gather enough information
about the perturbations to keep track of the perturbed
evolved system state to a certain accuracy, thereby reduc-
ing the entropy increase. In Sec. IV, with the accuracy
determined by the resolution angle P, the minimum in-
formation needed to keep track of the system state to ac-
curacy P was denoted by b,I($) and the resulting average
entropy increase, the trade-ofF entropy, was denoted by
b,H(P). Averaging over the perturbations corresponds to
an accuracy P = 7r/2: AI(z/2) vanishes and AH(n/2)
is the entropy due to averaging over the perturbation.
Equation (4.12) shows that the sum of information and
trade-oK entropy is never less than the entropy due to
averaging, so that one can never gain in terms of total
available work by gathering information about the per-
turbations. But at this stage, one has no reason to expect
that one would do much worse by keeping track of the
system state, so that in principle, the system entropy
could be kept &om increasing.

For a system showing hypersensitivity to perturbation,
however, there is a compelling reason not to keep track
of a perturbed system state, but to average over the per-
turbations. The information needed to keep track of a
perturbed state increases far more rapidly than the en-
tropy due to averaging, which means that keeping track
of the perturbed state would lead to an enormous reduc-
tion in available work due to the thermodynamic erasure
cost. We have conjectured [1,2,4] that hypersensitivity to
perturbation provides a quantitative link between chaos
and entropy increase in both classical and quantum open
systems. Within the limits of our numerical method, the
present paper establishes this link for the quantum kicked
top.

APPENDIX A: VOLUME CONTAINED WITHIN
A SPHERE IN HILBERT SPACE

In this appendix we compute the volume contained
within a sphere of radius 4 in D-dimensional Hilbert
space. More precisely, we work in projective Hilbert
space, i.e., the space of Hilbert-space rays or the space of
normalized state vectors in which vectors that differ by
a phase factor are equivalent.

We begin by deriving the line element of the Riemann-
ian metric that corresponds to the Hilbert-space an-
gle (2.12). Consider two neighboring normalized state
vectors Iv)) and Iv)) + Id'). The infinitesimal angle ds
between these vectors satisfies

2Re((&ld&)) = (d&ld&-) (A2)

so the line element becomes

ds' = (4'14) —l(&ld@) I' = (Oil+'i) (A3)

where id&&) = I4') lg) 8'Id&) is the p»jection of
I &)

orthogonal to Ig). The metric (A3), called the Fubini-
Study metric [31], is the natural metric on projective
Hilbert space. Notice that the line element is invariant
under phase changes of Ig) and Ig) + Id/).

Consider now a sphere of radius 4 & z /2 in projective
Hilbert space; let the center of the sphere be denoted by
I@o). Any normalized vector Iv)) can be written as

I@) = e' cos Pigs) + singly), (A4)

where Ii1) is a normalized vector in the subspace orthog-
onal to l@0) and the polar angle P = cos (l(globo)l)
satisfies 0 ( P & z'/2. The region contained within our
sphere of radius 4, which we denote by V~(4), consists
of all vectors such that P ( O'. The phase freedom in Ig)
can be removed by choosing the phase b = 0. That hav-
ing been done, Ig) ranges over all normalized vectors in
the subspace orthogonal to logo); in particular, two nor-
malized vectors Ig), differing only by a phase factor, are
not equivalent.

We can now write

Id/) = —sin Pdglgo) + cos P dglg) + sin/Id@), (A5)

where Idg) is the infinitesimal change in Ig) (notice that
(vPo ldg) = 0). Normalization of lg) and lq) + Id@) implies,
just as in Eq. (A2), that

1-d" = co"ds = I(@l(l@)+ I«)) I'

= I+ 2Re((ply)) + I(@Id@)I' (A1)

The normalization of Ig) and Ig) + Id/) implies that

2Re((bldg)) = —(bldg) . (A6)
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(A8)

ln) = ).(*,+iy, )ln, } (A9)

de6nes a Riemannian metric on the the space of normal-
ized vectors in the (D —1)-dimensional subspace orthog-
onal to l@o). This space is a (2D —3)-dimensional sphere
of unit radius, denoted S2D 3, although the line element
dp2 is, as we show below, different from the standard ge-
ometry on a (2D —3)-dimensional unit sphere. Notice
that the Fubini-Study metric (A7) scales all lengths on
S3$7 3 by a factor of sin P; this scaling is analogous to
the way that polar angle on an ordinary 2-sphere scales
the size of circles (1-spheres) of latitude.

Consider now any orthonormal basis
l rI~ }, j

1, . . . , D —1, in the subspace orthogonal to lgo). We
can introduce coordinates on S3D 3 by expanding lg} as

D —1

Li —i
dx, = — —y, dy, —) x,dx, + y, dy, = 0 at lq}.+1 j=2

(A15)

In these special coordinates the standard geometry on
S3D 3 has the same form at

l rI}, except that the cos Q
is replaced by 1. The effect of the second term in the
metric (A8) is thus to shorten lengths (relative to the
standard geometry) along one direction on S3Q 3 by
a factor cosP; the direction of shortened length corre-
sponds, in the special coordinates, to the y1 direction or,
in coordinate-&ee language, to an infinitesimal change in
the phase of lil).

In the special coordinates the volume element on
S2D 3 at lil}, defined by the line element dp, is given
by

Normalization of lg) implies the constraint

D —1

1= ) x,'+y,',
j=1

(A10)

which defines the (2D —3)-dimensional unit sphere. The
first term in the metric (A8),

D —1

(old~) = ) dz,'+ dy,'. ,

j=1
(A11)

D —1 D—1

(@ldll}= —d ) x. + y. + i ) z~dyz —y~dz~
j=1 j=1

D —1

) z~ dy~ —
yj dzj (A12)

is the fiat Euclidean metric in 2(D —1) dimensions; it
induces the standard metric on S2D 3. The second term
in the metric (A8) modifies the standard geometry on

S2D 3. Noting that

cosgdyidzz dzD idyz . . dyD i —cosgdS3~ 3,

dV~ = (sing) cosgdgdS3D 3 (A17)

The 2D —3 factors of sing come from scaling all 2D —3
dimensions of S2D 3, as required by the Fubini-Study
metric (A7).

We are now prepared to compute the volume VD(4')
contained within a Hilbert-space sphere of radius 4:

VD(4) = dpi
V~ (4)

d sin cos d82D 3

where d82D 3 is the volume element de6ned by the
standard geometry on S2D 3. %riting the volume ele-
ment (A16) in terms of dS3D —3 frees it from dependence
on the special coordinates. Referring to the Fubini-Study
metric (A7), we can now write the volu~e element on
projective Hilbert space as

we can put the second term in (A8) in the form

ra-i
sin' P l(illdri) l

= sin' P ) x,dy, —y, dz, . (A13)

D —1

dp = cos Pdyi+ ) dz,. +dy, , (A14)

Perhaps the easiest way to see how the second term
affects the geometry on S2D 3 is to make a judicious
choice of coordinates. Given an arbitrary vector lg}, we

can always choose the orthonormal basis so that limni)
=

li1}, which means that lg) is assigned coordinates zi ——1,
y1 ——0, and&~ = y~ = 0, j = 2, . . . , D—1. Inthesespecial
coordinates the metric (A8), evaluated at lg}, takes the
form

2D —3
(

. C)3(D i)
2(D —1)

= (sin@) ( lVri . (A18)

V = VLi( j2) =
2(D —1)

is the total volume of projective Hilbert space.
The volume of an n-dimensional unit sphere S,

(A19)

(~+1}j2

(m+1) '

2 )

(A20)

Here 82D 3 is the volume of the unit sphere S2D 3, cal-
culated using the standard geometry (be careful: this is
the "area" of SQLi 3 not the volume interior to it), and

where we have used the constraint (A10) to write
follows from a standard trick involving Gaussian inte-
grals:
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oo

1S I
I

'I —1S d„„( —&)/2—
p

dr r"S„e
0

due-"'
I)—OO

(~+1)/2

(A21)

This gives us S2~ s ——2mD ~/(D —2)!, which allows us
to write the total volume of projective Hilbert space [31]
as

D—1

APPENDIX B:ENTKOPIES OF
DISTRIBUTIONS OF VECTORS WITHIN A

HILBERT-SPACE SPHERE

In this appendix we compute entropies of density op-
erators constructed &om vectors that lie within a sphere
of radius 4 in D-dimensional Hilbert space. %e first
compute the entropy H~(4) of a density operator p that
corresponds to a uniform distribution of Hilbert-space
vectors in the region V~(4) contained within a sphere of
radius 4. Formally, p is given by

(D —1)!
(A22)

(B1)

dV~(g) = S2D s(sing) cosPdP
= V~2(D —1)(sin P) cos P dP; (A23)

(ii) the probability that two vectors selected at random
are separated by a Hilbert-space angle between P and
P+ dP is

g(P) dP = = 2(D —1)(sin P)
D s cos Q dQ .

(A24)

I

We can obtain immediately two other results: (i) the
volume contained between two Hilbert-space spheres of
radius (I) and P+ dP is

~ = A IWo)(AI+ D
' (I —I&p)(AI) . {B2)

The eigenvalues of p are

where VD (4) = (sin 4) ( )V~ [Eq. (AIS)] is
the volume contained within a sphere of radius
4 in D-dimensional Hilbert space, and dV~
{sing) cosgdgdS2~ s [Eq. (A17)] is the volume el-

ement on projective Hilbert space. Let the center of the
sphere be denoted by Igp). Symmetry about Ivgp) entails
that p have the form

Ao = (AIPIA)=
V~ (4i) D V~ (4) D

dt)) (sin P) cos P = 1 — sin 4 )—S2D 3 . 2g) 3 3 D —1 . 2 1
(B3)

and

The entropy of p is thus

1 —A0 sin 4 1
AI,

— — & —,I =1,. . . , D —1.
D —1 D D' (B4)

D—1

HD (4) = —) Ag log2 Ag

%=0

Ap log2 Ap —(1 —Ap) log2(1 —Ap) + (1 —Ap) log2(D —1)

og
I

(B5)

(B6)

For comparison, the spread of p [Eq. (4.7)] has its max-
im»m value, regardless of the value of 4,

H2, D(4) = —) log2I
I

= log2(D —1) )
As ( As

Ic=1
1 —Ap (1—Apy

I

reBecting the fact that the»~~form distribution of vectors
within a sphere of radius 4 explores all D —1 dimensions
in the subspace orthogonal to I@p). This result regarding
the spread does not depend on the particular value of A0.
any density operator of the symmetric form (B2) has the
maximum spread log2(D —1), provided only that Ap is
the largest eigenvalue, i.e. , Ap ) 1/D [cf. Eqs. (4.9) and
(»)]-
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It is interesting to compare the entropy of a uniform
distribution of vectors in VD(4) with the maximum en-
tropy that can be attained by distributing vectors in
V1i(O). To do this, consider a density operator

l = ).P'I4')(4.-1 (BS)

constructed from vectors Ig;) that lie in VD(C), i.e. ,

I(@olg;)I = cosP; & cos Ci, i = 1, . . . , N.
A unitary transformation in the subspace orthogonal

to Igo) leaves the angles P; and the entropy unchanged.
Mixing the density operators that result from all such
unitary transformations gives a new density operator
which is symmetric about Igo), but which, because of
the concavity of the entropy [19,20j, has an entropy that
is not smaller than the entropy of p. Thus, in seeking

the maximum entropy, we can restrict attention to den-
sity operators that are symmetric about Igo) and hence
have the form (B2) and have entropy given by Eq. (B5).
This entropy, which is a function of the eigenvalue Ao,

has a maximum value of log2 D at Ao
—1/D and de-

creases monotonically away &om this maximum in either
direction.

The eigenvalue Ao is bounded below by

N

Ao = (golp]1bo) = ) p;cos p; & cos C .

Hence an upper bound on the entropy follows from choos-

ing Ao —— cos2 4 when cos C & 1/D and choosing
Ap = 1/D when cos2 4 & 1/D. The upper bound is

given by

—cos24 log2cos24 —sin C log2sin 4+ sin O log2(D —1), cos24 & 1/D,
log2 D, cos2 C' & 1/D . (Blo)

This function is plotted in Fig. 5 for D = 512. Notice
that the entropy (B6) of a uniform distribution of vec-
tors within a sphere of radius 4 approaches the upper
bound (B10) as D + oo.

That the bound is actually the maximum, as im-

plied by the notation, is demonstrated by 6nding a den-

sity operator, constructed f'rom vectors in VD(4), which
achieves the entropy upper bound. To that end, consider
the 2(D —1) vectors

Ig, ) = cos C Igp) + sin@]@,) j = 1, . . . , D —1

(Bll)
IQ&) = cos Cil@p) —sin@lrl&), j = 1, . . . , D —1,

where the vectors Irli) make up an orthonormal basis in
the subspace orthogonal to lobo). The vectors (Bll) all lie
on the sphere of radius 4—as far Rom Igo) as is allowed.

Construct the density operator

D —s

l = polls)(001+
2 D '1 ).I&~)(&il+ I&,')(&,'I

j=l
= (cos 4 + Po sin 4) IVo) (1bo I

+ ' »n' C'(1 —l&0)(&ol) (B12)

which has the symmetric form of Eq. (B2), with Ao ——

cos 4 + po sin C . One would obtain the density op-
erator (B12) by letting p —polgp) (go] be constructed
&om any set of vectors that lie on the sphere of ra-
dius 4' and are symmetrically distributed about Igo). To
achieve the upper bound (B10),one chooses po ——0 when
cos 4 & 1/D and chooses po ——(1/D —cos24')/sin 4
when cos Ci & 1/D
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