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Floquet analysis of quantum resonance in a driven nonlinear system
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The characteristics of quantum resonance induced in a nonlinear system driven by a periodic force

are studied based on the Floquet formalism through theoretical analysis and numerical computation
of quasienergies and quasienergy states. Particular attention is given to those characteristics that
separate quantum resonance from the corresponding classical resonance, and their implication to the

problem of resonance overlap is considered. As an illustration, numerical data are presented for a
particle in an infinite square well potential driven by a sinusoidal force.

PACS number(s): 05.45.+b, 47.52.+j, 03.65.Sq

I. INTRODUCTION

The concept of resonance plays an important role in
one's understanding of the classical chaotic dynamics of
a driven nonlinear system. In particular, it is well known
that the overlap between resonance zones induced in the
system by the driving force can serve as a criterion for the
onset of classical chaos [1,2]. Recent investigations [3—5]
have indicated that the quantum dynamics of a nonlin-
ear system can also be described in a coherent fashion
in terms of resonance. Study of quantum resonance and
the role it plays in a quantized nonlinear system should
therefore shed light on the difEcult issue of the quantum-
classical correspondence or noncorrespondence in the dy-
namics of nonintegrable systems.

Resonance arises &om a local coupling of energy states.
The behavior of all levels coupled to form a resonance
zone collectively determines the characteristics of that
resonance, which in turn determines the quantum dy-
namical behavior of the system. When considering a sys-
tem driven by a periodic force, study of the structure of
the quasienergies and quasienergy states [6—9] bears im-

portance because all information on the characteristics
of quantum resonance is contained in them.

The primary purpose of this work is to investigate the
quantum dynamics of a nonlinear system driven by a pe-
riodic force based on the Floquet formalism [6—ll]. Par-
ticular emphasis is given to the resonances, their forma-

tion process and characteristics, induced in the system
by the driving force, as manifested in the quasienergies
and in the probability distribution of quasienergy states.
We are particularly interested in the characteristics of
quantum resonance that difFer &om those of the corre-
sponding classical resonance, because they form the basis
for our study of the quantum-classical correspondence in
relation to the well-known phenomenon of the quantum
suppression of classical chaos [12—16].

For our description of quasienergy states, we adopt the
phase-space representation which has found much use re-
cently in studies of classically chaotic systems [10,11,17—
27]. Contour plots of the quantum phase-space distri-
bution function are the natural quantum analog to the
classical Poincare map and thus are capable of clearly ex-

hibiting the structure of quantum resonance zones that
are formed in the system. We, in particular, choose to
use contour plots of the Husimi distribution function [28,
29] which is obtained by smoothing the Wigner distribu-
tion function [30] with a Gaussian wave packet. Due to
Gaussian smoothing, the Husimi plots are generally sim-

pler in structure than the Wigner plots and yet contain
all physically meaningful information that the Wigner
plots have, and thus are best suited to study classically
chaotic systems having complex phase-space structures.

Our analysis is based largely upon numerical data
which are obtained from computations performed on a

specific system; namely, a particle in an in6nite square
well potential driven by a sinusoidal force. Investiga-
tions on both the classical and quantum dynamics of
this system were already reported in the past [5,31—33].
The system has perhaps the simplest resonance struc-
ture among driven nonlinear systems, and an analytic
formula exists [5] that gives an approximate estimate of
the quasienergies of this system which can be used to
help interpret our numerical data. Our numerical com-

putation of the quasienergies and quasienergy states is

performed as follows. We 6rst obtain the matrix element

U„ofthe time evolution operator U by numerically

integrating the Schrodinger equation kom time t = 0 to
t = T (T is the period of the external force) subject to the
initial condition g(t = 0) = u and computing the tran-
sition amplitude (u„~Q(t = T)), where u„refers to the
nth eigenstate of the unperturbed Hamiltonian. Once
all U„'sare obtained, the quasienergies c„and corre-

sponding quasienergy states g„aregiven essentially as
eigenvalues and eigenstates of U according to the equa-

tion

The system parameters we choose for our computation
are h = 1, m (mass of the particle) = 1, 2a (width of
the potential mell) = 6, and ~ (frequency of the exter-
nal farce) = 5. For the computation of Husimi plots,
we choose to smooth the Wigner distribution function

with a minimum uncertainty wave packet with the coarse-

graining parameter [ll, 23, 29] of 1.56. This parameter

1063-651X/94/50(2)/902(8)/$06. 00 50 902 Qc1994 The American Physical Society



50 FLOQUET ANALYSIS OF QUANTUM RESONANCE IN A. . . 903

determines the relative resolution of the Husimi plot in q
vs p space.

In Secs. II and III, we carry out analysis and computa-
tion of the quasienergy states and quasienergies, respec-
tively. Information on the characteristics of the quantum
resonance obtained based on the analysis and computa-
tion is then used in Sec. IV to discuss the resonance over-
lap in quantum systems in relation to the phenomenon
of the quantum suppression of classical chaos.

1, m = 1, a = 3, and u = 5, while several difFerent
values of Fp are used. The classical phase-space map
of the system is shown in Figs. 1(a) and 1(b) for the
cases Fp ——2 and Fp ——6, respectively. The period-
1 primary resonance centered at the elliptic fixed point,
q = —a, p +2amur/s, is clearly visible. The hyperbolic
fixed point is located on the other side of the well, i.e.,
at q = a, p +2am~/vr. Quantum mechanically, the
nth eigenstate u„ofthe unperturbed Hamiltonian Hp is
given by

II. QUASIENERGY STATES AND
THE FORMATION OF QUANTUM RESONANCE

1 . nxu„= sin (q + a)a .2a (6)

= uN cos 8 + u~+y sin 8,

y~+y ——uN+] cos 8 —u~ sin 8,
(2)

(3)

where e is the parameter that measures the strength of
the coupling. As a result of the coupling, the two states
u~ and uN+ q are redistributed slightly in phase space.
If all other levels are far &om resonance, we have, in the
limit Fp

1
XN (uN+1 + uN)

2
(4)

1
XN+1 (uN+1 uN)

2
(5)

Let us consider a nonlinear system driven by a sinu-
soidal force so that the total Hamiltonian for the system
is H = Hp + qFp cos ut. We wish to study changes that
occur in the quasienergy states as the amplitude Fp of
the force is increased. Let u„and g„denote, respec-
tively, the nth eigenstate of the unperturbed Hamilto-
nian Hp and the corresponding quasienergy state. At an
extremely low value of Fp, one may neglect the coupling
between all states except for the two, say uN and u~+ q,
that most closely meet the resonance condition. The two
quasienergy states that result &om the coupling of u~
and u~+q can be written as

with energy E„=n27r2h /(Sma2). The two levels which
come closest to resonance are ups and u~9, when the pa-
rameter values listed above are chosen. In Fig. 2 we show
contour plots of the Husimi distribution function for the
four quasienergy states yy7 through g2p for the case of a
weak force, Fp = 0.04. The quasienergy states are com-
puted numerically according to the method described in
the previous section. It can be seen that the quasienergy
states Xqr and X2o are essentially the same as the unper-
turbed eigenstates uqr and u2o, but Xjs has a probabil-
ity distribution shifted slightly toward the elliptic fixed
point compared with the probability distribution of ups,
and Xqs has it shifted slightly toward the hyperbolic fixed
point compared with the probability distribution of uq9 ~

This is consistent with Eqs. (2) and (3): with u„defined
as in Eq. (6) (to the immediate right of the left wall,
q = —a, u„is positive for all n), when uN and uN+q
are added to (subtracted Rom) each other, one obtains
a higher probability density in the region near the left

16%/3—
(&)

Thus, the quasienergy states y~ and y~+& are symmetric
and antisymmetric combinations of uN and u~+ q .

In realistic situations, usually more than two levels are
coupled and quasienergy states are given by combina-
tions of all coupled states. Some general treatment of
these quasienergy states is still possible with the help of
appropriate approximations. For example the dynamics
in a given resonance zone can be approximated by that
subject to a pendulum potential, if e6'ects of other reso-
nances are neglected, i.e., if the single resonance approx-
imation is made. The quasienergy states of the system
should then resemble eigenstates of the Mathieu equa-
tion [5]. Detailed discussion is of course more complex
than that for the two-level case. Despite the complexity,
however, the probability distribution of the quasienergy
states should contain information on the coupling be-
tween difFerent energy levels and thus on the structure of
the resonance induced by the coupling.

As an example, let us consider a particle of mass m
in a symmetric infinite square well potential of width 2a
driven by a sinusoidal force F = Fp cos cot. The data
presented in this work are obtained with the parameter

-16%/3 ——
s

-16%/3 '"

-3

FIG. 1. Classical phase-space map of a particle of mass
m in a symmetric in6nite square well potential of width 2a
driven by a sinusoidal force F = Fo cos cut. The parameters
are chosen to be m = 1, 2a = 6, cu = 5. The amplitude of the
driving force is Fo = 2 for (a) and Fp = 6 for (b).
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tude of the driving force is I"p ——0.04, and 5 = 1

Further insight into the characteristics of localized and
extended quasienergy states is provided by Fig. 4 in
which the coefBcients 6

or each g (n = 14—23) for our square well system for
e 0

—— . We recall that, depending on whether
b„and6 h+q have t"e same sign or opposite signs, the
pro ability density is enhanced near the l ft h
o e we w en u and u +q are superposed. For the lo-

calized state yqs, we see that ll th Ka e coe clients bqs, ~ are

are superposed in such a way that the prob O'I'ty den-
si y is en anced near the left wall and red d h

rig wa, resulting in a strongly localized distribution
centered at the elliptic fixed point. For extended states,
on t e ot er hand, difFerent pairs of eigenstates are su-

perposed in such a way that the probability density is en-

hance in i erent regions of phase spac de correspon ing

bg5 an
o he separatrix. For example for thor gq5 e coe cients

an qq +q have the same sign for m = 13 23

(nght) wall and a lower probabilty densit th
~ e ~~ wall. This slight redistribution of the rob b li

'
y can e regarded as a first step toward th f

resonance. At this point, however, there is no evi-
dence in the lot thate p o at suggests that resonance is formed.
A clear indication of th f"e formation of resonance can be
found in Fig. 3, where the Husimi plots for yq4 through

+23 are presented at a higher value of th f li d

0
—— . gain, the quasienergy states plotted are com-

pu e numerically according to the method described in
the previous section. All quasienergy states l tt d

e their probabiljty densities redistributed with respect

means that all the statesates uq4 through u23 are coupled b
mal force. Some quasienergy states such as y&8

and yqq are peaked near the elliptic fixed oint d h
l

s a es such ast t h
g y ocalszed distributions. Some thme o er quascenergy

gg4, yg5) g22, and yg3 are peaked at a
point closer to the hyperbolic fixed point and have more

elocalized distributions. Clearl th t
groun state of the Mathieu equation while states with
more delocalized distributions, which we call "extended"
states, correspond to higher-lying excited states [34]. In
other words, localized quasienergy states have the char-
acteristics of t e
tic fixed

o e classical periodic orbits ne th ll'ar e e cp-

s ondtot
e point, while extended quasiener statrgy s a es corre-

spon o e classical behavior near the se t '

egree o the quantum-classical correspondence is thus
seen to e strong at I"0 ——2. It is clear that, in order for
quantum resonance to be form d d f h
classical co

e an or t e quantum-
c assical correspondence to be strong the ext l fe ex erna orce
nee s o e su8iciently strong to couple more than a fore an a ew

gy eve s. Only when the redistribution of th b-o e pro-

of levels can
i y ensity occurs among a suKcientl l

o evels can the quasienergy states have the localized
or extended distributions and show th how e c aracteristics of
resonance similar to th ose of the classical resonance. We
emphasize that the coexistence of th l li d d
en e quasienergy states is a strong indication for the

formation of quantum resonance.
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FIG. 3. Husimiusimi plots of the quasienergy states yq4

through +23 for the same system as in Pig. 1. The ampli-

tude of the driving force is Fp = 2, and 5 = 1 0
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and 24 but opposite signs for m = 16, 17, and 18, leading
to an enhancement of the probability density along the
separatrix of the resonance.

Another set of data that shows distinction between the
localized and extended quasienergy states is provided in
Fig. 5, where the Husimi plots of the localized state yq8
and the extended state yq4 are shown at four different
values of Ep, Ep ——1, 2, 3, and 4. There is very little
change in yq8 as Ep is increased from Ep ——1 to Ep = 4,
whereas the extended state yq4 is seen to vary rather
sensitively with respect to Ep. This is because A&4 lies
largely outside the resonance zone and beyond the in-
fiuence of the driving force at Ep ——1, but occupies the
separatrix region of the resonance at a higher value of

In s»mmary of this section, we have seen that the for-
mation of quantum resonance is accomplished when the
external force is strong enough to couple a suKciently
large number of energy levels into localized and extended
quasienergy states. Localized and extended quasienergy
states are the quantum analog of periodic orbits near the
elliptic fixed point and the separatrix, respectively, of the
classical phase-space map.
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FIG. 5. Husimi plots of yqs and Xq4 shown in (a) and (b),
respectively, at four different force amplitudes, Fo ——1, 2, 3,
and 4, for the same system as in Fig. 1. h = 1.
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FIG. 4. The coefficients b = (g„!u ) for the qnasi-
energy states y„ofFig. 3.

In this section we show how one can obtain infor-
mation about the characteristics of quantum resonance
through investigation of quasienergies. Before consid-
ering the quasienergy, it is worthwhile to look at the
quantity (y„!Ho!g„),the expectation value of the unper-
turbed Hamiltonian. Equations (2) and (3) indicate that
the coupling by the external force pulls the expectation
value of the two states yN and y~+q somewhat closer to
each other. Furthermore, Eqs. (4) and (5) suggest that,
in the strong-coupling limit, quasienergy states in the
same resonance zone have nearly the same expectation
value (y„!Ho!y„).Hence, the plot of (y„!Ho!g„)vs n
should give a rough estimate of the number of levels cou-
pled in a resonance zone. As an illustration, we present in
Fig. 6 the plot of (p ) = /2m(y !Ho!y ) for our system
of the driven particle in an infinite square well potential
for different values of the force amplitude Ep. Resonance
zones are represented by the fIat regions in each curve.
The Bat region centered at n 18 in each curve is the
period-1 primary resonance. One can clearly see that the
width of the resonance increases with Ep. There also is
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square well potential. An estimate of quasienergies can
be obtained using the approximate formula given by Lin
and Reichl [5],

1 h~2
o. I~)~Oo — + ~~~

4 " 40o

where Oo ——n h/(8ma ), o.~ ~ ) is the jth eigenstate of
the Mathieu equation

ldU(8) n
+ —U (8) + p cos(28) U~ (8) = 0,

0
16m/3

&Pn&

0

L

16Itl3 ~

~Pn~I

l I I I I
and p = 8aEp/(m250o). The subscript j(n) in n~(„)indi-
cates that once n is given j is determined. For the system
being considered, for which gals is the ground state of the
Mathieu equation, n runs in the order 18, 19, 17, 20, . . .,
corresponding to j = 0, 1,2, 3, . . .. The quasi&equency
Au„is obtained immediately from Eqs. (7) and (8) as

0 32
I I I I I0

0 n 32
Oo-

+ .~~(-) —~~'(--~) 1 (10)

FIG. 6. (p ) = /2m(y ~Hp~g„) vs n at six different force
amplitudes, I"0 ——1, 2, 3, 4, 5, and 6, for the same system as
in Fig. 1. h = 1.

an indication of the presence of the period-3 primary res-
onance zone in the neighborhood of n 6 at high values
of I'p (Ep & 4). In principle, even higher-period primary
resonances can be formed centered at lower values of n,
but the formation of these resonances is restricted by the
discrete nature of the energy levels, i.e., by the fact that
there are only a limited number of levels available to form
these resonances. High-order resonances are also difficult
to form. As described in the previous section, resonance
is formed when the external force is large enough to cou-
ple a sufficiently large number of levels. The higher the
order of the resonance is, the greater is the magnitude
of the external force needed to couple a given number
of levels. Furthermore, high-order resonances often ex-
ist in the neighborhood of lower-order resonances, and
energy levels that are coupled to form a lower-order reso-
nance are not available to a higher-order resonance. Thus
the number of levels that can contribute to form high-
order resonances is limited. One can therefore conclude
that the degree of the quantum-classical correspondence
is generally weaker for higher-period higher-order reso-
nances, i.e., the role played by higher-period higher-order
resonances is weaker in a quantum system than in the
corresponding classcial system.

Let us turn our attention now to the quasienergy. One
quantity that can conveniently describe the structure of
the quasienergy is the "quasi&equency" de6ned as

Equations (8) and (10) are valid under the single res-
onance approximation, i.e. , these equations are valid
when efFects of other resonances are neglected. While
Eqs. (8) and (10) yield an approximate evaluation of the
quasienergies and quasi&equencies for our system, an ac-
curate computation of quasienergies and quasi&equencies
can be performed using the numerical method described
in Sec. I. Results of such a computation are presented in
Fig. 7 in which the quasi&equencies computed at Fo ——2
are represented by circles. In the absence of the external
force, the quasi&equency for the present system increases
linearly with respect to n as indicated by the dashed line
in Fig. 7. The difFerence between the circles and the
dashed line may be considered to represent efFects of the
external force.

The physical signi6cance of Fig. 7 can best be seen
by considering the system in the classical limit. In the
classical limit, the Mathieu equation is replaced by the
pendulum equation

1 (d8&' Ct—pcos 28 = —,
2 k«) 2'

and Eq. (10) takes the form

n, 6n —1

where e„is the quasienergy associated with the nth
quasienergy state y . In order to help understand the
physical significance of the quasienergy and quasi&e-
quency, we calculate the quasienergies and quasi&equen-
cies for our system of a driven particle in an infinite

2 I l i I

10 n

FIG. 7. The quasifrequency Au„vs n at the force ampli-
tude I"o ——2 for the same system as in Fig. 1. The circles are
the quasifrequencies computed numerically and the dashed
line represents the quasif'requency in the limit I'0 ——O. h, = 1.
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b,~(I) = ~+ O(2[I —Io[), (12)

This equation indicates that the discrete nature of the
quasienergy levels keeps the quasi&equency A~„&om
becoming equal to the &equency of the external force.
It nevertheless is still possible to estimate the size of
the quantum resonance zone from Fig. 7, because
the resonance zone can reasonably be considered to be
bounded by two extended quasienergy states for which
the quasi&equency takes on a value closest to the fre-

quency of the driving force. From Fig. 7 and also
&om Fig. 3 we see immediately that the two extended
quasienergy states are yi5 and y2s (or possibly y22),
yielding the width of the quantuxn resonance zone to be

I I I I I I I I I

9

I I I I I I I I I2
10 30

FIG. 8. The classical quasifrequency Au vs the action
variable I at I"0 ——2 for the same system as in Fig. 1. The
solid curves are the classical quasi&equencies and the dashed
line represents the classical quasi&equency in the limit Fo = 0.

where I denotes the classical action variable, Ip is the
action corresponding to the period-1 primary resonance
given by Io ——noh, no = 4ma2ur/(m2h) = 18.2, and
O(2~I —Io[) is the &equency of the motion of the classical
particle of action (2[I—Io[) moving in the pendulum po-
tential. In Fig. 8 we show a plot of Au as a function of
I calculated from Eq. (12) for the case Ep = 2. We note
that, at two values of I (I = 12.2 and 24.2) correspond-
ing to the two values of xnomentum at the separatrix, the
quasi&equency becomes equal to the f'requency (~ = 5)
of the driving force. This can be understood by noting
that the period of the classical motion at the separatrix
is infinitely long and thus, taking 0 ~ 0 in Eq. (12), Bur

becomes equal to ~. Clearly, the width of the resonance
zone in the classical limit, which can be defined as the
size of the action region bounded by the separatrix, is
given by 24.2—12.2=12 at I'p ——2.

Let us now go back to Fig. 7. We first note the similar-

ity in shape of the Ace„vsn curve in Fig. 7 and the A~
vs I curve in Fig. 8, which can be regarded as a strong
indication for the existence of the period-1 primary res-
onance zone in the quantuxn system. We note, however,
that the quantum quasifrequency A~„does not become
quite equal to the &equency of the driving force even for
the extended quasienergy states. One can see this also
&om the approximate formula, Eq. (10), according to
which

Op
EQJ~ (J — o,j(~) o.j& (~ y)

23—15 8. This width of the quantum resonance zone is
smaller than the width ( 12) of the corresponding clas-
sical resonance zone estimated above. The smaller width
of the quantum resonance coxnpared with that of the cor-
responding classical resonance has important bearings on
the issue of "quantum chaos. " The smaller the width of
each resonance zone is, the less likely two neighboring res-
onance zones are to overlap. The quantum suppression
of classical chaos is thus suggested.

In summary, we have shown that the Au„vs n curve
ofFers a convenient means of studying the characteristics
of quantum resonance. It shows that quantum resonance
has a similar structure to the corresponding classical reso-
nance although the quantum quasi&equency does not be-
come quite equal to the &equency of the driving force. It
shows also that, at least for our xnodel of the driven par-
ticle in a square well potential, the width of the quantum
resonance is sxnaller than that of the corresponding clas-
sical resonance. We have also shown in this section that
high-period, high-order resonances play a weaker role in
quantum systems than in the corresponding classical sys-
tems.

IV. QUANTUM SUPPRESSION
OF CLASSICAL CHAOS

It is well known that the overlap between two neigh-
boring resonances for a classical system signals the onset
of classical chaos [1,2]. Since the overlap occurs between
periodic orbits near the separatrixes of two resonances,
classical chaos can be regarded as being initiated in the
separatrix region of the resonances. We have seen in
Sec. II that the quantuxn analog of periodic orbits near
the separatrix is the quasienergy states having extended
probability distributions. Thus the resonance overlap in
a quantum system can be seen as a coupling between ex-
tended quasienergy states belonging to two neighboring
quantum resonances.

So far in our study of quasienergy states and quasiener-

gies, we have seen some indications that the overlap
between quantum resonances would not occur as easily
as that between classical resonances. According to the
renormalization theory [2, 35], in a classical system the
resonance overlap is initiated by high-period high-order
resonances. In a quantum system, however, high-period
high-order resonances cannot easily be formed, because
only a limited number of levels are available to form the
resonances and, even if there are a sufBcient number of
levels, a strong external force is required to couple them.
Furthermore, our computation on the model of the square
well system suggests that the width of the quantum res-
onance is smaller than that of the classical resonance of
the same period and order at the same value of the force
amplitude. Thus the condition for the overlap of two
neighboring resonances seems to be more diKcult to be
met in a quantum system than in the corresponding clas-
sical system.

The question still remains, however, as to the behavior
of a quantum systexn at a very high value of the force
amplitude, say at Ep ——6, at which a significant portion
of the classical phase space is occupied by the chaotic
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FIG. 9. Husimi plots of the quasienergy
states yqq through y25 for the same system
as in Fig. 1. The amplitude of the driving
force is Fo ——6, and h = 1.
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sea as shown in Fig. 1(b). A partial answer to this
question can be found in Fig. 9 where the Husimi plots
of the quasienergy states gqq through y25 at I"0 ——6 for
the driven particle in an infinite square well potential
are shown. One observes that all quasienergy states still
have some distinct peaks at Fo ——6 and thus that no
quasienergy state is truly delocalized, i.e. there is no
trace in this plot that suggests any chaotic behavior. This
is, of course, consistent with earlier observations of the
quantum suppression of classical chaos [12—16].

Further data to support the above observation are
given in Figs. 10(a) and 10(b) in which the quantum
Poincare map of the Husimi distribution function

~(o@

I
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H(q, p) = —) H(q, p, nT) (14)
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I
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is shown at I"0 ——6 with N = 110 for our system of the
driven particle in an infinite square well potential. Fig-
ures 10(a) and 10(b) were obtained with the initial states
whose Husimi plots are given by Figs. 10(c) and 10(d),
respectively. Fig. 10(c) represents a wave packet local-
ized in the neighborhood of the elliptic fixed point of the

FIG. 10. Quantum Poincare maps, (a) and (b), of the
Husimi distribution function for the same system as in Fig. l.
The amplitude of the driving force is I"0 ——6, and 5 = 1. The
initial wave packet is assumed to be centered near the elhptic
fixed point of the primary resonance for (a) and the hyperbolic
fixed point of the primary resonance for (b). Husiml plots of
the initial wave packet for (a) and (b) are shown in (c) and

(d), respectively.
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period-1 primary resonance zone, while Fig. 10(d) is a
wave packet localized near the hyperbolic fixed point of
the same resonance zone. One sees clearly &om Fig. 10
that in the former case the probability tends to remain
localized near the initial distribution, while in the latter
there is some spreading of the probability distribution
over states not initially populated. It should be noted
that in the latter case the probability density near the
elliptic fixed point of the resonance zone remains small,
indicating clearly that the initial wave packet is affected
by the presence of the resonance zone. More importantly,
in either case we do not see any significant penetration
of the probability density into the neighboring resonance
zone, in particular into the period-3 primary resonance
zone which is centered at p +3.2 or n 6.1. Fur-

thermore, the quantum Poincare maps in both cases ex-
hibit the two-peak structure, suggesting strongly that
the nature of the quantum motion is regular rather than
chaotic. A strong quantum-classical noncorrespondence
is evident in case the initial wave packet is given by Fig.
10(d), because the center of this initial wave packet is
located within the classically chaotic region. All our
observations are thus consistent with the notion of the
quantiim suppression of classical chaos.
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