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Controlling chaos experimentally in systems exhibiting large efFective Lyapunov
exponents
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We investigate experimentally the performance of the Ott, Grebogi, and Yorke [Phys. Rev. Lett.
64, 116 (1989)] feedback concept to control chaotic motion. The experimental systems are a driven
pendulum and a driven bronze ribbon. Both setups have unstable periodic orbits characterized
by large efFective Lyapunov exponents. All control vectors for the feedback control are extracted
from the experimental data. To do this for the pendulum a global model obtained by the Bow field
analysis of Cremers and Hiibler [Z. Naturforsch. Teil A 42, 797 (1987)] is used, and for the bronze
ribbon linear approximations in embedding space are exploited. We analyze the problems that arise
due to the amplification of noise by large eR'ective Lyapunov exponents in the determination of the
control values as well as in the performance of the experimental control. Successful control can be
achieved in our experiments by applying the "local control method" which allows a quasicontinuous
adjustment of the control parameter in contrast to adjusting the control parameter only once per
return time of the Poincare map.

PACS number(s): 05.45.+b

INTRODUCTION

Since the late 1970s, nonlinear dynamics has attracted
the interest of an increasing number of physicists, and
powerful mathematical tools have been developed to an-

alyze systems whose dynamics are governed by a low di-

mensional chaotic attractor. The reconstruction of the
attractor even from measurements of only a single scalar
variable and the successive determination of its ergodic
properties, like fractal dimension, entropies, and Lya-
punov exponents might be regarded as state of the art
available to many experimentalists nowadays.

Having obtained a deep understanding of low dimen-
sional chaos and appropriate diagnostic tools at hand
many nonlinear dynamicists are now interested to use
their skills in order to exploit chaos and nonlinearities.
One of the most prominent activities to go beyond a sole
description of chaotic behavior is the Geld of controlling
chaos. The idea to influence a system in a desired pre-
scribed way was first stated by I uscher and Hubler. In
Ref. [1] they propose an open loop control. They drive a
system to a desired motion by adding a specially designed
continuous, generally aperiodic driving force which has
to be calculated in advance using a global model of the
system.

A diferent approach is the feedback control of Ott,
Grebogi, and Yorke (OGY) [2]. They proposed to control
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a chaotic motion by stabilizing one of the many unstable
periodic orbits (UPO's) embedded in a chaotic attractor
by only minor time-dependent parameter perturbations.
This idea has triggered immense research activities to ap-
ply feedback control to chaotic systems. A survey of these
activities can be found in the review article of Shinbrot
et aL [3]. In what follows we concentrate on the feedback
control ansatz of OGY.

The OGY-control approach is marked by a number
of special features. First of all, the stabilization of an
UPO is obtained by only tiny parameter perturbations
because one forces the system to a motion which is al-
ready inherent in its dynamics. Second, there is typically
a large number of diferent UPO's, even with low period,
embedded in a strange attractor, allowing a great vari-
ability in the choice of the desired mode of the system.
Diferent modes can be achieved within one and the same
system by only small alterations in the feedback control
without changing the overall parameter regime. Third,
with respect to applications the most important feature
of OGY's control method is that it does not require a
global model of the system. Only knowledge of the sys-
tern dynamics in the vicinity of the unstable orbit has
to be available. As was emphasized in Ref. [2], the lo-
cal dynamics including the determination of the UPO's
itself can be obtained kom a, single data series using the
well-known embedding technique. This feature opens up
a wide-spread field of real world applications. Note that
the exclusive use of time delay coordinates can give rise
to more complicated control formulas as was discussed in
[4-6].

Two classes of experimental realizations of the OGY
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control have been reported so far. In the first [7—11], the
measured data are analyzed on a computer and the con-
trol values are obtained from this analysis. After that
the control is applied to the experimental system. To
this class belongs the 6rst demonstration of a successful
control using OGY's method done by Ditto et aL [7]. All
control values of their experiment, a gravitationally buck-
led magnetostrictive ribbon driven by a magnetic field,
could be determined &om an almost one-dimensional re-
turn map which is shown to describe the highly dissipa-
tive system. They apply the control once per return time
which means around once per second. Other authors re-
port on &equencies of control for this class of experiments
typically in the range of 1 Hz [8] up to 100 Hz [9].

In the second class [12—17] the control coefficients are
determined while running the experiment by observing
in an analog feedback loop for which control values the
systems stabilizes to formerly unstable solutions. This
was introduced in an experiment (a diode resonator) by
Hunt [12] and is called occasional proportional feedback
(OPF). This strategy can be most efFective in experi-
ments whose internal &equency or driving &equency is
so high that a computer assisted evaluation of the con-
trol coefFicients becomes very diKcult if not impossible.
In these experiments the driving frequency (except that
of [14]) is of the order of kHz.

In this paper, we focus on the 6rst class of control con-
cepts where the experimental data are analyzed on a com-
puter to obtain optimal control values for the feedback
control. We investigate how well the control values can
be determined &om noisy experimental data and we ex-
amine how noise affects the performance of the feedback
control and what can be done in order to gain control in
the presence of noise.

In order to investigate these questions we use two ex-
perimental systems. These are a driven pendulum and
a horizontally vibrating bronze beam driven by an ex-
ternal magnetic 6eld. Both systems have features which
make them especially suitable to study different aspects
of the OGY-control approach. First, they cannot be de-
scribed by a one-dimensional return map. So one has to
work with the full two-dimensional Poincare mapping in
order to calculate the control vectors &om a global dy-
namical model of the system or &om local fits around
recurrent points. Second it turns out that both systems
have UPO's which are highly unstable as can be seen
&om their unstable eigenvalues and their effective Lya-
punov exponents.

The effective Lyapunov exponent A,yf (z~, T) (for the
return time T) of an UPO z~ in one Poincare section
is related to the largest singular value (i.e., the maxi-
mal possible stretching rate) p(z~, T) of the lineariza-
tion D~~gF = D~~P around zF of the Poincare map P.

ff (zj', T) is defined as [19]

1
ff (z$' T):= —in|a(zz, T).

In contrast to the eigenvalues of an UPO its singular
values and thus its effective Lyapunov exponents does
depend on the chosen Poincare section. As the effec-
tive Lyapunov exponents affect the predictability of a

future state [19] the large effective Lyapunov exponents
of the UPO's found in our experiments have severe con-
sequences for the determination of the control values as
well as for the performance of the feedback control itself.

Concerning the control performance of the feedback
control it was already pointed out in [8] that the amplifi-
cation of noise by large effective Lyapunov exponents can
spoil the feedback control when the control parameter
is adjusted only once per return time T of the Poincare
map. The reason for this is that an error e in determining
the actual state near a 6xed point z~ in the Poincare sec-
tion can be ampli6ed in the worst case during one return
time T by p(z~, T) = exp[A, tt(z~, T)T]. If the ampli-
fied measurement error exceeds the size of OGY's control
parallelogram [2] which is determined by the maximal al-
lowed parameter perturbation, the feedback control fails.
Thus for systems with large effective Lyapunov exponents
one cannot wait one period to adjust the control param-
eter.

To overcome this problem, independently two similar
extensions of the original OGY method have been de-
veloped. One is the minimal expected deviation method
published by Reyl et al. [9]. It employs a difFerent control
condition than OGY which is obtained by requiring that
the expected deviation of the trajectory &om the desired
orbit is minimized by the special choice of the control pa-
rameter. This scheme has been used to control an NMR
laser. The other method, announced by Hubinger et al.
[8] as local control method, will be extensively discussed in
this paper. It allows a quasicontinuous application of the
feedback in order to stabilize the UPO. Furthermore not
only period one orbits but orbits of any period including
aperiodic chaotic orbits can be stabilized.

The paper is organized as follows. In Sec. I we recall
the original OGY control and we introduce our local con-
trolling extension. In Sec. II the experimental setups of
both experiments are described. In Sec. III the deter-
mination of the control vectors &om experimental data
is investigated and the inQuence of noise to this analysis
is discussed. Furthermore, we propose a method to ob-
tain the linearization of the Poincare mapping around an
UPO in the case of large effective Lyapunov exponents.
Finally, in Sec. IV we successfully apply the local feed-
back control to the experiments using the control values
obtained analyzing the measurement data. We summa-
rize our results in Sec. V.

I. THE OGY CONTROL SCHEME

As in the experiments only two-dimensional Poincare
sections have been used we restrict the description of
the original OGY control and of the local control to the
case of three-dimensional continuous systems with two-
dimensional Poincare sections Z. Extensions to higher
dimensional systems may be found in Refs. [20—22]. For
both methods we denote the accessible control parameter
by p which can be varied with maximal possible pertur-
bation bp around some value po.
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A. The OGY control method B. Local control method

To stabilize an unstable periodic orbit lying in a
chaotic attractor for p = po, Ott et al. [2] propose to mon-
itor the system in a Poincare section Z. ....en
intersection z of the orbit with the Poincare section gets

the control parameter p is adjusted to a new value p„
such that the next intersection z +i, given by z„+i
P(z„,p„),falls on the local stable manifold of z~(po).

To calculate the necessary parameter perturbation p„
one uses the linear approximation of the Poincare map
P, near z~(po) and pe

bz„+,= A(pp)bz„+w»„, bz„EN', (2)

zs(po+») —»(po) —= g»

and A& p

the sensitivity of the system to parameter perturbations.
An alternative way to describe the eEect of the param-

eter pertur ation p is ob t' b
' to look at the resulting shift of

the 6xed point

ofIn order to use N control stations per perio
the UPO one introduces X successive Poincare sections

, . . . , IN —1j. Let z" E Z be the intersections
of the UP wit „anUPO 'th Z d P~" "+ ~ be the mapping from
one Poincare section Z„to the next one 2 +i, i.e. ,

, n+1 P(n. ,n+1)
(

n n)

Takin the natural (i.e. , stroboscopic) Pomcare sections
f a driven system the mapping P ' '

j g'~"'"+ ~ is 'ust ivenor a
by P~" "+ l = P+', Qt = T/K, in the case of % equa yall

spaced Poincare sections Z„.Thus for large N the map-
in s P~"'"+i~ describe only short time evolutions o

the system. We therefore call P~" "+ the, time) local
Poincare mappings.

As in the preceding section one uses the linear approx-
imation of P~""+ ~ around z+ and pp given by

n — n nbz"+' = A"bz" + w"bp"
) bz = z —zF e E„,

with

A" = D,.Pl" "+'l(z", , p. )

a~F (p)with g =
Using this notation and linearizing P around z~(p„)

the dynamics near z~(po) can alterna
'

ytivel be described
as

alld

~P (n, ~+ i)
w b" (zF pe) .

»-+~ = g»-+ A(p-) (»- —g~p-) (4)

bp„=— " f„bz„f„-w"
or

with A(p„)= D,P(z~(p„),p„).
Denoting wi'th f the contravariant unstable eigenvec-

f A~ j ~' . f e = 0 and e, being the stabe
theeigendirection j an wid' t j d with A the unstable eigenva ue t e

control requirement (z„+qshall fall on the stable direc-
tion) can be expressed as f„bz„+q—— . g
(2) or (4) this renders the equivalent control formulas

' d' b't A" P~" "+i~ and w" depend on n,For a perio ic or i
only by n modulo %.

Wh'1 two dimensions the linearization A = D,F Pie in wo
an UPO 1—

ing in an attractor does only have real eigenvalues the
1

' A" of the mappings P~"'"+ ~ can have corn-
plex eigenva ues. o es1 s. To establish a control formula we use
the well-known fact that the linear mapping A" e orms

1). The directions v„"(v", ) in Z„which are mappe on o
the largest (shortest) semiaxis of the ellipsoid in
can be obtained by use of the singular value decomposi-
tion A" = U W V"~ or equivalently by use of the po ar

A" = Q"P" P" = (A"tA")'~2. In thedecomposition A" =

bp„= " f„bz„(A„—1)f„g (6)

A( ) = A~ &~. With this assumption the vec-assuming ~pp~ = &p„~~.
tors I and w are related by

w = (1 —A)g.

l I

I

L

Note that with Eq. (2) the dynamics of the system m
the vicinity of a periodic orbit is described by a linear

B t this point of the analysis the po e
controlplacement technique which is well known to the contro

~ ~ ~

also be used to calculate aengineering community can also
feedback control formula [20].

I"IG. 1. At time step n the control perturba
' p" '

rbation b "is cho-
sen such that the difference vector bE is mapp yed b A" versus
the stable direction v, m ic vrie s a + h h vrill maximally shrink under

n.+1the action of A
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first formulation v„"(v, ) are the row vectors of V" corre-
sponding to the largest (smallest) singular value p"„(p,", ),
in the second v„"(v", ) are just the eigendirections of the
positive matrix P" with eigenvalues p„"(p,", ). To control
the UPO the requirement of the local control method is
now that bp" has to be chosen such that the projection of
bz" onto the direction of maximal stretching v„"decreases
every control step by a factor (1 —p), i.e.,

motor and generator unit

A-D

D-A

parallel

computer

vn+ltg&n+1 (1 ) nag n 0& p&1. (10)

Inserting Eq. (10) in (9) thus yields the control formula

(] p)V tngZn —Vn+1tgngzn
n+1 fv~

FIG. 2. Setup of the pendulum experiment. The electric
motor is driven by a voltage U(t) = c sin(At) + Ua pro-
vided from the parallel computer. U~ serves as the control
parameter. The tachogenerator detects the angular velocity
8. The 8 signal is processed in an electronic circuit in order
to provide the 8 and 8 signals.

For short control steps At = ~ ~ 0, i.e., in the qua-
sicontinuous limit, Eq. (11) can be simplified. Using
the polar decomposition of the matrix A" = Q"P" =
Q" (p,„"v„"v„"t+ p,,"v,"v,"t) and the limit Q" -+ 1 and
v„"+ v„"for At + 0 we obtain the control formula

(12)

%ith this formula it becomes evident why for short
control steps At it is necessary to introduce the factor
(1 —p). In the quasicontinuous limit p„is of the order

4t
&» &» &»

(where v is the nonautonomous vector field generating
the fiow P) is proportional to b,t. Therefore, a small
decay rate p cancels the singularity occurring in (12) and
the necessary parameter perturbation bp„will stay small
as long as zn is close to z+.

Analogous to the result in the preceding section the
relation between the vectors g",

representing the shift of the UPO in Z„caused by the
parameter perturbation, and the vectors w" can be cal-
culated as

n n+1 gn n (14)

Note that in the derivation of the control formulas (11)
or (12) it has never been used that the successive points
z+ are intersections of an UPO with Z„.If one does not
count n as n modulo N the local control method allows
to follow every aperiodic orbit.

II. EXPERIMENTAL SETUP

A. The driven pendulum

d28 d8
2 + R—+ M sin8 = A sin Ot + B.

dt2 dt (15)

In Fig. 2 the setup of the pendulum experiment is
shown. The mechanical pendulum is designed such that
its motion may be well approximated by the equation of
motion:

In this equation the variable 8 denotes the angle of de-
Bection and the constants I and R represent the coefB-
cients of inertia and friction, respectively. The constant
M is an abbreviation of the restoring moment mgl, with
mass m and length l of the pendulum and gravitationally
acceleration g. A is the amplitude of the harmonically
driving torque, 0 its &equency, and B represents a con-
stant torque. A and B are proportional to the voltages
U~ and U~, respectively, which are applied to the electric
motor of the pendulum as U(t) = U~ sin At+ U~ in order
to generate the driving torque. U~ will be used as the
accessible control parameter po. The maximal amplitude
which can be applied to the electric motor is U~ ——6 V
while the driving &equency 0 can be varied &om 0.5 Hz
to 1.6 Hz.

According to Eq. (15) the natural choice for the co-
ordinates of the state space is (8, 8, g) with the angu-
lar defiection 8, its velocity 8, and the phase g = Ot
of the driving. To measure the state space coordinates
of the real pendulum and to control the motion of the
pendulum a special electronic setup has been developed
which is connected to a computer network equipped with
digital-analog and analog-digital converters (Fig. 2).

The angular velocity 8 is directly measured by the
voltage of a tachogenerator which is connected to the
axis of the pendulum. In order to measure 8 in units of
2vrrad/s one has to multiply this voltage with a proper
factor which can be obtained by measuring the generator
voltage for a permanent rotation of the pendulum under
constant driving torque. (The pendulum has to rotate in
a horizontal plane to this end. ) The average velocity is
then determined as & with the period T of the rotation.

The variable 8 is obtained by integrating the 8 sig-
nal. This integration is carried out by a voltage to &e-
quency converter driving a digital 12-bit counter unit.
The sign of 8 selects the up and downward direction of
counting, respectively. The amplification in the circuit
is chosen such that full deBection of the pendulum cor-
responds to an overBow of the counter, restricting the
interval of integration to an interval representing [—rr, rr].
The integration as described above sums up errors due to
asymmetries in the generator unit and hence it has to be
corrected repeatedly. Furthermore, a starting point for
the integration must be supplied in order to obtain an ab-
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solute value of the angular position. Both requirements
are satisfied by detecting the signal &om the reHective
object sensor in the base of the pendulum which is used
to set the output of the integrator to zero, when the pen-
dulum passes the bottom position.

The voltage U~ for the periodic driving torque as well
as the voltage o8'set for the control signal U~ is produced
by the parallel computer network driving a digital-analog
converter. Hence the phase g has not to be measured
separately as it is already on hand in the computer.

For the How vector field analysis which is used to ob-
tain the coefficients of the equation of motion from the
experiment the acceleration. 8 has to be measured, too.
8 can be obtained by differentiation of the velocity sig-
nal using a standard analog circuit based on operational
amplifiers. To get the conversion factor from the volt-
age output of the amplifier to tl in units 2vr rad/s2, the
circuit is calibrated by a sinusoidal signal, which can be
obtained &om the pendulum swinging at small ampli-
tudes with frequency 00, when 8 corresponds to a value
of 8 = —0~~6.

For further numerical analysis it is appropriate to
rewrite Eq. (15) as

0" + p8'+ sin8 = asin~~+ b . (16)

Herein 7 = Got is a dimensionless time with Qo ——gM/I
being the eigenfrequency of the unforced pendulum for
small amplitudes. 6' and 8" denote the derivatives with
respect to 7.. p and a are the dimensionless coefficient of
&iction and the dimensionless driving amplitude respec-
tively. The relations between the parameters in Eqs. (15)
and (16) are thus given by p = QR2/IM, a = A/M, and
~ =0/Ao

The control of the pendulum is carried out in the state
space of the variables 8, 8', and g = sr~ = Ot The at-.
tractor of the chaotic motion of the pendulum in these
coordinates is shown in Fig. 3 for a Poincare section cor-
responding to @ = 0. The control parameter is set to
U~ ——0, while U~ ——6 V and 0 = 0.83 2' Hz are chosen
such that the pendulum moves well in the chaotic regime.

B. The bronle ribbon

The second experiment is stimulated by the magne-
toelastic buckled beam experiment of Moon [23]. ln our
case we have a horizontally cantilevered elastic bronze
beam equipped with two small permanent magnets at its
free end (see Fig. 4). The beam is located in an inhomo-
geneous magnetic field produced by two bigger perma-
nent magnets. The resulting magnetic force F M/Br,
where r is the position of the dipole at the tip of the
ribbon, destabilizes the straight unbent position of the
ribbon and creates two stable equilibrium positions of
the bronze ribbon.

To drive the system two coils are placed around the
free end of the beam. When the coils are supplied with
an ac voltage U(t) the beam starts to vibrate. For the
experiment U(t) is chosen as U(t) = U~sinurt+ p. The
amplitude U~ ——0.7 V is kept fixed and p is selected
as control parameter for the feedback control. In our
experiment p can vary between (—1, 1) V and its value is
obtained via a 12-bit resolution digital-analog converter
&om a 486 PC.

The dynamics of the beam is recorded using a wire
strain gauge which measures the curvature near the base
of the ribbon. It gives a voltage signal x which has a
monoton relation to the deBection of the tip. The volt-
age is measured in the range of (—0.5, 0.5) V and is trans-
ferred to the PC using a 12-bit resolution analog-digital
converter. The output voltage is sampled at a &equency
of 64/T, where T = 2x/~ is the period of the forcing
term U(t). This implies that we can use maximally 64
Poincare sections for the local control within our experi-
mental setup.

In our experiments the period of the excitation is cho-
sen to be T = 1 s. With this driving the ribbon vibrates
chaotically when the control parameter is set to p = 0 V
which will be our parameter po where we want to control
the ribbon. In Fig. 5 we present a bifurcation diagram

~ IIII

FIG. 3. The chaotic attractor of the driven pendulum in
the Poincare section g = 0. The driving period of the ex-
ternal torque is T = 1.2 s. The HausdorfF dimension for this
attractor can be determined to D~ = 2.8.

FIG. 4. Experimental setup of the chaotic bronze ribbon.
A horizontally cantilevered bronze beam equipped with two
small permanent magnets is located in an inhomogeneous
magnet aeld. Two coils are placed around the free end of the
beam and are supplied with an ac voltage U(t) = U~ sin cut+p.
The ofFset voltage p is the control parameter used in the ex-
periment. Measurements are taken with a wire strain gauge
at the end of the beam to obtain a voltage signal x related to
the defiection of the beam.
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FIG. 5. Experimental bifurcation diagram of the bronze
ribbon. Varying the offset voltage of the coils p as control
parameter the stroboscopic measurements x = x(nT) cor-
responding to (z„)» in the Poincare section Eo are plotted
versus p.
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FIG. 7. Chaotic attractor for the bronze ribbon for p = 0
V. 100000 points z„=(x„,x„)are showa ia the Poincare
section Zp.

of the experiment. For the control parameter p vary-
ing from —0.25 V to 0.25 V stroboscopic measurements
of x„=x(nT) are plotted. Around p = 0 V a broad
chaotic region can be detected. In Fig. 6 for p = 0 the
first return map, z„+qversus z„,is plotted. As can be
seen this map is fully two dimensional and cannot be
reduced to a one-dimensional map.

To reconstruct the dynamics of the beam we proceed
with a three-dimensional embedding having in mind that
a one-mode approximation for a damped beam with a free
end should describe the beam's equation of motion to first
order. As state space coordinates (x(t), x(t), 8(t)) with
8(t) = t modT was chosen. Because of the periodic driv-

ing the choice of 8 as third coordinate is a rather natural
one. It facilitates taking the Poincare sections consider-

0.4

ably. One only has to set 8 = const. The velocity x(t;)
is estimated from the measurement signal by numerical
differentiation. As time difference the sampling time At,
in our case 1/64 s, has been taken. The velocity x was
scaled with a factor 1/10 such that the state space co-
ordinates z and z varied within the same range. Thus
we use as units of time [10 ~ s]. For 64 Poincare sec-
tions this results in a time difference At = 0.16 [10 ~

s]
between two successive Poincare sections.

In Fig. 7 the chaotic attractor of the experiment for

p = 0 V is shown in the Poincare section 8 = 0. A clear
deterministic structure is visible. Therefore, it should be
possible to apply the OGY-control scheme.

III. DETERMINATION OF THE CONTROL
VECTORS FROM MEASUREMENTS
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A.„:=D,PP(z" ),
BP~

"(z~,&o) .
Op

w n

(17)

(16)

In order to apply the OGY- and the local-control
method to the two experiments described in the previ-
ous section, the control vectors have to be extracted from
experimental data. To do this one has to determine the
UPO's z+, the linearizations A of the global, and A" of
the local Poincare mappings for these UPO's as well as
the vectors I or w and w . In order to obtain optimal
control vectors for the OGY control all necessary quan-
tities are determined in every Poincare section Z„.For
further reference we introduce the notation

-0.7 -O.S -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0-4

FIG. 6. First return map of the bronze ribbon for p = 0 V.
x~+q ——x[(n+ 1)Tj versus x = x(nT) is plotted

When we consider the OGY control in our standard sec-
tion Zo we use the notation of Sec. 1.1, i.e., A = Ao, w =
wp~g=g .

Generally there are two possible approaches to extract
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the control vectors. One may calculate them from a
global mathematical model or utilize local fits around
recurrent points in the embedding space. While for the
pendulum both approaches are successful, for the bronze
ribbon only local fits turn out to be feasible. In this
section we first determine the global model for the pen-
dulum and calculate the control vectors from this model.
We then discuss the determination of the control vectors
for the bronze ribbon using fits for recurrent points.

For the experimental parameters we use in our exper-
iments we find the coefBcients p = 0.052, ~ = 0.66, and
a = 0.59. Thus the differential equation

6" + p6' + sin 8 = a sinus + 6

together with the obtained coefficients and Uii = b Oo/c3
as control parameter is the global model we use to de-
scribe and to control the experimental pendulum.

A. Plow Beld analysis for the pendulum
B. Control vectors from the model

((8, , 6, , 8;, U, )), i =1, . . . , N . (20)

with U, = U(t;) denoting the voltage applied to the elec-
tric motor to drive the pendulum. Assuming that the
motion of the system can be described by a second order
differential equation each of these measurements must
fulfill an equation

In order to achieve a global mathematical model of
the pendulum, we have to determine the constants of the
pendulum's equation (16). For this purpose we adapt
the Bow vector field analysis, introduced by Cremers and
Hiibler [18] to our needs.

The Bow vector field analysis is based on K measure-
ments

Having a differential equation as global model the cal-
culation of the control vectors is straightforward. The
UPO's are determined by a standard Newton algorithm.
For the parameters of our model (16) we find ten difFerent
UPO's of period one.

Before we present the calculation of the linearization
A" of the local Poincare mappings Pi" "+'l = P+~', we

want to mention its approximation for small At. Con-
sider a nonautonomous system z = v(z, t) = v(z, t +
T), z E K2, where the Poincare sections of the equiva-
lent autonomous system is taken at constant times t„(or
constant phases of the driving). It comes right from the
definition that for (infinitesimally) small At

pi,
' (z)—:z + v(z, t„)At

8; = F(6;,8;, U), i = 1, . . . , N. (21) holds. For the quantities of interest in our control prob-
lem this leads immediately to

To estimate F &om the measurements we would like
to use a polynomial expansion of F. As we expect the
pendulum equation to describe the data a polynomial
expansion of F could not be restricted to low order in
8" because the Taylor expansion of sin 6 would enter the
expansion. To avoid this we replace 8 by sin@ and use
as ansatz for the equation of motion

8, = P(sin6, , 8;, U, ).

Further we expand P only by polynomials up to first
order in each variable, thus we consider

6 = ci sin 8+ c26+ c3U(t).

The coefficients in (22) are determined by a least
squares fit using about N = 1000 measurement data.
In order to improve our model of the real pendulum, we

have also tried polynomials of higher order than one. The
results were almost vanishing coefBcients of the nonlin-
ear terms. Having thus obtained the coeKcients cq, c2, c3
one has to compare (22) and (16) in order to obtain the
correct values of the constants in Eq. (16). Considering
8' = 8/Oo and 8" = 8/O2O this yields

6' —
2 sin 8 = —

z U(&)
Qo 020 0~0

and, finally, Oo ———ci, p = —c2/Op, a = max(c3/Op .

U(w)), and b = U~ c3/Oo. For the flow field analysis

U(v) = U~ sinn+ = U~ sinOt has been used.

A" = 1+D,- v(z~, t„)At

(26)

1 At
(27)

and

( 0
%V

)
(28)

Taking into account the global model of the pendulum
(16) we obtain approximations of the matrices A" for
the pendulum as

A7.
A~cosd" 1——pA~ y

'

For the parameter dependence on the control parameter
6 Eq. (26) implies for small A7

Specializing further to a nonautonomous system derived
from a differential equation of second order, i.e. , x
f(x,i, t), and choosing (x,i, tmodT) as state space co-
ordinates, Eqs. (25) and (26) can be rewritten as
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The exact A." can be obtained by integrating (16) to-
gether with its variational equations. We find that for
b, t = T/64, T = 1.2 s there are only small deviations of
these exact matrices &om the approximation (29).

To calculate the dependence of the control parameter
w" we first determine g" using (13) and h'p = bb='0.0001
followed by evaluation of Eq. (14). Again we find that
the approximation (30) gives acceptable results for w"
for b,t = T/64. Having A", w" the control formulas are
calculated as described in Sec. IB.

For the OGY control the evaluation of the control vec-
tors follow the same line. We use Newton's algorithm to
determine the UPO s and integrate the variational diÃer-
ential equations to determine the linearization A or A„
taking as initial conditions z& and g" corresponding to
the considered Poincare section Z„.The control formulas
are then evaluated as described in Sec. I A.

section belongs to the intersection of the same UPO, and
so on. The UPO (z&) from a selected class of recurrent
points is then estimated as weighted average of the recur-
rent points in each section using the reciprocal recurrent
distances 1/~[z —z"+

~[
as weights.

In the experiment of the bronze ribbon three unstable
period-one orbits could be detected. They are shown in
Fig. 8. To obtain them 1000 best recurrent points in
each section out of 100000 periods have been used. For
further reference they are called UPO 1, UPO 2, UPO 3.

0.6
: a)

0.4—

0.2—

C. Control vectors
from recurrent points —the bronze ribbon

For the bronze ribbon we did not succeed yet to ex-
tract a global model ft.om the data. Therefore the control
vectors have to be calculated solely from the dynamical
behavior near recurrent points in the Poincare section
[24,25,2].

~ 8 D.O-

-0.2—

-0.4—

-0.6

f. Unstable periodic ov bits

As for the local control the intersection z+ of the UPO
with each Poincare section Z„,n = 1, . . . , N, is needed
m best recurrent points in every section Z„arerecorded,
i.e., we look for pairs of points (z ', z"'f+~), z"', z"'+ E
Z„,n; mod N = n, with

0.4—

0.2-

~ 8 0.0-
~

-0.2-

-0.4—

s~ &Z,kgn,

To find the correct grouping of the recurrent points
into classes belonging to the same UPO the classifica-
tion scheme described in [5] is adopted. In one selected
Poincare section, the classification section Z„., the best
recurrent point z"' E Z is taken as master point of the
first class. The second best recurrent point z"' C Z„
is classified to be in the same class if its distance to z '
is less than a maximum distance parameter e, if not z '
forms the master point of the second class and so on.
Having thus obtained a classification in Z . the best re-
current point of the other sections have to be classified
according to the classes in Z .. For this purpose we
record not only the recurrent points z, z + E- Z but

I
also z g Z, n ( n' ( n+ N, i.e., the correspond-
ing intersection point in the classification section. This
intersection point is used to classify the best recurrent
point in every Poincare section Z„taking the existing
classes in Z„.thus assuring that, e.g. , class one in every

-0.8

0.4—

0.2-
'~

0.0-

-0.2—
1

-0.4—

6 ~ ~ ' '
/

& 1 1 ~ i ~ ~ ~ 1
f

I 1 ~ l I I I ~
) 1 ~ 1

—0.
-08 -06 -04 -02 00 PP 04

FIG. 8. The three unstable period-one orbits of the bronze
ribbon which have been detected analyzing best recurrent
points for p = 0 V. They are shown in the x-x plane and
are named (a) UPO 1, (b) UPO 2, (c) UPO 3.
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2. Iinearizations A." and A„

To determine the linearization of the local Poincare
mappings P~ '"+ ~ and the global mappings P for an
UPO we do not use the already collected best recurrent
points as was proposed in [5], we rather make a new
run looking for the nearest neighbor points of the UPO
(z+), regardless whether they are best recurrent points
or not. This efFort turns out to be worthwhile since for
systems with large unstable eigenvalue A„and even larger

0.20

quotient A„/A, of P the best recurrent points z" are
mostly placed along the stable direction e, of z+ and its
images z + along the unstable direction e„[seeFig.
9 (a)]. Thus considering only the best recurrent points
for the fit of the linear mappings we would overweight
these directions. Nearest neighbor points in contrast give
also information about other directions [see Fig. 9 (b)]
and thus give better approximations of the full linear
mappings A„and A".

To extract the mapping A" and A„&omthe dynamics
of the nearest neighbors we record in each section beside
the m nearest neighbor points I ' e Z„itself also z"'+

nd z"*+ Finally A" = D, P~
' and &„=D, -Q~

are obtained &om a least square 6t using the relation
0.18—

0.16—

x" x x

xx x
and

z"*+ —z" = A„(z"*—z~)

A, t'+ i A, + i A7L / At (32)

0.14—

0.12—

0.10 f I
1

I 1

-0.10

0.20

0.18—

0.16—

0.14—
1

++ + ++ +
+ ~+ ~ /PE

0.12—

-0.08 -0.06 -0.04
X

In Fig. 10 the linearization A" of the local Poincare
mappings P~"'"+ ~ are shown for the UPO 1. For each
UPO continuous curves of the a", with respect to n are
found. Furthermore, the calculated A" agree nicely with
the approximation (27) for the A" which we expect to
hold for small At. Note that a&2 of our experimental A"
is almost constant, it only varies between 0.15 and 0.18.
This is in agreement with At = 0.16 [10 is] which we
have as time difFerence between two successive Poincare
sections in our experiment. alai and 0,22 are of the order
of 1 as expected. The largest variation can be found in

a2i which again coincides with the approximation (27).
Thus the approximation (27) gives a good hint for the
con6dence one can have in the A" obtained &om the
experimental data of the ribbon.

For the pendulum we also extracted the A" from fits
near recurrent points. Comparison between them and
the A" obtained &om the global model also showed that
it is no problem to extract the linearization of the local
mappings with sufficient accuracy using only linear fits
from measurement data.

The estimation of the linearization A„ofthe global
Poincare mappings P„proves to be much more difFi-

cult. First of all, the degree of nonlinearity of P„is

0.10 1 I I
I

I I I I I I I

—0.10 —0.08 —0.06 -0.04
X

FIG. 9. (a) Out of 100000 periods 50 best recurrent points

(+), z" E Zo, belonging to the class of UPO 1 and their
images (x), z + p Zo, under the Poincare map Po are
shown. The two arrows are located at zz, and give the sta-
ble (filled vector) and unstable (open vector) eigendirections
of the linearization Ap: D 0 Pp with eigenvalues A„9

E1
and A, —0.1 obtained using the product (33) of the local
matrices A . As can be seen the best recurrent points are

mostly placed along the stable direction while their images

are mapped aloag the uastable direction due to the large ra-

tio A„/A, 90. (b) The 50 nearest neighbor points (+) z"
of z&, (~ ) are shown. They give information of the full linear

mapping around z+, .0

0.0—

21

/

v

40 48 56 64

FIG. 10. Linearization A" = (a,"~) of the local Poincare

mappings P( ' + ~ for the UPO l of the bronze ribbon.
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certainly higher than of the (time) local Poincare map-
pings P~" "+ ~. Therefore, in order to extract A„onehas
to use smaller neighborhoods for the fit of A„than for
the A". Thus if the nearest neighbors are obtained &om
some fixed measurement, in our case 100 000 periods,
one can only use less nearest neighbors for the fit of A+

than one can use for the fits of the local mappings A".
Alternatively, one has to make longer measurements.

Since there is no a priori knowledge on the form of the
A+, we use our knowledge about the eigenvalues A„,A, ,
of the A„.As the eigenvalues of an UPO are invariant
under a change of coordinates they have to be the same

20.0
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-40.0
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0.0-
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-eo.o
: c}

100.0-

75.0-

50.0-

25.0-

0.0-

-20.0— FIG. 11. Determination of the lineariza-
tions A„ofthe global Poincare mappingsP„=P~ of UPO 1. (a) The eigenvalues

A„"(solid line), A", (dashed line) from A„ob-
tained from a direct fit using Eq. (31). The
small dots indicate the n vrhere the fit yields
complex eigenvalues A". Here the real (solid
line) and the imaginary part (dashed line) of
A" are plotted. (b) A„from Eq. (31) versus
n, (c) A calculated as a product of the lo-
cal matrices A" using Eq. (33), (d) the maxi-
mal singular values y,

"= p(z&, , T) of the A„
shown in (c). As can be seen the problems
of the fits in (a) and (b) are related to the
large stretching rates p,"„in the correspond-
ing Poincare sections.
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(33)

for every Poincare section E . Furthermore, ~A
~

& l. and
~A",

~
( 1 should hold for an UPO lying in an attractor as

well as A„A,= detDQ& & 0 is valid for an UPO of a
dynamic system generated by a vector 6eld.

In Fig. 11 (a) the eigenvalues of A+ of UPO 1 are plot-
ted versus n. As can be seen there are Poincare sections
where the eigenvalues Buctuate wildly. In these regions
they even can become complex. However, there are also
regions where A„"and A", are independent of n as it should
be. The level of these plateaus give us a 6rst hint about
the possible values of A„and A, . For UPO 1 we obtain
A„=9 and A, = 0.1. For the calculation of the A„which
are the basis of Fig. 11 m = 60 nearest neighbors have
been used. We also varied the number of nearest neigh-
bors between m = 20 and m= 500 and plotted A"„and
A", versus n. Increasing the numbers of nearest neighbors
(and thus the size of the neighborhood) soon deteriorated
the results for A„"and A", . But already our best result in
Fig. 11 (a) demonstrates how difficult the determination
of A„canbe in the presence of some measurement noise
when A„is of the order of 10 and A„/A, = 100.

Thus having difhculties to estimate A„directly using
only the dynamics (31) in one section we tried to get
another estimate of A„using the local mappings A" ob-
tained from (32) and the relation

AG An+ N —1 An+1 An
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0.25—

/

ba 0.00-
/
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0.0-

c}

/

/

I
/

/
I

/

(w")q

In Fig. 11 (b) and 11 (c) (a+),~ are shown for the fitted
A„using Eq. (31) and the A+ calculated as a product
of the A" using Eq. (33). Although they diff'er consider-
ably in their numerical value they show the same overall
behavior. But even if the (a„),~ in Fig. 11 (c) obtained
by multiplication of the local A" Quctuate wildly there
eigenvalues A"„and A", are constant as a function of n
as it must be by construction. We obtain A"„=8.5
and A", = 0.08. These eigenvalues are in good agree-
ment with the eigenvalues obtained Rom the plateaus in
Fig. 11 (a) confirming the estimate of A„and A, . In
Fig. 11 (d) finally we plotted the largest singular value

p(z+, T) = exp(A, yy(zp, T)T) of A„given by (33). As
can be seen these singular values and thus the effective
Lyapunov exponents become very large exactly in the re-
gions where the eigenvalues A"„andA", in Fig. 11 (a) fiuc-
tuate wildly which indicates that the A+ obtained from
the direct fit (31) are not reliable. If one looks at the an-
gle between the eigendirections e„"and e", of A„obtained
&om (33) it can be seen that in regions of large singular
values the angle between the eigendirections diminishes.
Because of the large Lyapunov exponents for these n even
small measurement errors will lead to a bad estimate of
A if only (31) is used. Thus the A obtained from (33)
give a good explanation why the fit (31) does not give
good results for some Poincare sections. Furthermore,
the eigenvalues of A+ from (33) fulfill all theoretical re-
quirements about the eigenvalues of an UPO and coincide
with the plateaus where the fit (31) seems to work. For
our experiment we therefore always used A obtained
&om the product of the A to estimate the eigenvalues
and eigendirections for the OGY control formula.

The results for the A of the other UPO's show the
same ending as the just reported one for UPO 1. For

F
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FIG. 12. For the bronze ribbon the dependence on the con-
trol parameter p is examined. Using a parameter change
of bp = —0.025, 0.025, —0.05, 0.05 V the shift of the UPO
z~(po + bp) —z~(po) are analyzed. For UPO 1 we show

8sF
(a) the components of g = a ', (h) the components

of w" = e' (z~, , po), (c) the singular values of

/t" = D P~"'"+'l, and (d) w„= a" (z~, ,po).
1
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UPO 2 we estimate A„=—13, A, = —0.05 and for UPO 3
A„=—11 and A, = —0.07 looking both for the plateau of
A„"and A, and the A„and A, obtained from the product
of A".

3. Dependence on the control pammeter

To determine the sensitivity of the experiment to a
change of the control parameter p the dependence I"
of the location of the 6xed points z&(p) in E„have
to be measured. For this purpose we run the ex-
periment four times with a parameter change bp
—0.025, 0.025, —0.05, 0.05 [V] giving rise to four g" using
Eq. (13). As final g" the average over these g" is taken.
The result is shown in Fig. 12 (a). Except around the
Poincare section n = 48 there is a smooth dependence
of g" with respect to n. In Fig. 12 (b) the resulting w"
calculated from (14) using g" and A" are presented. Al-
though the underlying A" (Fig. 10) and g" seem to be
determined with suKcient accuracy the values of w" are
much more noisy. The reason for this is that for small
6t the singular values of A" [see Fig. 12 (c)] are of the
order of 1, thus g"+~ and A"I" will not diHer much. For
the deterxnination of w" therefore a higher accuracy in
more digits is necessary. Recalling the meaning of g" and
w" as g" being mainly the shift of the UPO when a per-
manent parameter change is applied and w" being the
dependence of the system when a perturbation is applied
only for the time At it becomes evident that it must be
much harder to deterxnine w" than I".

Finally in Fig. 12 (d) the dependence wP of the
global Poincare mappings P„,calculated &om w„
g" —A„g",is shown. To obtain w„ the A+ in Fig.
11 (c) calculated from Eq. (33) have been used. As the
eigenvalues of A„arecomparatively large there is no loss
of accuracy taking the difFerence of g" and A„g".As w„

y0 ht
S

g1l

|

characterizes the sensitivity of the systexn when a pertur-
bation is applied over a whole period T they are much
easier to determine than the w as long the determina-
tion of A„is reliable. As I" comes &om first xneasure-
ment these values are certainly more reliable than the
wP. But for the calculation of the control vectors in (5)
or (6) the A„have to be used anyway. Therefore, the
control vectors obtained from (5) or (6) turn out to be
the same.

IV. EXPERIMENTAL RESULTS

A. Centrelling the pendulum

a) 3. b)

In Fig. 13 we show the fixed points corresponding to
ten period one UPO's in the section g = 0. To demon-
strate that these orbits are highly unstable we superim-
pose a portrait of the largest eHective Lyapunov expo-
nent A, yy(8, tl', T) [definition Eq. (1)] for a time interval
corresponding to one driving period T in the same sec-
tion. Dark zones in this portrait correspond to high val-
ues of A, ff (8, tl', T) and indicate areas where predictions
and also the control of the motion are highly affected by
noise as pointed out in the introduction of this paper.
All period one UPO's of the pendulum are well located
in these dark regions. This is strongly related to the fact
that the eigenvalues of the linearization of the Poincare
xnappings for all of these orbits are comparatively large
[26]: they vary from [A„~ = 12.2 to ~A„[= 7800. (The
later one belongs to an orbit which tracks a swing with
small amplitude around the point of overturn. )

We first test the original OGY-control ansatz in the ex-
periment for difFerent UFO's in various Poincare sections.
The control vectors for these experixnents are calculated
&om the global model as discussed in Sec. IIIB. The
control is activated only when the absolute control signal
~U~~ is smaller than a certain threshold U~ ..= 0.2U~.
During the experiment we often observe that the motion
of the system is close to the desired orbit triggering a
perturbation of the control parameter. These control at-
tempts nevertheless do not result in stabilization of an
UPO in our experiments.

To test the local control method we select N = 64
control steps per driving period T of the periodic torque.

o yl
6

FIG. 13. Gray scale plot of the effective Lyapunov expo-
nent A, ff(8, 8', T) of the pendulum for the time T corre-
sponding to one period of the driving in the Poincare sec-
tion Q = 0. Dark zones indicate large exponents while bright
zones correspond to low values of A, yy(8, 8', T). The dots (~ )
indicate ten period one UPO's in the section @ = 0. With-
out exception they are located in regions with large effective
Lyapunov exponents.

0 5 10 15 20 25

t [minj

FIG. 14. Local control of UPO's of the pendulum. (a) The
control is switched on at time t = 0, every Sve minutes the
UPO to be controlled is changed. The stroboscopic angular
velocity 0'„is shown. (b) The corresponding unstable periodic
orbits in the 8-8' plane.
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o

—2
f

control oH'

-3l

) 3

system is disturbed externally by a major perturbation,
e.g. , touching the rotor, etc.

To demonstrate control of a chaotic trajectory, the con-
trol vectors have to be calculated from the global model.
Toward this end any solution of the equation of motion
may be chosen as a goal trujectory. As an example, we
calculate a prediction of the pendulum's motion based
on an initial state measured from the system. In Fig.
15 (a) we present a comparison of the predicted velocity
signal of the pendulum for the time interval 10 s with
the observed motion of the pendulum when no control is
applied. Due to the sensitive dependence on the initial
state, prediction and actual motion of the pendulum di-
verge severely after about 2 s. In Fig. 15 (b) we show
the velocity signal of a controlled motion for the same
trajectory segment as in Fig. 15 (a). The motion of the
pendulum stays close to the target curve as long as the
control is activated.

B. Controlling the bronze ribbon

—3-
0

control on

For the bronze ribbon we first tried to stabilize the
three UPO's (Fig. 8) determined from the experiment
using the OGY-control vectors suited to stabilize the sys-
tem applying one control step per period. Although we
avoided for this type of control the Poincare sections with
extremely high effective Lyapunov exponents like, e.g. ,

FIG. 15. Local control of a chaotic trajectory of the pen-
dulum. Comparison of the velocity signal of the predicted
target trajectory (solid line) and the actual motion of the ex-
perimental pendulum (dots). (a) Without control prediction
and actual motion diverge. (b) With control the motion of
the pendulum is kept close to the goal trajectory.

1.0

0.5—

a)

For the stabilization of the UPO's, we use the control
vectors calculated Rom the global model as well as de-
termined by local fits near recurrent points. The decay
rate is set to p = 0.15. Again, we apply a control only
when l&Bl & &B, =O&&A

This way we are able to stabilize every detected UPO
regardless of the period of the orbit using local control.
In Fig. 14, we present some of these different modes of
motion up to a length of period three. In the figure we
plot on the left side the angular velocity 8' at constant
phase g = O. In this plot chaotic motion of the system is
marked by a broad distribution of the angular velocities
as a function of time, while periodic motion is marked
by lines of almost constant velocities. The number of
lines displayed in each of the time intervals indicates the
period of the periodic orbit.

We first observe chaotic motion of the pendulum when
no control is applied. At time t = 0 local control is acti-
vated for the first orbit displayed on the right side of Fig.
14. After a short chaotic transient the periodic orbit is
stabilized. In the following every five minutes the UPO
to be controlled is changed to one of the orbits shown
in Fig. 14. The time to achieve control after a change
of the control vectors or when the system is disturbed
externally is typically in the range of a few driving peri-
ods. We observe a kickout of the orbits only, when the
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t ~ I I

i I I ~ I l t s I s
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—1 -075 -0 50 -025 0 0 25 0 50 0 75

FIG. 16. Local control of the bronze ribbon: (a) 20 periods
of the controlled ribbon in the x-x plane having UPO 3 chosen
as desired orbit. (b) 20 periods of the uncontrolled motion of
the bronze ribbon in the x-x plane.
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FIG. 18. Numerical control of an UPO of the pendulum
with the original OGY control. In the upper part we show the
8' signal in the Poincare section Z0, in the lower the absolute
value of the control signal bb„. Starting with a noise level
e = 0.001 we increase the noise every 2000 driving periods by
an amount of e = 0.001.

FIG. 17. Local control of the bronze ribbon: (a) First com-
ponent (s )q = s„=s(nT) in the Poincare section Zo versus
n. From 0 —500 no control is applied. Using the local control
formula (11),a maximal distance bz = 0.3 and the maxi-
mal parameter perturbation bp = 0.18 V the three UPO's
are successively controlled. Prom n = 501—1000 UPO 1, from
n = 1001 —1500 UPO 2, and SnaQy from n = 1501 —2000
UPO 3. (b) The absolute value of the needed parameter per-
turbation averaged over one period of the driving plotted ver-
sus n.

section Zss of UPO 1 [Fig. 11 (d)] we never succeeded to
reach control.

Next, we tried to control the ribbon by local control
with the control vectors extracted from the analysis in
Sec. III C. But this first attempt also failed. As was al-
ready discussed in Sec. III C 3 the w" are noisy. Because
they are small for small At and appear in the denomi-
nator of the control formulas (11) or (12) the resulting
control vectors K" of the local control, bp" = K"bz",
are even more noisy. As a first remedy, one could re-
move the obvious glitches observed, e.g. , in Z48 of UPO
1 [Fig. 12 (b)] and smooth the vr". But this cannot pre-
vent that the local-control vectors K" can become very
large in some sections Z . In these sections the require-
ment ~bp"

~

( bp is almost never fulfilled even when
)~bz" (( is small. Here the control will never be applied.
Because of the high instability of the system these times
of suspended control sufBce to lead to a failure of control.

In order to keep the system for these critical time steps
n under control we formulate the following control rule

' K"bs" if //K"bs"
/f

& bp
sign(K"bz")hp if /[K"bz"

ff ) bp
and //bs"// ( bz
otherwise.

Thus we continue the control if we are closer than a max-

imal distance bz even when the bp" calculated from
(ll) or (12) exceed hp . In these cases we control but
restrict the control force to ~bp"

~

= h'p
Using the control rule (34) we are able to control

UPO 1, 2, and 3. In Fig. 16 (a) we show in the x-z plane
the controlled trajectory of the bronze ribbon for 20 pe-
riods having chosen UPO 3 as UPO to be stabilized. In
Fig. 16 (b) in contrast the trajectory of the uncontrolled
ribbon for 20 periods of the driving is shown. If one sus-
pends the control the ribbon almost immediately turns
into the uncontrolled chaotic motion of Fig. 16 (b).

In Fig. 17 we use the local control with Eq. (11) to
successively stabilize UPO 1, UPO 2, and UPO 3. As
maximal distance hz = 0.3 and as maximal param-
eter perturbation hp = 0.18V is chosen. As can be
seen it only needs some periods to gain control if one
switches from one UPO to the other. We have also
tried the control formula (12) which should be a good
approximation for large number of control stations N.

-3
0.1-

p.p5-

-~

0 -------- --=-----:--------------'--------------'------

P 200P 400P 6PPO 800P 10PPP

FIG. 19. Numerical control of an UPO of the pendulum
with local control using N = 100 control steps per period. In
the lower part we show the total of the control signal averaged
over one driving period. Starting with e = 0.01 every 2000
driving periods the noise level is increased by c = 0.01.
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For N = 64 the local control was also able to stabilize
the diferent UPO's using Eq. (12). Referring to the ap-
proximation (28) for the vr we even tried as ansatz for
the w, w = (0, k Et)t, with an appropriately chosen
constant k. Substituting this crude approximation for
the w into the control formula (ll) or (12) we could
stabilize the UPO's needing this time larger parameter
perturbations. This shows that the local control is rather
robust against a failure in the determination of the con-
trol vectors as long as one does not suspend the control
and uses the control rule (34). For all control formulas
nevertheless the stabilized motion can differ more or less
Rom the desired unstable orbit. As in the tracking ap-
proach of Schwartz and Triandaf in [27] one could vary
the control vectors and the goal UPO in order to diminish
the necessary parameter perturbation and thus improve
the control or in order to cope with slowly varying system
parameters.

in an increase of the control parameter level, while the
control remains stable. Beginning with ~ = 0.004 the
control is no longer stable while for larger noise levels it
fails completely.

The same numerical experiment is shown in Fig. 19 for
the local control. Here in the bottom plot we show the
absolute value of the control parameter (~hb ~) averaged
over one period of the driving. The first noise level is
~ = 0.01 which is by a factor ten larger than the noise in
the experiment described above. Again, after each 2000
driving periods the noise is increased, this time by 0.01.
Each raise of the noise increases (~bb" ~) but the control re-
mains stable up to e = 0.05. Further increase of e reveals
occasional failures of the control for e = 0.08. Larger
noise destroys the performance of the local control.

D. Transient times for the control in numerical
experiment

C. Numerical experiment —influence of noise

In the following, we investigate the robustness of the
control methods with respect to noise. For this purpose
we stabilize an UPO in a numerical experiment on the
basis of the pendulum equation. Noise is introduced by
adding small noise terms e b, e b' to 8 and 6', h and 8'

being identically distributed in [
—1, 1]. Thus mimicking

a noisy measurement of the bz", we calculate the control
amplitude using (5) and (12), respectively. The values of
the control vectors in (5) and (12) itself are still taken
from the equation of motion. Doing this we concentrate
on the effect of errors in the determination of the state
on the feedback control.

In Fig. 18 we present the effect of noise on the original
OGY control. On top the 8' signal in the Poincare section
vP = 0 is shown; on bottom the control parameter hb„can
be seen. Starting with a noise level e = 0.001 [note that
the range of 6 and 8' is about (—vr, z)] we repeatedly
increase the noise after 2000 driving periods by 0.001. As
a result up to a level e = 0.003 the noise results mainly

An important characteristic of a chaos control method
is the typical length 7. of chaotic transients after the con-
trol has been activated before stabilization of the UPO
occurs. For randomly chosen initial conditions this tran-
sient time 7 has an exponential probability distribution

[2] p(f ) exp[ —(7/(f))] for large 7 The ch. aracteristic
length (7) is a function of the maximal allowed control
parameter which for the pendulum is bp = bb

With increasing bb the average time to achieve con-
trol P) decreases. We investigate the dependence of (7)
on bb in a numerical simulation of the global model
of the pendulum.

In Fig. 20 we plot (r) versus hb for the OGY
method (squares) and for the local-control method
(dots). Note that while for small bb (r) is nearly the
same for the two control methods, for larger bb the
values of (r) decreases faster for the local control than
for the original OGY control.

V. SUMMARY'

100 -.

I

10

OGY

~ local

0.06 0.08 0.1 0.12 0.14 0.16

6&r„ux

FIG. &O. The average time to achieve control (j) from
numerical experiment for a period one UPO of the pendulum
as a function of the maximal allo+red control perturbation
bb . Squares mark the results for the original OGY control,
circles for the local control using 100 control steps per period.

Using two experimental systems, a driven pendulum
and a driven bronze ribbon, we study the application
of feedback control of chaos based on the OGY-control
idea. As feedback control methods we use the original
OGY method and the local-control method, explored in
this paper. The original OGY method adjusts the con-
trol parameter once per driving period using knowledge
about the stable and unstable eigendirections of an UPO
in one Poincare section. The local-control method in con-
trast adjusts the control parameter as often as needed for
stabilization of the UPO using the singular value decom-
position of the linearization, A = D, P, 4t = T/N,
of the time local Poincare mappings P~ "+ ~

around an UPO z+. This approach has the advantage
that one can circumvent possible complex eigenvalues of
D~P and allows to stabilize UPO's and also aperiodic
chaotic orbits.

The main objective of our experiments is to com-
pute all control vectors needed for both feedback control
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schemes solely &om the analysis of time series. To do this
we apply the now vector field analysis of Hubler to the
pendulum to obtain a good global model for the system
and thus very easily all relevant control quantities. For
the bronze ribbon, on the other side, only linear fits in
embedding space near recurrent points prove to be ap-
propriate. Our analysis shows that both experimental
systems are highly unstable having UPO's with compar-
atively large unstable eigenvalues, ]A„]being around 10,
and in some Poincare sections the UPO s exhibit stretch-
ing rates p(z&, T) = exp (A,yy(z&, T)T) being of the or-
der of 100 or more.

These large effective Lyapunov exponents cause severe
problems regarding the determination of the lineariza-
tions A„=D, P of the global Poincare mapping of the
OGY control and also regarding the performance of the
original OGY-control itself.

Referring to the calculation of A„we first determine
A in each Poincare section Z &om direct fits near re-
current points. A plot of the corresponding unstable (sta-
ble) eigenvalues A„" (A", ) versus n shows critical regions
where A„" (A", ) fluctuate wildly violating the theoretical
requirement that A„"(A",) should be independent of n.
This plot reveals that for highly unstable systems it is
problematic to determine the linearized Poincare map-
pings exclusively for a single section Z„.As a remedy
we then calculate the A„asa product of the local A".
It turns out that the eigenvalues A„"of these A+ which
are independent of n by construction coincide with the
plateaus of the A"„determined &om the direct fit. Fur-
thermore, the analysis of the effective Lyapunov expo-
nents of the new A+ reveals that the problems in the
determination of A+ by a direct fit are caused by large
A,yy(z&, T) in the corresponding Poincare sections.

Thus having obtained good approximations of the
OGY-control vectors we apply the original OGY control
to both systems. Although we carefully avoid Poincare
sections with extremely high effective Lyapunov expo-
nents we cannot stabilize the experiments monitoring the
system in only one Poincare section and then adjusting
the control parameter only once per period. The effective
Lyapunov exponents of our Poincare sections are still too
large to allow for a stabilization of the system in the pres-
ence of measurement noise. This statement is confirmed
by the numerical experiment analyzing the effect of noise
on the control.

Concerning the control quantities for the local con-
trol method only the determination of the dependence

gp(n, n+1)w" = &' of the local Poincare mappings on the
Bp

control parameter proves to be difBcult using the shift
of the fixed point I and the local mappings A" deter-
mined from a fit. However, generally these quantities do
not exhibit complicated dependence on the state space
variables. For two-dimensional nonautonomous systems
with the state space coordinates (x, x, 8) of the equiva-
lent autonomous system the vector w" = (O, kb, t) can
already be a good guess. Even noisy control vectors suf-
fice to stabilize our experiments when the control is ap-
plied several times per period. For the bronze ribbon,
however, one has to introduce an additional control rule
to insure that the local control is not suspended when the
calculated control vectors become too large. %lith this
nearly continuous control we are then able to successfully
control the bronze ribbon.

Finally, in our work we exploit two different approaches
to calculate the control vectors necessary to obtain stabi-
lization of unstable trajectories in experiment. One is to
determine a global model of the dynamical system and
the other one is to utilize fits of the dynamics near re-
current points. For the first approach all control vectors
can be calculated straightforward even for an aperiodic
motion. The second approach needs much more efFort al-
ready for period-one orbits. These costs would increase
immensely when one intended to control an aperiodic or-
bit. From this point of view efforts taken to achieve a
global model describing the dynamics of the experiment
are worthwhile. It is recommendable to check the chance
of obtaining such a model before the alternative fit proce-
dure is exploited. Regardless how the control values are
determined our experiments show that for systems ex-
hibiting large effective Lyapunov exponents a quasicon-
tinuous approach to stabilize unstable trajectories proves
to be necessary.
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