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Exact long-time behavior of a network of phase oscillators under random fields
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We present an exact solution for the order parameters that characterize the stationary behavior
of a population of Kuramoto's phase oscillators under random external fields [Y. Kuramoto, in
International Symposium on Mathematica/ Problems in Theoretica/ Physics, edited by H. Araki,
Lecture Notes in Physics VoL 39 (Springer, Berlin, 1975), p. 420]. From these results it is possible
to generate the phase diagram of models with an arbitrary distribution of random frequencies and
random Selds.
PACS number(s): 05.90.+m, 87.10.+e

I. INTRODUCTION

The collective behavior of large assemblies of oscillators
coupled through nonlinear interactions and under the ef-
fect of external fields has been understood &om a quali-
tative point of view in multiple situations, but the devel-
opment of a mathematical formalism that could provide
exact expressions for the variables that describe the long-
time properties of specific models is not an easy task. It
is true that for systexns with a small number of elements
an important set of analytical studies has appeared in
the last decades. Most of them aimed at finding chaos,
synchronization, and other dynamical effects. Sometimes
the calculation of the trajectories of pairs of units (with
complex individual dynamics) gives inforination about
the global temporal behavior. This strategy has been
successful in the study of synchronization (entrainment)
[1, 2] in heart pacemaker cells and other biological sys-
tems [3]. However, it is obvious that this approach is
not practical for large populations and other ideas are
necessary for a satisfactory description of them.

Among the systems that may present synchronization
phenomena, models of phase oscillators are probably the
most deeply analyzed. As a consequence, it is in this
context where have appeared some of the xnost relevant
contributions to the mathexnatical description of this co-
operative efFect [4, 6, 5]. These models are intrinsically
simple because it is assumed that the interaction be-
tween oscillators is suKciently weak to consider that all
of them describe a trajectory along a global attracting
limit cycle of constant axnplitude. Therefore, to analyze
their dynamical evolution it is only necessary to have in-
formation about the variations of the respective phases.
Winfree [7] pointed out that such simplified models may
account for patterns of collective synchronization simi-
lar to those observed in large groups of biological beings
(swarms of firefiies, temporal activity of pacemaker cells,
etc.). These ideas have also been applied to other fields
of physics (Josephson junctions, charge density waves,
neural networks, etc.).

The general interest has been basically focused on two
kinds of systems. One is models of integrate-and-fire os-
cillators with all-to-all excitatory couplings. It has been
shown that, under certain conditions, perfect synchrony

(p;(t)p (t')) = 2Db; b(t —t'), D & 0. (2)

This model has been analyzed in a wide range of situa-
tions. Shinoxnoto et a/. have shown through qualitative
arguments that, with short-range interactions, a macro-
scopic degree of synchronization turns out to be impos-
sible below d = 3 [10,ll]. This statement has been rein-
forced by Daido [12] who applied renormalization group
techniques to find the dependence of the lower critical
dimension d on the characteristic exponent of the distri-
bution of frequencies. For the usual distributions d = 2.
In lattices of higher dimensionality Strogatz and Mirollo
[13] observed that phase locking develops in spongelike
structures. This is different from what one expects for
a mean field theory, suggesting that the upper critical
dixnension might be d = oo.

For long-range interactions, a meaD field formalism al-
lows one to find rigorously (for N -+ oo) the efFect that all
the parameters appearing in (1) have on the cooperative

between the elements of the population is achieved in
the stationary state [5]. This cooperative phenomenon
has also been studied when the units are subject to ex-
ternal noise [8]. More recently, Van Vreeswijk and Ab-
bott proved that self-sustained firing is also possible even
when the excitable units are not intrinsic oscillators [9].
The essential ingredient in all these xnodels is the non-
linear character of the pulselike interaction between ele-
ments.

On the other hand, large assemblies of limit-cycle os-
cillators (active planar rotators) interacting with each
other through couplings proportional to their difference
of phases define a different type of model whose best
known example is the so-called Kuramoto model (KM)
[6]. According to the KM, the phase of each element of
the population obeys the following Langevin equation:

N

8; = or; + p;(t) + ) K;i sin(8i —8;), (1)
j=1

where K;~ is the coupling xnatrix, 8; the phase of the
ith oscillator, io; is the random intrinsic frequency [dis-
tributed as g(ur)] of the ith oscillator, N the size of the
population, and p;(t) independent white noise random
processes with zero mean and correlation
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behavior of the system. In the presence of ferromagnetic
interactions (K;~. = K/K) and a unimodal distribution
of intrinsic frequencies, it has been shown [14] that for a
critical value of the ratio K/D a phase transition occurs
&om a state where all the oscillators run incoherently
to another state where a certain degree of synchroniza-
tion appears spontaneously. Other densities g(cu) may
induce a more complex character to the transition. For
instance, Bonilla et al. [15] have shown through a bi-
furcation analysis that a bimodal distribution introduces
bistability, oscillatory behavior, and hysteretic phenom-
ena.

The influence of random couplings has also been ana-
lyzed in recent studies. The main effect of randomness
and frustration is the appearance of new phases (for in-
stance, a glassy phase where global synchronization is
zero but the state defined by the oscillators is correlated
with the random disorder), remixiiscent of magnetic sys-
tems such as spin glasses [16,17]. Other important contri-
butions have appeared in the field of neural networks. By
suggesting more complex prescriptions for the couplings,
models of phase oscillators have reproduced through sim-
ulations the oscillatory properties of biological neurons
and how an external stimulus can produce coherence in
their texnporal activity [18—20].

Finally, a special comment is deserved by the studies
made by Strogatz et aL [21] on the eKect of random pin-
ning in charge density waves and by Sakaguchi [22] on the
infIuence of periodic forces on the behavior of a popula-
tion of planar rotators. The similarities and differences
with our work will be discussed in this paper.

Our goal is to present a mathematical formalism that
allows one to compute analytically the properties of a
population of KM phase oscillators under external fields.
The analysis is performed in the thermodynamic limit.
We give exact expressions for the order parameters that
describe the long-time behavior of the system. The struc-
ture of our procedure has been used before in [23] to find
the phase diagram of a model without &equency differ-
ences. As we will show later, to introduce a zero mean
distribution g(~) does not change the relevant features
of such a phase diagram. However, if (w) g 0 new dy-
namical effects must be considered.

The paper is organized as follows. Section II is devoted
to the definition of the model and of the relevant order
parameters. In Sec. III we give a continuous description
of the model in terms of a nonlinear Fokker-Planck equa-
tion for the one-oscillator probability density. A generat-
ing functional defined to find algebraic expressions for the
order parameters is introduced in Sec. IV. A comparison
between our analytical results and Brownian simulations
is performed in Sec. V. Finally, we discuss the range of
validity of our approach in relation to the features of g(u)
and the distribution of random fields.

II. THE MODEL

Motivated by the analogy between Kuramoto's model
of active rotators and the planar XY model of spins stud-
ied previously in [23], we have investigated the proper-
ties of a system of phase oscillators with all-to-all ferro-

magnetic couplings in the presence of a random external
Geld, distributed according to a certain probability den-

sity f(h). The dynamical evolution of each element of
the population is given by

N

8; = ur, + p;(t) + ) K;~ sin(8,. —8;) —h, sin 8;,

where h, denotes the field acting on the ith site, and

K;~ = K/¹ As a simplification, we have assumed a
fixed direction for the whole set of h, , although our ap-
proach can be generalized to more complex spatial distri-
butions (for instance a random p-fold symxnetry breaking
field). For now, we assume that the field does not have

an explicit dependence on time. The effect of periodical
external forces will be discussed in Sec. VI.

To find the long-time properties of the model we have
followed a mean field formalism whose basic lines have
been sketched in previous works [15,16,23], although here
there are some technical details that make the mathemat-
ical calculations more difficult. The usual description of
the system is done in terms of the following order param-
eters:

N
re'4' = —) e'",g j=l

where r gives the degree of synchronization in the popula-
tion, and P is a mean phase. In terms of these quantities,
Eq. (3) reads

8, = ~, + kr sin(P —8;) —h; sin 8, + p;(t), (5)

which is the starting point of our approach. Notice that
the cooperative behavior of the system is a competi-
tion between the distribution of &equencies, the coupling
strength X, the amount of noise, and the external field.
The coupling tends to put in phase all the elements of the
population, whereas the dispersion of &equencies and the
noise tend to destroy coherence. The random field breaks
the symmetry by imposing a privileged orientation.

Strogatz et aL [21] have considered a similar situa-
tion to analyze the effect of random pinning in models
of charge density wave transport. However, their study
is performed in the absence of random kequencies, with
zero noise, and the fields are of constant modulus. More-
over, they consider either static solutions 8; = 0, V i
(a particular case of our analysis) and time dependent
solutions with constant r [we observe states with r(t)].

III. FOKKER-PLANCK DESCRIPTION

The first step is to transform the discrete description
given by I.angevin equation (5) into a continuous descrip-
tion. In the thermodynamic limit it is possible to derive
a nonlinear Fokker-Planck equation for the one-oscillator
probability density p(8, t, ur, h). It gives the probability
that an oscillator with frequency cu and under the action
of 6 has a phase 8 at an instant t.

The idea, illustrated in [24], consists of writing

p(8, t, u, h) in terms of the K-oscillator probability den-
sity p~, the solution of the Fokker-Planck equation as-
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sociated with (3), as the product of the N one-oscillator
probability densities. This is possible ass»ming the prop-
agation of molecular chaos (this means that the one-
oscillator probability densities are not correlated) from
the initial conditions. Then, by writing the path in-
tegral representation of p~ in the resulting expression
and performing the integrals through the steepest de-
scent method in the limit of N m oo, we have found that
the final expression for p(8, t, u, h) must satisfy

—+ —[Vp] —D = 0,
Bp B B p
Bt 88 B82

where V is

(6)

V = [w + Kr sin(P —8) —h sin 8] . (7)

F(8) f~ driH(8, ri)
p 8, u), h

Our goal is to obtain the stationary behavior of the
system described by (6) and (7). Stationary means that
p(8, t, ur, h) does not have an explicit dependence on time
or does behave periodically. The first case is observed
when the distribution of frequencies is unimodal and
symmetric, conditions that are satisfied by the most usual
ones (uniform, Gaussian, etc.). Temporal periodicity is
observed in other situations discussed in Sec. VI. Our
approach deals with the first situation, when the one-
oscillator probability density satisfies (Bp/Bt) = 0. The
solution of (6) with the previous condition is straightfor-
ward. Normalization and 2z periodicity in 8 lead to [15,
16]

plicit dependence on 8 that can be eliminated by direct
integration. The most elegant way to perform the inte-
gral over 8 is explained in detail in the next section.

IV. GENERATING FUNCTIONAL

F(0, 8, (,g) = exp [0 cos (g —8) —(cos 8] (14)

and H is given by (10). 0, g, and ( are the three param-
eters with respect to which we perform the derivatives.
According to these definitions r and P are calculated from
1nZ as

r = lnZ ~ kv
g

h

P = arctan
f((r siPn+c oPs& lnZ ~~ ~

g
h y 4,)))

(( ag inZ
I =—"",g=-",y=y))

(16)

The method proposed in this section takes advantage
of the normalized structure of the probability density. We
have defined a functional whose derivatives (more exactly
the derivatives of its logarithm) allow one to compute the
order parameters in a straightforward manner. The form
of this generating functional is

2m 2'
Z[0, $] = d8F(0, 8, (,@) H(8, ri)dri,

0 0

where

where F(8), H(8, ri), and Z are defined as

K h
F(8) = exp rcos(P —8—) ——cos 8

D D

~g K
H(8, g) = exp — — rcos(P——8 —ri)D D

h+—cos(8+ il)

and
2' 2'

Z = d8F(8) H(8, g)dri.
0 0

(10)

where (( )) is an average over the distributions g(u) and
f(h) This app. roach has several advantages since it al-
lows one to simplify notably the numerical resolution of
the resultant expressions and to perform an analysis of
them.

The basic details of the calculation of Z have been dis-
cussed previously in [23] for a population of XY spins.
Here, the mathematics is more involved since the exis-
tence of intrinsic &equencies introduces an asymmetry
between I' and H. By using only symmetry properties of
the spherical modified Bessel functions I (x) and some
simple algebra, the set of terms generated &om direct
integration of the functional (see the Appendix) can be
written in a compact form as

The order parameters r and P in terms of p and the
distributions g(m) and f(h) are given by

re'~ = ... e' p H~h d8g u d~ h dh.

These self-consistent equations provide all the relevant
information of the system. However, they contain an ex-

oo OO OO

Z=(1- ' ) ): ). ).(-1)' "'
~=—oo p= —oo f=—oo

x I
i

—
i
Ip($)Ii(o)b, &'f kr)t

gD)
where

( h ) —~ cos(lg —m4) + (t + p) sin(lg —mP)
(5)'+ (~+ p)'

—
D cos(l@ —mP) + (I —p) sin(lg —mP)

(D)'+ (& —p)'
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—~ cos(lg + mP) + (l + p) sin(hP + mP)

(~)'+ (i+ p)'
t' h ) —

& cos(L@ + mP) + (l —p) sin(l@ + mP)
(=)' v- )'

Now, it is easy to compute r and P Rom formulas (15) and (16). The final expressions are

and

EE E(—1)' +'I (D)lp(D)Ii+1(g7")&"
&ZE(-1)' '"'I-(—"")I(—")I(—)&"

(r sing+ Acos P)= arctan (20)

where

—1 (~+~)I x" I„ I I a'" 04(& ~'")

EKE( 1)' '"'I-(—'")I (—")I(—"")&"

where the series run over the three indices m, I,, and p.
These equations provide all the information necessary to
reproduce the stationary behavior of the system. From
them we can compute the phase diagram of any system
made of Kuramoto phase oscillators characterized by an
arbitrary distribution of frequencies and external random
fields, provided the order parameters r and P do not have
an explicit dependence on time. Both equations can be
solved self-consistently by standard techniques such as
the Newton-Raphson method.

Looking at expressions (19)—(22) one may think that
the solution of the problem is as complex as before (with-
out the integration over 8) and that it is unapproachable
kom a numerical point of view. However, this is only a
superficial analysis, far away from reality. These series
present an excellent behavior due to their convergence
properties that make them easy to deal with. For in-
stance, by considering less than ten terms one can get
results with an accuracy of order 10 . This fact simpli-
fies the situation notably.

V. COMPARISON WITH SIMULATIONS

In order to check the accuracy of our approach, we
have compared the results achieved Rom the numerical
resolution of Eqs. (19) and (20) with Brownian simula-
tions. As an example, we have considered two diferent
situations. In both cases the distribution of &equencies is
uniform and even in the range [

—0.5,0.5] while the fields
are also uniformly distributed with the same variance
but centered at 0 and at 0.25 in the first and the second
cases, respectively. The ratio K/D has been controlled
by fixing the amount of noise to D = 0.2 and moving K.

To integrate Eqs. (19) and (20) we have taken the first

ten terms of the series. Brownian simulations have been
performed by solving the stochastic equation (3) with
a Euler method with a time step bt = 0.05. We have
considered a network of 20000 oscillators, large enough
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FIG. 1. Degree of synchronization versus iateasity of cou-

plings for a population of KM oscillators under the actioa of
a random field distributed uniformly in [—0.25,0.75] (dashed
line) and [

—0.5,0.5] (continuous line), and with intrinsic fre-

quencies and noise described in the text. Lines represeat re-
sults coming from the numerical solution of Eqs. (19) and

(20), while symbols are obtained from simulations. Each sym-
bol has been computed as an average over 1000 time steps ia
the stationary state.
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to neglect finite size eHects. The results are plotted in
Fig. 1.

This figure deserves several comments. First, we ob-
serve an excellent agreement between the theoretical ex-
pressions and the simulations, which shows that our re-
sults are exact in the thermodynamic limit. Additionally,
it is interesting to remark that introducing a one-humped
distribution of frequencies does not modify the qualita-
tive behavior of the static XY model previously studied
in [23]. With a centered (at the origin) distribution of
fields a phase transition between an incoherent state with
r=0 and another with a macroscopic degree of synchro-
nization (magnetization) still takes place and the only
difference with respect to the static case is the situation
of the transition point, displaced toward a higher value
of K. This is evident since larger values of K are nec-
essary to counteract the eEect of rotation caused by the
distribution of &equencies.

When the distribution of fields is not centered at the
origin there is an effective force which makes r g 0 for
any value of the ratio K/D (in fact for small K/D and
for (h) (( 1, then r is proportional to (h)). The effect
of the variance of g(ur) is to reduce the coherence among
members of the population (i.e. , to reduce r), although
it does not change the qualitative behavior observed in
Fig. 1. In conclusion, no phase transition occurs, just as
in the static case.
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the period of this oscillation is not directly related to
1/ur, . To analyze this situation it is necessary to solve
the complete time dependent Fokker-Planck equation (6)
or to apply a diferent technique that could enable us to
Bnd r(t) and P(t). However, what we want to stress in
this section is that with our approach it is possible to re-
produce the oscillating behavior of r through an explicit
knowledge of the temporal variation of the mean phase.

VI. DISCUSSION

As we have shown in the previous section, Eqs. (19)
and (20) allow one to generate the phase diagram of any
system of phase oscillators described by the Langevin
equation (3) under the conditions of stationarity. In this
section we want to discuss whether such conditions are
fulfilled for any distribution of random fields and intrin-
sic &equencies, since the answer will give us information
about the range of validity of our approach.

We have found two basic mechanisms that could lead
to time dependent order parameters: either by introduc-
ing an external time-periodic force or by considering the
existence of a complex distribution of &equencies. How-
ever, the first one is equivalent to assuming a fixed exter-
nal field and a redefinition of the intrinsic &equencies. To
prove this statement let us consider the following model
proposed by Sakaguchi [22]:

N

8; = u; + —) sin(8& —8;) —hsin(8; —haft), (23)

0.0
0

Q)

3-

2

200 400 600 800 1 000 1 200

where ~y denotes the external driving. By introducing a
new phase @; = (8; —~f t), we observe that the previous
description is transformed to a static one equivalent to
(3), where the explicit dependence on time of the exter-
nal force is absorbed in the features of a new distribution
of &equencies. Therefore, the discussion reduces to con-
sidering a suitable g(ur).

We have observed that if the transformation previously
mentioned generates a one-humped, nonincreasing distri-
bution centered at a certain m, g 0 the system presents a
periodic behavior whose description is complex because

0 I I I I I I I

0 100 200 300 400 500 600 700 800

FIG. 2. (a) Temporal evolution of the order parameter r
for a population of phase oscillators with the distribution of
intrinsic frequencies and Selds mentioned in the text. Other
parameters are K=1.5, D=0.2, and N=20000. In the inset
we have represented, for a period, the results obtained by
embedding the phases of (b) in Eq. (19) (circles) versus the
continuous line from the Brownian simulation. (b) Temporal
evolution of the mean phase for the system described in (a).
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In Figs. 2(a) and 2(b) we have shown the evolution of r
and P for a uniform distribution of frequencies between

[—0.4,0.6] and a fixed external field Ii; = 0.1 Vi Time is
expressed in seconds (a second for us corresponds to 200
iterations). We observe the nontrivial periodic character
of both parameters. However, if for a given t we pick
the corresponding P(t) [in this example from Fig. 2(b)]
and we put this numerical result into Eq. (19) we repro-
duce completely the behavior of r(t) T. his means that
the functional relationship between both order parame-
ters given by Eq. (19) still holds and that all the time
dependence of r{t) comes through the mean phase P(t).
Then the problem. reduces to finding a dynamical equa-
tion for P(t). We believe that this situation appears due
to the simple structure of g(ur) and that more complex
distributions of random frequencies (for instance, a bi-
modal) could introduce dynamical effects not properly
reproduced by expressions (19) and (20). Nevertheless, a
linear stability analysis of them may show the location of
bifurcation points which allow one to identify the transi-
tion between phases with stationary-time dependent or-
der parameters. This study deserves special attention.
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APPENDIX

In this section, we want to describe some technical de-
tails which allow us to derive Eqs. (19) and (20) from
the definition of the generating functional (17). The first
step is to write the exponentials (14) and (10) in terms
of series of spherical modified Bessel functions [25];

e*' '~~~ = Io(z) + 2 ) (—1)"cos(n()I„{z), (Al)

and perform integration (13) directly. This integral pro-
duces the following set of terms:

Io
I

—
I
Io

I

—
I
Ip(&)Ip(&) (A2)

4~D . (kr'i ( h, ~) ) ( 1) I
I

—
I

I
I

—
I
Ip(f)Ip(o') cos(mf)bi» "&Dr (A3)

4~D . „(kr~t (h l
ED)).).( 1)"Io

I I
Io I

—
I
Ii, (&)It(o) cos(lg)b~ ~, (A4)

4' ) ) (—1)"Ip
I

—
I
I„

I

—
I
Ip(()Ip(o) 2 b„,„,

(kr)
0D) 4D) I) + ri' (A5)

) 4 ) ri +m
(A6)

) z)
+"'

4m ) ) (—1) I
I

—
I
Io

I

—
I
Io($)Ii(cr) 2 b(

(kryo ( h 'i

+m
(A8)

4~) )-) (-1)-+~I
I

—II. I

—II,(()A(~)
(kr) (h&

ra=i =l l=l

x
( ——cos(pP) —m sin(pP) ——cos(pP) + m sin(pP)

'QJ 2 m l+P + ~2 2+ fDD +m2D
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4~).).).(—I)"ro
I D I

r-
I D I rp(() ~(&)

/'kryo

t' h l
n=1 p=l l=1

x
(——cos(lg) —n sin(l@)

b
——cos(l@) + n sin(l@)D

2 n, l+p + n, l —p+nD +nD
(A10)

lD)
4 ):).):(—1)"+ I-

I

—I-
I D Ir (&)Io( )

(——cos(mP) —(n + m) sin(mP) —
D cos(mP) + (n + m) sin(mP)D

+ (n+ m)' ~'+ (n+ m)2
n —mgp ) (A11)

4 ):).) (-I) r-
I D lr-

I D r.(&)r, ( )
(kryo (hl
~D) " lD)

~ —
D cos(nP) + (n + m) sin(nP) —$ cos(nP) + (n —m) sin(nP)+,I +

+ (n+ m)' + (n —m)2
(A12)

n+m, l —p

n —m, l—p

(A13)

4 ).):).):(-I) '"r
I D lr-I D Ir, (g)r, (~)

n.=l m=1 @=1 l=l

f —
D cos(lg —mP) + (n + m) sin(l@ —mP) —

& cos(l@ —mP) + (n + m) sin(lg —mP)x
i

'Qp 2 ~n+rn, l+p +
l + (n+ m)' ~'+ (n+ m)'

—
& cos(mP + lg) + (n —m) sin(mP + l@) —

& cos(mP + lg) + (n —m) sin(mP + bP)+ 2 b„,)+„+ 'Qp 2+ (n —m)2 + ('6 —m)2

Now, by using the contraction of the Kronecker delta
b„and the symmetry properties of the modified Bessel
functions with integer index [I„(z)= I „(z)],we can ex-
tend P~ to P taking into account the corresponding
zero terms. In this way we can reduce the whole set of
terms (A2) —(A13) to a compact expression for Z given by
(17). In more detail, expression (A2) corresponds to tak-

ing m = p = l = 0 simultaneously in (17). Expressions
(A3), (A5), and (A7) come out by taking (i) l = p = 0,
m g 0, (ii) l = m = 0, p j 0, and (iii) m = p = 0,
l g 0, respectively, in (17). The rest of the terms can be
obtained by applying the same procedure. In particular,
the last one corresponds to the nonzero index contribu-
tions.
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