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Quasienergy-band structure of a periodically driven system with translational
symmetry
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tA'e discuss the quasienergy-band structure for a periodically driven system with translational
symmetry. The parameter is so fixed that a bounded fully developed chaotic region is surrounded
by regular orbits. Due to the periodicity both in space and in time, eigenvalues of the Floquet
operator (quasienergies) form baud structures. Its two distinct dispersion relations make it possible
to divide each of the bands into chaotic and regular parts. Transitions between the two parts
occur at the points of avoided crossings. Some regular parts are combined into a regular band
with a diabatic transformation from the quasienergy basis to a coupled basis in which the avoided
crossings are approximately replaced by real crossings. After the regular bands are removed, the
nearest-neighbor-spacing statistics of the remaining bands are fitted by the Brody distribution.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

The statistical description of (quasi) energy levels is one
of the most popular and successful approaches in the
realm of quantum chaos [1—4]. In the present paper, our
main interest is quantal manifestation of classical chaos in
quasienergy-band structure. We will show some nearest-
neighbor-spacing statistics of the quasienergy bands for a
system driven by a periodic field with translational sym-
metry.

When discussing avoided crossings and level statistics
in the quasienergy spectrum it is necessary to first sep-
arate the symmetry classes of the spectrum. In order to
avoid this operation, we consider here a desymmetrized
version of the double resonance model studied in Ref. [5].
Namely, we consider the system with the Hamiltonian

crossings at which the two diferent dispersion relations
are interchanged. The existence of avoided crossings
in the present case means a kind of nonadiabatic efFect
anagolous to multiphoton resonance in quantum optics.
Thus each of the bands may be partially regular and
partially chaotic depending on Bloch wave number. It
is, therefore, impossible to separate the bands into reyu-
Itar bands and chaotic banCh over the whole range of wave
number. However, with the help of a transformation such
avoided crossings can be approximately replaced by real
crossings and the quasienergy bands are reconstructed
into either regular or chaotic transformed bands. The
regular band can be assigned to a classical regular tra-
jectory satisfying the condition

H(z, p; t) = ——[cos ut + 2 cos(2wt + P)]
2

x [cos z + 2 cos(2z + 1)].

The Hamiltonian has no such symmetry H(z + vr, p; t +
7r /sr) = H(z, p;t) nor H( z, p;t) = H(z,—p;t) that the
double resonance model has. The phase space of the sys-
tem (1) consists of the region of the chaotic and regular
motion (see Fig. 1), as it is generic for realistic systems
like a small junction or a superlattice [6]. In addition,
choosing the parameter P g 0, we can also consider the
case without T (time-reversal) invariance.

In the quantum-mechanical treatment the properties
of the system (1) are completely determined by the
quasienergy bands and the time-dependent Bloch func-
tions. Reflecting the two different (chaotic and regu-
lar) regions in phase space, the band structure of the
system (1) consists of two different dispersion relations,
and the Bloch functions show correspondingly two dif-
ferent characteristics. Furthermore, there exist avoided
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FIG. 1. Poincare section at t = nr (r = 27r/w, n =- 1, 2, . . .)
for (w, P) = (0.2, 0) in Eq. (1) with T iuvariance. Chaotic
region is created by a single initial point. Regular trajectories
satisfying Eq. (2) with l = +9, +10,+11 are also shown. The
position x is here defined mod 2m.
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for an integer l. For a fixed set of parameters (~,P) =
(0.2, 0), we can find such trajectories with ~l~ & 9 (see
Fig. 1). On the other hand, we cannnot find such a
correspondence for the chaotic bands, and therefore we
need a statistical description.

The quasienergy bands for the system (1) are con-
structed in Sec. II. We suggest a numerical method of
reconstructing the quasienergy bands into regular and
chaotic ones with the help of the diabatic transforma-
tion in Sec. III. We consider the nearest-neighbor-spacing
statistics of the chaotic bands in Sec. IV. The last section
is devoted to some concluding remarks.

g„"l(t) = —[cosset + —cos(2urt + P)]2h 2
2n+ 1+2k

x exp —ih )
2

li„" (t) = [cosset+ 2 cos(2ut+ P)]

x exp[—2ih(n+ 1+k)t],

where g' denotes the complex conjugate of g and

(n+ k)'5'
~p„ k

2

(5b)

(5c)

II. CONSTRUCTION OF QUASIENERGY
BANDS

Writing the wave function Q(z, t) in a generalized
Bloch form

a/2

@(z,t) = dk(pl l(z, t)e' ',
27I —i/2

(Sa)

we obtain the stroboscopic temporal evolution of the
Bloch function pl"l(z, t) [= rp~"l(z + 2vr, t)] with wave-

number-dependent Floquet operator Fl"l (to)

pl"l(z, t +mr) = [Fl"l(t )] ip
"l(lzt ), (Sb)

Cp+T
F~ l (to) = T exp —— Hl "l (z, t)dt (Sc)

Hl"l(z, t) = —
~

-i—+ k
~

h~( . 8
2 ( Bz )

—[c oust +z cos {2(et+ P)]
x [cos z + 2 cos(2z + 1)], (Sd)

) c~"l (t) exp[inz] exp[——eo„(k)t], (4)
27r

the amplitudes c (t) satisfy the following equation:

(&)den (pc) (z) (p) (Q)+ (k) (p)—Cn+i&n Cn —i&n —X + Cn+2~ndt
(k) I (k)~
n —2 n —2) (5a)

where m = 1, 2, . . ., r = 2m/ur, and T denotes the time-
ordering operator. We consider the case tp ——0 hereafter.
The dimensionless Planck's constant normalized by ma-
terial constants is here simply denoted by h [5].

We obtain the Floquet operator F(~) by solv-
ing the Schrodinger equation ih8&p~" l (z, t)/Bt

H" l( lzt)y~" ( lzt) with the Hamiltonian given by Eq.
(Sd). In the interaction picture

is a dispersion law of &ee motion. We integrate Eq.
(5) from t = 0 to t = 7 with the initial value
c~ l(0) = b„usi ngthe Adams method [7]. The prod-

ucts c„(r)exp[—iso (k)r/5]( n= 0, +1,+2, . . .) form

the mth column of matrix representation F(") of F(")
in the free rotor basis. We truncate F(") into a finite
L x L matrix. When the chaotic region on the Poincare
section is confined approximately in the range ~p~ & p,
(see Fig. 1), we set L at about twice as much as p, /5.

By solving the eigenvalue matrix equation Fl"lg~(k)
= exp[—ire~(k)/h]g~(k), the discrete quasienergies e~(k)
are obtained modulo Ru for a fixed wave number k.
It should be noted that Howland proved that the op-
erator Fool has a pure point spectrum [8]. Like en-

ergy bands of one-dimensional solids, it can be shown
that each quasienergy band e~(k) satisfies the symmetry
e~(k + 1) = e~(k). The T-invariant case has the addi-
tional syminetry e~( —k) = e~(k). Consequently, we have
only to consider the interval {I(k)

~
0 & k & I/2j in the

T-invariant case and (I(k) ~

—1/2 & k & I/2) otherwise.
The numerical calculation can be practically done at dis-
crete values of wave number k = k;. We divide the inter-
val I(k) into 70 equal intervals in our numerical experi-
ment. The neighboring quasienergies are "connected" in
such a way that the absolute value of the scalar prod-
uct of the corresponding eigenvectors ~g~(k;) g~(k;+i)~
takes the maximal value (nearly equal to unity). Thus
we obtain a quasienergy band e~(k) as a piecewise con-
tinuous function of wave number k with band index t

(= L& l & L)—The band i.ndex is given in increasing
order of the quantity (n), where

fi(g) n(k)dk

I(k)
n(k) = ) n/yz (k) /', (7)

and y~ (k) is the nth element of the eigenvector g~(k).
(The quantity (n)h can be regarded as a mean momen-
tum of the corresponding quasienergy band. ) In Fig. 2(a)
we show 22 bands with —11 & l & 10 for a fixed set of
the parameters (h, ur, P) = (0.2, 0.2, 0).

The three numerical factors (finite precision, finite
truncation of F&"l, and calculation at discrete values of k)
xnake it impossible to resolve avoided crossings with tiny
width. Thus the quasienergy bands nuxnerically obtained
include soxne spurious regular bands whose dispersion re-
lation is similar to that of free motion given by Eq. {6)
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crossing becomes a real crossing in some approximation.
In this basis we can reconstruct the band structure in
such a way that it consists of the transformed regular
and chaotic bands. To this end we extend the diabatic
transformation given by Takami [10].

In the vicinity of an avoided crossing, the Flo-
quet matrix is represented by a 2 x 2 matrix F(k)
exp[ —(ir/h)H(k)] whose elements are functions of Bloch
wave number k. Then we can transform from F(k) to
F'(k) = exp[ —(i~/h)H'(k)] in which diagonal elements
of a Hermitian matrix H'(k) cross at the avoided cross-
ing. Aside &om a phase factor e'~, this transforma-
tion can be uniquely de6ned under the following con-
ditions for matrix elements in the transformed represen-
tation: (i) diagonal elements eI(k) and e„'(k) of H'(k)
cross at k = ko where the de'erence between the up-
per and lower quasienergies has the smallest value 6 =
e~(k) —e„(k) & 0, and (ii) off-diagonal elements are con-
stant and equal to (b, /2)e'~ and (b, /2)e '~, where we

make the parameter P breaking T invariance coincide
with P in Eq. (1). The explicit form of this transforma-
tion is H'(k) = P(k)H(k)P(k) ~, or equivalently, F'(k)
= P(k)F(k)P(k), where

0.1 0.2 0.3 0.4 0.5
( (b, /2)e '~ e'„(k)

FIG. 2. (a) 22 quasienergy bands (—ll & l ( ].0) in units
of ~ with T invariance (h, u, P) = (0.2, 0.2, 0). (b) One of
the dispersion curves of free motion given by Eq. (6) mod
M with n = 10 and 5 = 0.2 (solid line). The spurious
regular band of the system (3) with band index l = 10 for

(h, u, P) = (0.2, 0.2, 0) is also plotted against wave number

(dots).

Be-'(4-e)
A

1+ S(k)

P(") =
I '(y —Pl

H(k) =
l

"(")
0 e„(k)) '

mod ~. The spurious regular band with band index )

corresponds to the regular orbit satisfying Eq. (2). One
of these bands with band index t = 10 are plotted against
wave number k in Fig. 2(b), which is to be compared with
the dispersion curve of free motion given by Eq. (6) with
n = 10 and (5,u) = (0.2, 0.2) (solid line).

III. DIABATIC TRANSFORMATION AND
RECONSTRUCTION OF QUASIENERGV

BANDS

S(k) = sgn(k —ko) 1—
c)(k) —e„(k)

(8c)

yI(k) = e '&[A/)(k) + Be'~g„(k)],
y„'(k) = e'&[ Be*~y((k) +—Ag„(k)].

The new basis vectors g&(k) and y'„(k) are represented
by a linear combination of the original quasienergy eigen-
vectors y~(k) and g (k),

Figure 3(a) depicts the 20 quasienergy bands after ex-
cluding the spurious regular bands. Two di8'erent disper-
sion relations make it possible to distinguish the chaotic
part &om the regular part. The latter reminds us of &ee-
motion-like dispersion law; on the other hand, the former
has weak dependence on wave number. The transitions
between the two parts in the quasienergy bands occur
at the points of avoided crossings. Thus the existence of
such avoided crossings makes it impossible to categorize
unambiguously the quasienergy bands into regular bands
and chaotic bands over the whole range of wave number
k. Qe can, however, 6nd a basis in which the avoided

i" (k)r &B' ~') &-(k)r'

I~I;(k)l'~ ~~' B2~ (lan'(k)l'~
~~

lx.', (k)l') &B' ~'& &lx.,(k)l')

(10)

As far as the transformation between the quasienergies
or the amplitude of the basis vectors is concerned, the

The new quasienergies and the squared absolute value of
each elements of the new basis vectors are connected to
the original ones as
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phase P has no infiuence, and therefore it can be set to
zero. Similarily, the parameter P breaking T invariance
shows itself in the relation between the old and new basis
vectors only.

When we apply the diabatic transformation, we have
to know the values of k0 and A. In order to obtain these
as precisely as possible, we interpolate the quasienergies
between two neighboring points k = k; and k = A:;+q

at which the quasienergies are numerically obtained as
shown in Fig. 3(b). We use the interpolation formula of
Everett [9].

The solid lines of Fig. 3(b) show the k dependence of
quasienergies near an avoided crossing, and Figs. 4(a)—
4(f) show the squared absolute value of the eigenvectors'
elements (g~;(k) (

and ~g„,(k) (2 versus the component in-
dex i (= L& i—( L, L = 19) for three different values
of k. Corresponding quasienergies are indicated by ar-
rows in Fig. 3(b). We can see that the characteristics of
eigenvectors alternate between the two bands, when the
wave number k goes through an avoided crossing. At an
avoided crossing, the difference between the two eigen-
vectors is not clear. The dotted lines of Fig. 3(b) are
the new quasienergies eI(k) and e'„(k) and Figs. 4(g) and
4(h) show ~yI,.(k)) and ~y'„;(k)

~

calculated using a lin-

ear combination of [yh(k) )
and )g„;(k))

shown in Figs.
4(c) and (d). Corresponding quasienergies are indicated
in Fig. 3(b). We can see clearly the same difference be-
tween the new basis vectors as that between the original
ones lying away &om the avoided crossing. The basis
vectors' elements shown in Fig. 4(h), like Figs. 4(b) and
4(f), distribute between i —p, jh and i p, /5, cor-
responding to the chaotic region shown in Fig. l. On
the other hand, those shown in Fig. 4(g), like Figs. 4(a)
and 4(e), distribute mainly in the narrower range around
a nonzero component i, corresponding to a regular or-
bit shown in Fig. 1. (In the deeper semiclassical region,
the difference is expected to be clearer. ) These charac-
teristics of the basis vectors are approximately invariant
along the diabatic quasienergy bands.

By applying the diabatic transformation to some
avoided crossings and by replacing the original quasiener-
gies by the new ones, we can combine some regular parts
of difFerent bands into one diabatic regular band. We can
construct these systematically one by one as follows. Af-
ter excluding the spurious regular bands, the bands with
the largest ~(n) ~

have the largest regular part. We find a
partner band which succeeds to the regular part across
an avoided crossing. If two or more partner bands exist,
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FIG. 3. Quasienergy bands in units of M with T invariance (h, ur, P) = (0.2, 0.2, 0). (a) 20 quasienergy bands s&(k) after
excluding spurious regular bands. (b) Quasienergies (solid lines) and transformed quasienergies (dashed line) given by Eq.
(10) in the vicinity of an avoided crossing. The region is enclosed by the small rectangle in (a). (c) 19 bands after excluding
one diabatic regular band shown in (d). (d) One diabatic regular band removed from the bands shown in (a). Note that the
quasienergies shown in (c) and (d) are partially transformed by the diabatic transformation.
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we choose the band that has the least value of A. Then
we apply the diabatic transformation to the two bands
over the interval in which the distance ~e~(k) —e„(k)~
grows monotonically as a function of ~k

—ko~. After that
we renumber the band indices of the whole bands. By
repeating the above scheme, we can construct a regular
band whose dispersion relation is similar to that of Bee
motion given by Eq. (6) mod he@ over the whole range
of k. Fig. 3(d) depicts such a band constructed from the
original bands shown in Fig. 3(a), and the rest of the
bands are shown in Fig. 3(c). So far we removed the
regular bands corresponding to the regular trajectories
satisfying Eq. (2) with ~&~

& l.O.

We can observe in Fig. 3(b) the next candidate of reg-

ular bands to be removed. Corresponding avoided cross-
ings are partially narrow, but partially wide. The wider
the avoided crossing, the harder the transformation. %e
quit the procedure of creating a regular band, unless all
the widths of the avoided crossings concerned are less
than the mean spacing given by [Ru/(the number of the
surviving bands)j. Thus we cannot exclude the next reg-
ular band from the bands shown in Fig. 3(b), which
remains intact as a broken regular band. We can find
one more broken regular band with a negative slope by a
careful observation. The two broken regular bands corre-
spond to the regular trajectories satisfying Eq. (2) with

In this sense a complete exclusion of regular bands is
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FIG. 4. (a)-(f) Squared absolute value X of elements of quasienergy eigenvectors. (g) and (h) That of the transformed basis
vectors calculated from the eigenvectors displayed in (c) and (d). Corresponding qnasienergies are indicated in Fig. 3(b).
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FIG. 5. Quasienergy bands in units of hu without T in-
variance (h, cu, P) = (0.2, 0.2, 1) after excluding all spurious
regular bands. (b)

impossible even with the diabatic transformation. This
difhculty comes from the absence of a definite "bound-
ary" between the chaotic and the regular bands in con-
trast to the Poincare section shown in Fig. 1. Never-
theless, the method of excluding regular bands suggested
here is believed to be the best way as a well-defined pro-
cedure. As we mentioned before, the minimum width of
the avoided crossing that can be resolved in our method
depends on the precision or other numerical factors. The
smaller avoided crossings are resolved with a higher de-
gree of accuracy, the more diabatic transformations are
required. But the final band structure is independent of
a minute difference of precision, if the precision is good
enough.

The case without T invariance (h, u, P) = (0.2, 0.2, 1)
is also considered. The Poincare section seems almost
the same as Fig. 1. The final band structure after the
exclusion of the regular bands is shown in Fig. 5.

IV. NEAREST-NEIGHBOR-SPACING
STATISTICS OF QUASIENERGY BANDS

The final band structure shown in Fig. 3(c) and Fig. 5
contains two broken regular bands, so that the distribu-
tion of band spacings P(s) is expected to be intermediate
between Poisson and Wigner. One of the interpolations
is given by the Brody distribution [11] P~(s, q) for the
case with T invariance and its extension P~(s, q) for the
case without one, where

0.8.

—0.6.
N

M
0.4

0.2

0.5 1.5 2.5 3

FIG. 6. Integrated distribution functions I(S) of the band
spacing S, which is normalized by the value of ~ divided by
the number of the surviving bands. The best 6t of the distri-
bution Eq. (11) is also shown. (a) (5, u, P) = (0.2, 0.2, 0) with
T invariance. (b) (0.2,0.2,1) without one. The histograms (a)
and (b) correspond to Fig. 3(c) and Fig. 5, respectively.

V. CONCLUDING REMARKS

of Eq. (11). The fitting parameter is given by q = 0.776
for Fig. 6(a) and q = 0.487 for 6(b). At the stage corre-
sponding to Fig. 3(a), the spacing distribution is fitted
by the Brody distribution with q = 0.687 for the case
with T invariance and q = 0.428 for the case without
one. Apparently the distribution approaches the Wigner
surmise, as the procedure excluding the regular bands
goes ahead. The deviation &om the Wigner distribution
(q = 1) is expected to be caused by the existence of the
broken regular bands.

Pgg(s, q) = Avs~ exp[ Bvs +~]—(1la)

Pgy(s, q) = Aqs ~exp[ Hqs +v]. —(11b)

The constants Aq, Bq, Aq, and Bq are determined by the
normalization (1) = 1 and the mean spacing (s) = 1,
and these are dependent on the fitting parameter q.
We show the integrated distribution of band spacings
I(s) = f P(t)dt in Fig. 6(a) for the case with T in-
variance and (b) without one, in addition to the best fit

VVe have proposed a transformation which allows us to
separate quasienergy bands of the model into bands as-
sociated only with the classical regular trajectories and
bands associated only with the chaotic trajectories. This
is not always trivial, since the original band may be par-
tially regular and partially chaotic. The separation of the
spectrum is then used to obtain level spacing statistics
of the transformed bands associated with the classical
chaotic trajectories. The nearest-neighbor-spacing dis-
tribution is found to be in a good agreement with the
Brody distribution.
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We note that, besides the Brody distribution, the
Berry-Robnik distribution [12) might be relevant to the
problem of interest. The latter has the form

Pr(s, p) = p e 'erfc p + 2pp+ —p s)2 2

~-2 2x exp —ps ——p s

and its extension for the case without T invariance is
given by

2
P2(s, p) = pp(2 —ps)e ~'erfc ps

t', S, 32, ,+[p + Pp—s+ ,P s-
rr 7r

4 22x exp —ps ——p s
7t

(12b)

These are derived from the assumption that a sequence
of regular levels and that of chaotic levels are statistically
independent of each other, and the parameter p = 1 —p is
the relative volume of regular region in the phase space.
A remarkable character of these distributions is a nonva-
nishing density at 0 spacing Pz (0, p) = Pz(0, p) = p(2 —p)
in contrast to P~(0, q) = P~(0, q) = 0. In our case al-
most all the crossing between the regular and the chaotic
bands is avoided, so that the mixed sequence of levels
should obey a Brody-type distrubution. However, after
the reconstructing process which separates the bands into
regular and chaotic ones, the nearest-neighbor-spacing
distribution of the mixture of the regular and chaotic dia-
batic bands is expected to be the Berry-Robnik type. The
separation of quasienergy bands justifies the assumption
of statistical independence. This can be confirmed with
much more time- and space-consuming numerical works
in a deeper semiclassical limit. Quite recently, Prosen
and Robnik showed numerically that a transition from
the Brody to Berry-Robnik distribution occurs as a very
deep semiclassical limit is taken, and that the assumption
of statistical independence required in the Berry-Robnik
theory is satisfied in this limit [13]. We note that the
separation of the spectrum discussed in the present pa-
per satis6es automatically the assumption even in a less
semiclassical limit.

We would also like to note one advantage of our model.
Because of translational symmetry, we can always con-
sider the ensemble of wave-number-dependent Hamilto-
nians like H("l in (3d) corresponding to a classical Hamil-
tonian II in (1) at a fixed value of external parameter.
Conventionally (without translational symmetry) some
sets of samples for different values of the parameter (e.gsI

in our case) are used for statistics. But the classical
quantity like the I yapunov exponent or the relative regu-
lar volume p varies usually during the variation of param-
eter. We note that the case with translational symmetry
enables us to get statistics by considering wave-number-
dependent Hamiltonian or Floquet matrices for different
values of wave number but for a fixed value of external
parameter, as considered in the present paper.

In the end w'e note that the problem considered here is
related to the problem of the quantum counterpart of the
difFusion process in the chaotic region. If it were not for
the coupling between chaotic and regular states, an ini-
tial wave packet located in the chaotic region diffusively
collapses as (x ) oc t in the time regime t (( t„where a
characteristic time t, is given by the inverse of the mean
band spacing of the final band structure [e.g. , Fig. 3(c)
or Fig. 5] times Planck's constant. But the existence of
the coupling gives an appreciable contribution of ballistic
widening of the wave packet as (x2) oc t . Thus it is very
useful to obtain the final band structure by use of our
method in order to discuss the quantal counterpart of
diffusion in the coordinate space. The detail of dynami-
cal aspects and an experimental realization are described
in Ref. [5]. In this sense the present paper and Ref. [5]
are complementary to each other.
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