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We show that a bounded, isolated quantum system of many particles in a specific initial state will ap-

proach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey
Berry's conjecture. Berry's conjecture is expected to hold only if the corresponding classical system is

chaotic, and essentially states that the energy eigenfunctions behave as if they were Gaussian random
variables. We review the existing evidence, and show that previously neglected effects substantially

strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of
a many-body system which is known to be classically chaotic, and show that an energy eigenstate which

obeys Berry s conjecture predicts a Maxwell-Boltzmann, Bose-Einstein, or Fermi-Dirac distribution for
the momentum of each constituent particle, depending on whether the wave functions are taken to be
nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the par-
ticles. We call this phenomenon eigenstate thermalization. We show that a generic initial state will ap-
proach thermal equilibrium at least as fast as 0(A/h)t ', where 6 is the uncertainty in the total energy
of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averag-

ing over an ensemble of initial states is needed. We argue that these results constitute a sound founda-

tion for quantum statistical mechanics.

PACS number{s): 05.45.+b, 05.30.—d

I. IIV j.aODUCTION

Take some helium atoms, put them in one corner of a
well insulated box, and let them go. Wait a while, then
punch a small hole in the side of the box. As the atoms
emerge, one by one, measure their momenta. Make a his-
togram, plotting the fraction of atoms with magnitude of
momentum between p and p +dp.

Every physicist knows what the result of this experi-
ment will be. The histogram will be very well approxi-
mated by the Maxwell-Boltzmann distribution

f (p T) (2mrnkT)
—3zze P'2~aT-

multiplied by 4rrFp 2dp, where F =(n igrrtkT)'i2p is a fiux
factor. Here m is the mass of a helium atom, k is
Boltzmann's constant, and T is the "temperature, " a
number which will depend on how the atoms were origi-
nally put into the corner of the box, how much space
they occupied, and other details of the initial conditions.
The challenge is to derive this result from first principles.

The biggest problem with a theoretical analysis of this
particular experiment is the need to treat the hole in the
box in a reasonable way. It is much easier to study the
following thought experiment instead. Suppose, after
preparing the system in its initial state, we are able to
measure the momentum of one atom at a specific (but ar-
bitrary) time t. Suppose further that, after having made
this measurement, we can empty out the box, and then
start it ol' again with the system in exactly the same ini-
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tial state. We now do this repeatedly, each time measur-
ing the momentum of one atom after exactly the same
amount of time t has passed. We make a histogram of
the results.

Let us analyze this experiment, beginning with classi-
cal mechanics as the underlying theory. We take the
Hamiltonian for N atoms to be

N p2
H= g ++V(ix; —x i),

k=1 i (j
where we take V(r) to be a hard-sphere potential:

+00 for r (2a
0 f ror )2a.

(1.2)

(1.3)

%e assume perfectly rejecting boundary conditions at
the walls of the box. The atoms initially have some
definite total energy U. The phase space of this system is
known to be fully chaotic, with no invariant tori for any
value of U [1]. Thus the motion in phase space on any
constant energy surface is ergodic and mixing. (For a re-
view of classical chaos theory, see, e.g., [2—4].)

However, this is entirely irrelevant if we always start
out with exactly the same initial state, and always make
the measurement after exactly the same amount of time
has elapsed. The momentum of the measured atom (as-
suming that it is always the same atom) is determined ex-
actly by the initial conditions, and so will always be the
same. To have any hope of obtaining a distribution of
momenta, we must average over either the initial condi-
tions or the times of measurement or both.

If we keep the initial conditions Sxed, ergodicity im-
plies that the system wanders all over the constant energy
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surface. (This assumes that we have not started the sys-
tem off at a point located on a periodic orbit; such points
form a set of measure zero. ) If we divide the constant en-

ergy surface into many patches of equal area (and that
area is not too small) then after a certain Snite time the
system will, to a very good approximation, be equally
likely to be in any one of these patches at any later time.
Conversely, if we permit a range of initial conditions,
mixing implies that, if the measurement time is fixed but
not too early, the system will once again, to a very good
approximation, be equally likely to be in any one of the
equal-area patches. The rule that equal-area patches are
equally likely is just the usual formulation of the micro-
canonical ensemble, which after a little work leads to Eq.
(1.1) for the fraction of atoms with momentum in a range
of d 3p around p, with the temperature T given simply by
the ideal gas formula U= —', NkT. In short, if we do a
modest average over either the initial conditions or the
times of measurement, then classical chaos results in clas-
sical thermalization. (For any elementary review of
chaos theory as it applies to classical statistical mechan-
ics, see [5].}

On the other hand, if we have a weakly perturbed inte-
grable system (for example, harmonic oscillators with
small nonlinear couplings), then according to the
Kolmogorov-Arnol'd-Moser theorem [6], its phase space
is foliated by invariant tori almost everywhere, and we do
not expect it to thermalize. If it is partially integrable,
with some invariant tori embedded in an otherwise chaot-
ic phase space, then the system may or may not thermal-
ize, depending on the initial state.

These results from classical mechanics are clear and
powerful, and provide a satisfying explanation of statisti-
cal behavior in classical systems which exhibit chaos.
However, we know that the real world is ultimately de-
scribed by quantum mechanics, and we so should seek the
quantum analog of the classical analysis. We would like
to know, for example, what property a quantum system
must possess, analogous to classical chaos, so that
"most" of its initial states thermalize, in the sense dis-
cussed above. Furthermore, if a quantum system does
possess this property (whatever it may be), then we might
hope that the inherent uncertainties in quantum mechan-
ics lead to a thermal distribution for the momentum of a
single atom, even if we always start with exactly the same
initial state, and make the measurement at exactly the
same time. If this is true, then quantum mechanics au-
tomatically provides the "coarse graining" which is miss-

ing [3,7] in the classical theory.
I will argue that the property needed for thermaliza-

tion of a quantum system is the validity of Berry's conjec-
ture [8—10]. For a quantum gas of hard spheres, Berry's
conjecture states that each energy eigenfunction appears
to be a superposition of plane waves (in the 3N-
dimensional coordinate space) with random phase and
Gaussian random amplitude, but fixed wavelength. In
general, Berry's conjecture is exgected to hold only for
systems which exhibit classical chaos in all or at least
most of the classical phase space. As already noted, a
hard-sphere gas meets this condition.

We will see that Berry's conjecture leads to either

Bose-Einstein, Fermi-Dirac, or Maxwell-Boltzmann
statistics, depending on whether the wave functions are
chosen to be completely symmetric, completely antisym-
metric, or nonsymmetric functions of the positions of the
N atoms. Furthermore we will find that any nonthermal
features of the initial distribution of momenta decay away
at least as fast as 0(hlb)t ', where h is Planck's con-
stant and 5 is the uncertainty in the total energy.
Thermal behavior thus appears for a very wide range of
possible initial states, without assuming that the system
interacts with an external heat bath, or any other envi-
ronmental variables. We also do not need to take any
averages over initial states, times of measurement, or
Hamiltonians, or make any unjustifiable approximations
to the quantum equation of motion, such as truncation of
the Bogoliubov-Born-Green-Kirkwood- Yuon (BBGKY}
hierarchy.

The rest of this paper is organized as follows. In Sec.
II, we review Berry's conjecture for a system of hard
spheres in a box. In Sec. III, we show how Berry's con-
jecture leads, in the limit of low density and high energy,
to a Maxwell-Boltzmann distribution for the momentum
of a single atom in the gas, with a temperature that is re-
lated to the total energy by the ideal gas law. In this sec-
tion we treat the atoms as distinguishable, making no as-
sumptions about the symmetry of the wave function of
the gas under exchange of individual atoms. In Sec. IV,
we evaluate the efFects of certain corrections to Berry's
conjecture known as "scars," and reconsider some of the
numerical results on Berry's conjecture which have ap-
peared in the literature. In Sec. V, we examine time evo-
lution beginning with a nonthermal initial state, and
study the approach to equilibrium. In Sec. VI, we con-
sider wave functions which are completely symmetric or
antisymmetric under exchange of atoms, and see that
these lead to Bose-Einstein or Fermi-Dirac distributions
for individual momenta, respectively. Conclusions,
speculations, and possible extensions are presented in Sec.
VII.

II. BERRY'S CON JECI URE

Consider a system of N hard spheres, each of radius a,
in a cubic box with edge length L +2a. Call the energy
eigenvalues U and the corresponding eigenfunctions

g (X), where X=(x„.. . , x~) denotes the 3N coordi-
nates, and P=(p„.. . , pz) will denote the 3N conjugate
momenta. We take the wave functions to be defined on
the domain

D = [x„.. . , x~( ,'L ~x;, 2, ~+ ,—'L—;~x,
—x, ( ~2a]—,

(2.1)

with the boundary condition that each g (X) vanish on
the boundary of D For now we a.ssume that g (X) has
no symmetries under exchange of individual x;.

The energy eigenfunctions g (X) can always be chosen
to be everywhere real, and can be written as

P (X)=JV~Jd P A (P)5(P 2mU ) e—xp(iP. X/fi},
(2.2)
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where JV is a constant to be determined by the normali-
zation condition

(2.4)

f d XQ~(X)=1, (2.3)

and where A ' (P)= A ( —P }. For this system, Berry's
conjecture is equivalent to assuming that A (P) can be
treated as a Gaussian random variable with a two-point
correlation function given by

(A (P)Ap(p'))nE=5 p5' (P+P')/5(P —P' ) .

Here 5 (P) is the 3N-dimensional Dirac delta function
and 5(x) is the one-dimensional Dirac delta function.
The subscript EE stands for "eigenstate ensemble. " This
is a 6ctitious ensemble which describes the properties of a
typical energy eigenfunction. Individual eigenfunctions
behave as if they were selected at random from the eigen-
state ensemble. Berry's conjecture also asserts that the
eigenstate ensemble is Gaussian, so that all multipoint
correlation functions are given in terms of the two-point
correlation function, e.g.,

(2.5)

( A~(pi) A p(pi) Ay(P3) As(P4) )EE= ( A (P, ) Aii(pi) )EE( A (P3)As(P4) )EE+ ( A (Pi) A„(P3) )EE( As(P4) A p(pi) )EE

+( A (P, )As(P4))Es( Ap(P2)A~(P3))EE .

Of course, each A (P) must give back a P (X) which
vanishes on the boundary of D; this is not a stringent re-
quirement on A (P) at high energy, where lt, (X) has
many wavelengths between any two segments of the
boundary. We will say more about the requirement of
high energy shortly. Meanwhile, for a more general but
less transparent definition of Berry's conjecture, see Sec.
IV; for related mathematical results, see [11,12].

Berry's conjecture is based on semiclassical reasoning,
and is manifestly untrue for systems whose classical
phase space is foliated almost everywhere by invariant
tori [13]. It has been investigated numerically for simple
systems which are fully chaotic classically, such as a sin-

gle particle in a two-dimensional stadium-shaped box
[14-18],or a single particle on a two-dimensional surface
with constant negative curvature and periodic boundary
conditions [19,20]. In these systems, Berry's conjecture is
found to be valid for eigenstates of suaciently high ener-

gy, and its validity has even been suggested as a good
definition of chaos in a quantum system [21]. However,
an important caveat is the existence of "scars" on some
energy eigenfunctions, regions of enhanced value of
f (X) which follow the paths of the most stable classical
periodic orbits [14,15]. For now we will ignore the scars,
since their presence will not alter any of our conclusions.
We will discuss them in more detail in Sec. IV. There we
will also argue that some numerical results which have
been interpreted as evidence against Berry's conjecture
actually provide evidence for it.

Even in a system which is fully chaotic classically (like
a hard-sphere gas), Berry's conjecture will certainly not
be valid for eigenfunctions which are too low in energy.
The low-lying states necessarily have speci6c structure:
the ground state, for example, is nodeless. A rough cri-
terion for the validity of Berry's conjecture is that the
average wavelength of each particle be smaller than the
features which produce classical chaos [16]. For the
hard-sphere gas, the relevant feature is the nonzero ra-
dius a of each particle. Anticipating a bit and de6ning a
temperature T for each energy eigenvalue U via the
ideal gas formula U =

—,'NkT, and further defining a
"thermal" wavelength A, =(2iri'i /mkT )'~, then the
criterion for the validity of Berry s conjecture is X a.
Numerically, this becomes T ~ (300/ma ) K, where a is

o

in A and m is in amu.
It turns out that obtaining explicit results will also re-

quire us to work at 1ow density, ¹ &&L . Combining
this with it, & a, we see that we need to have NA, (&L, a
condition which is also required, in quantum statistical
mechanics, for the Bose-Einstein and Fermi-Dirac distri-
butions to be we11 approximated by the Maxwell-
Boltzmann distribution.

Let us now consider the eigenfunctions in momentum
space:

Q, ( P):ii — f d XP (X)exp( iP Xl—fi)

=h JV f d E A (K)5(K —2rnU }

where we have de6ned

X5 (K—P) (2.6)

5'N(K)= i 'N—f -d'"Xexp(iK. X/a) . (2.7)
D

If the condition needed for Berry's conjecture is satis5ed
(A,,(a }, and we are in the low density regime
(Na 3 &(L ), then we can make the substitutions

53N(0) (L /i )
N

53N(p) 53N(p)

[53N( p ) ]2~(L /Q )3N53N( p )

(2.8)

Now using Eqs. (2.2), (2.4), (2.6), and (2.8), we find that
(for A, &a and ¹3«L)

(tP'(P)f (P')) =5 JV h 5(P —2 U )5 (P —P'),
(2.9)

which will play a key role in Sec. III.

Q(P, O)=QC Q (P) . (3.1)

We take the energy eigenfunctions to be orthonormal,

III. KIGENSTATE THERMAL&XA, TION

I.et us now put our gas of X hard spheres into some in-

itia1 state speciSed by the momentum-space wave func-
tion
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U=y/C. f'U. , (3.2)

and the uncertainty in the energy is 5, where

and also assume g(P, O) to be normalized, so that

g ~C ~

= 1.The expectation value of the energy is then
troduced in Sec. II. Assuming high energy (A, &a) and
low density (Na «L ), it follows from Eqs. (2.8), (2.9),
and (3.6) that

(4 (p&))EE=JV L fd p2. . .d p&5(P —2mU } .

(3.8)

S'=y (C.('( U U—}'
We introduce the useful formula

3.3

We will assume that 5&& U. The initial wave function
will evolve in time according to the Schrodinger equa-
tion:

P(P, t) =gC exp( —iU t /A)P (P ) . (3.4)

Now return to the thought experiment in which the sys-
tem is repeatedly prepared in the same initial state
(specified by the C 's}, and the momentum of one atom is
repeatedly measured after the same elapsed time t. The
theoretical prediction for the fraction of atoms with
momentum in a range d p around p is f~M(p, t)d p,
where

f&M(p„t)= fd pz...d ptt~g(P, t)

i ( U —Up)t/AC'Cpe
aP

In(x)= f d—P5(P' —x)

I'(3N/2)
I [(3N —3)/2] 2rrm U

'(3N —5)/2
p&x 1—

2mU

' 3/2

(3.10)

If we now set U =
—,'NkT and take the large-N limit, we

get

3.9
I'(D/2)x '

and use it to fix JVa =L I3tt(2mUa) via Eq. (3.7). We
then find

I3N 3(2mUa pf)
(@aa(pl))EE I (2 U )3N m a

X fd p2 . .d ptt.g'(P)hatt(P)

aP

In the last line we have introduced

@.p(pi) —= f d'p2 d'pN4'(»Pp(P»

which obeys the normalization condition

fd'pi+' tt(pi)=5~

(3.5)

(3.6)

(3.7)

/2mkT
(@aa(p]))EE=(2~mkT )

' 'e (3.11}

which is precisely f M(pE„T ).
Let us note first that, given Eq. (3.8) as a starting point,

Eqs. (3.9)-(3.11) simply recapitulate a standard deriva-
tion of the canonical ensemble from the microcanonical
[231.

More importantly, we must study the fluctuations of
4 (p, ) about its average value in the eigenstate ensem-
ble. We begin by defining

If the system thermalizes, then after some time has
passed, fqM(p&, t) should be equal to the Maxwell-
Boltzmann distribution of Eq. (1.1), although (as in the
classical case) some modest averaging over either the ini-
tial conditions (the C 's) or the times of measurement
(the value of t) might first be necessary. Furthermore the
temperature T should be given at least approximately by
the ideal gas law U = ,'NkT, with a fracti—onal uncertainty
of order 5/U.

To practice on a simple example, let us study the case
where the initial state is a single energy eigenstate. This
is, of course, unphysical: we cannot actually prepare
such a state in a time less than 0(A'/5), where 5 is the
mean energy level spacing near U [22]. This is fantasti-
cally small in any realistic case [5 =1/n, where n is
given by Eq. (4.6)], so that A/5 is much longer than the
age of the universe. Nevertheless taking the initial state
to be an energy eigenstate will turn out to be an instruc-
tive exercise.

In this case, Eq (3.5) bec. omes simply foM(p&, t)
(p, ), which is independent of time. We now study

the properties of 4 (p&) in the eigenstate ensemble in-

[~~' P(Pi) ]'= ( ~@~(Pi)~') EE
—

~ (@~(Pi))«I' .

Using Eqs. (2.5), (2.8), (2.9), and (3.6), we find

[b 4 tt( p, ) ] =JV Att (Lh )

X fd p2 . .d'pN. d p2. . .d p~

X5(P 2mU —)5(P' 2mUtt—)

X5 (P—P') (3.13)

Before evaluating Eq. (3.13) explicitly, we can see that it
will be very small: if we replace 5& (P—P') by its max-
imum value (L/h) everywhere, the right-hand side of
Eq. (3.13) becomes (4 (p, ))EE(Ct(S(p, ))EE [cf. Eq.
(3.8)]. Of course this replacement results in a huge
overestimate of [h@Qp&)], since in fact 5& (P —P') is
close to zero almost everywhere. Thus we will have, in
particular, b,4 (p, }«(@ (p, ))EE. Furthermore we
see why h4 (p&) is so small: g (P) has fluctuations of
order 1 in the eigenstate ensemble, but these are washed
out when we integrate over most of the momenta. (In
Sec. IV we will see that the same fate befalls the "scars"
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mentioned in Sec. II.)
We now turn to the evaluation of Eq (.3.13), to find out

just how small it is. We will need to know a bit more de-
tail about 5D (P —P') than the substitution rules of Eq.
(2.8). We therefore approximate it with a Gaussian:

5D (P —P')=(L/h)' exp[ (P—P—')'I. '/4vrfi'] . (3.14)

fd Pp (P,X)=P (X},

fd' Xp.(P,X)= ~g (P)~',

which imply the normalization condition

f d3NPd3NX (P

(4.2)

(4.3)

In the low density regime (Xa « l. ), using Eq. (3.14)
instead of Eq. (2.7) changes the result only by an overall
constant of order 1. Substituting Eq. (3.14) into Eq.
(3.13), setting a =P, and taking the large-N limit yields

Scar theory begins with a semiclassical formula for

p (P, X):

p (P, X)=n 'h 5(H(P, X)—U, )

( ) 0 ( 1 )~1/2 —3N/4(I /g )
—(31v —6)/2

+Pl/4mkTXe ' 'f Ma(p„T ) . (3.15)

X, 1++A e ' exp[(i /irt) Ze. W~(T~) Zr] ..

(4.4)

Since we have I.»A~, we see that the fluctuations in

(p, ) about f M(iip„T } are negligibly small for large
N. That is to say an energy eigenstate which satisfies
Berry's conjecture predicts a thermal distribution for the
momentum of a single constituent particle. We will refer
to this remarkable phenomenon as eigenstate thermaliza-
tion.

Given a system which exhibits eigenstate thermaliza-
tion, it is not hard to understand why almost any initial
state will thermalize. In fact, the problem now is pri-
marily to preuent the system from having a thermal distri-
bution for the momentum of each particle at all times.
To do so at t =0, one must carefully superpose energy
eigenstates in order to construct an initial state with
whatever nonthermal features we might want. Once this
superposition is prepared, however, the delicate phase re-
lationships we have set up to avoid thermal behavior will

gradually be destroyed by Hamiltonian time evolution,
and the system will equilibrate. We will see how this
works in more detail in Sec. V. First, however, we di-
gress briefly to discuss the scars, and check to see that
they do not change any of our conclusions so far.

IV. FADED SCARS

XP (X+—,'S)f (X —
—,'S), (4.1)

where f~(X) is real. The Wigner density has the useful
properties that

The theory of scar formation has been developed by
Heller [15,18], Bogomolny [24], and Berry [25,10]. We
will be rather schematic here; readers unfamiliar with
scar theory should consult the cited references for more
details.

We first consider any system governed by a Hamiltoni-
an H(P, X) which is time-reversal invariant and which
results in classical chaos. For consistency of notation
with the previous sections, we take P and X to be vectors
with 3N components.

We begin by introducing the Wigner density for an
eigenstate,

p (P,X)=h fd +S exp(iP S/1')

The sum is over a11 periodic orbits on the surface with
constant energy U~; S is the action of the orbit; T is a
coordinate in phase space along the orbit; Z~ are the
6N —2 coordinates in the energy surface which are per-
pendicular to the orbit; and Ar and Wr(Tr ) are purely
classical quantities which depend on the monodromy ma-
trix of the orbit. The constant n is 5xed by the normali-
zation condition Eq. (4.3), and can be interpreted physi-
cally as the energy eigenvalue density near U . If we ig-
nore the sum over periodic orbits in Eq. (4.5), we obtain
the "Weyl rule" for n

n =h f d Pd X5(H(P, X)—U ) . (4.5)

In the case of a hard-sphere gas of 3N distinguishable
particles, this becomes

1

1 (3N/2) U

3X/2
mr. U

27rR2
(4.6)

For bosons or fermions, the right-hand side should be di-
vided by ¹!.Even so, n is fantastically large in any
realistic case [22].

The key point for scar theory is that the periodic-orbit
terms in Eq. (4.4) have no A'-dependent prefactors; the
peak height of each term is controlled by the classical
quantity A~. A short periodic orbit can have an A~
which is greater than 1; this produces an obvious "scar"
in phase space along the path of the orbit.

We are interested, however, in 4 (p, ), and so we

must integrate p (P,X) over all 3N components of X,
and all but three of the 3N components of P. If we con-
sider isolated periodic orbits, we see from Eq. (4.4) that
an integral over one of the 6N —2 components of Z
yields a prefactor of fi' . Thus the contribution of each
isolated periodic orbit to @ (pi ) is suppressed, relative
to the leading term, by A' '~, which means that each
individual scar on 4 (p, ) is totally negligible.

Nonisolated periodic orbits are a little more complicat-
ed, since moving off a nonisolated orbit in some direc-
tions in phase space merely puts the system onto another
nonisolated orbit in the same "family;" there are a Snite
number of these families. For the hard-sphere gas, the
nonisolated orbits consist of motions where the spheres
bounce om' the walls but never collide with each other
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[26]. A given nonisolated orbit of this type can in general
be deformed into another one by moving in any direction
in coordinate space. Thus when integrating p (P, X}over
the 3N components of X, we do not obtain any factors of

Vfe do, however, obtain a net factor of fi'

from integrating over 3X—3 components of P. Thus,
while the contribution of a family of nonisolated orbits to

(p, ) is much larger than the contribution of a single
isolated orbit, it is still negligible. These conclusions are
supported by the much more detailed calculation of
Gaspard [26] for the periodic-orbit corrections to n for
the hard-sphere gas.

Therefore, in computing 4 (p, ), we can safely ignore
the short isolated orbits and all of the nonisolated orbits.
The most modern version of Berry's conjecture [10) then
assigns the origin of the Gaussian fluctuations in g (X) to
the long isolated orbits. Thus g (X) is conjectured to
behave like a Gaussian random variable with a two-point
correlation function embodied by the elegant formula
[8,11]

(4.7)

There has been important progress recently [27] in bring-

ing the long isolated orbits under analytic control, but so
far Berry's conjecture remains just that. Even if a
rigorous proof is eventually found, it is likely to apply
only for asymptotically high energies. We turn, there-

&p (s) &uz
——f d2p d2x exp( i p—s/A)&p, (p, x) &EE

=n 'h 'I. 'f d'p

Xexp( i p —s/A.)5(p /2m U )

=Jo(k~s), (4.9)

where Jo(z) is a Bessel function, k~=(2mU /A' )'~, and
s =lsl. In [16], only moderately good agreement was
found with this prediction, with discrepancies of approxi-
mately 0.1 for k =65 and I.=v n; see Fig. 7 of [16].
However, these discrepancies are entirely explained by
consideration of the fluctuations in C (s) which are pre-
dicted by the eigenstate ensemble

fore, to a discussion of the existing numerical evidence.
Berry's conjecture has been studied numerically in

some two-dimensional systems, such as a particle in a
stadium-shaped box [14-18]. One popular object to
study is the correlation function [8]

C (s)=fd x P (x+ —,'s)P (x—
—,'s)

=f dzp dzx exp( —ip. s/fi)p (p, x), (4.8)

where in the simplest case the integral over x covers the
entire box, whose area we will call I. . For a particular
eigenstate, the numerically computed C (s) is compared
to its expectation value in the eigenstate ensemble:

[&C (s)]'=- & C (s) &
—

& C (s) &'

= fdzx d'y[&P (x+ —,'s)g (y+ —,'s}& &1( (x—
—,'s)1(,(y —

—,'s)&

+&/ ( +—,
' )g (y —

—,
' )& &f ( —

—,
' )!( (y+-,' )& ]

=I. 'f d'x dy[ ',J( klx —yl)+Jo(k lx —y+sl)JO(k, lx —y —sl)] . (4.10)

= (2n —1)!!L (4.11)

but this just means that the probability distribution for
the amplitude P at any point is

The first term in the last line dominates over the second
for all s, and is 0 (1/k 1.). That is, we expect discrepan-
ciesofroughly(k L) '~ between C (s) ascomputednu-
merically for a particular eigenstate and &C (s) &zE as
given by Eq. (4.9). This is exactly what is seen in Fig. 7 of
[16]. Similar comments apply to Figs. 14-1? of [20].
The fact that these discrepancies are predicted by the
eigenstate ensemble does not seem to have been noticed
previously.

We note Sna)ly that the Gaussian nature of the eigen-
state ensemble [which is used crucially in Eq. (4.10)] has
also been tested directly. The prediction is that

&P"(*)& =(2 —I)!!&y'( )&"

V. TIME EVOLUTION AND EQUILIBRATION

In Sec. III, we saw that an individual energy eigenstate
which satisfies Berry s conjecture predicts a thermal dis-
tribution for the momentum of each constituent particle.
Now we must see what happens when we consider more
general states. %e wi11 once again express the initial state
as a wave function in momentum space, and expand it in

energy eigenfunctions, as in Eq. (3.12). We assume that
the uncertainty I, in the total energy, Eq. (3.3), is much
smaller than the average energy U, Eq. (3.2). This is easy
to arrange in practice.

The predicted momentum distribution of a single parti-
cle at time t is fqM(p„t}, as given by Eq. (3.5). Now take
the average of Eq. (3.5) in the eigenstate ensemble. From
Eq. (2.4), it is immediately obvious that & @~(p,) &zE=O
if a+P, and so we obtain

&fgM(p(, t}&pE
—&le. I'& @,(p~ }&EE

P(P)= exp[ —
—,'L f ],I.

2m
(4.12)

which is well supported by the numerical results
[16,19,20]. (5.1}
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where we have used Eq. (3.11) in the second line. Now,
since 6 &(U, we can with neghgible error replace each
T in this sum with T, where U= —,'NkT, and then

g (C ~

=1 gives us

(est(p„t) )EE=fMa(p, , T)[1+0(6/U)], (5.2)

where we have defined

@ p(pi)—:@'~(pi)—(@~(p]))xE . (5.4)

Our problem is to understand the double-sum term on
the right-hand side of Eq. (5.3).

For a fixed value of p„each ~4~(p, ) ~
is given roughly

by its rms value in the eigenstate ensemble, which is
h4Qp, ) as given by Eq. (3.13). We have already seen
that /L4 (pi) is extremely small, and 54'~(p, ) is not go-
ing to be any larger when aAP. In fact, using the Gauss-
ian approximation of Eq. (3.14) in Eq. (3.13), we find

[~@'~(pi)]'
= [h4 (p, )] exp[ —m ( U, —Up) L /8M U ] .

(5.5)

We see that we will have b,4 p(p, ) «b,4 (p, ) if
~U —U ~/U is much larger than (fi /mU L )'~
-A, IN ~ L, a very small number. [Note, however, that
the precisely Gaussian form of the fallofF is an artifact of
Eq. (3.14).] For simplicity, let us assume that
lLIU&A, IN' L, where X=(2M ImkT)' . Then for
the range of a and p of interest, each d4 p(p, ) is given
by the right-hand side of Eq. (3.15) with U replaced by
U. We will need only the crudest approximations here,
and so we write

(5.6)

However, we expect that the phase of 4 p(p, ) varies
wildly with a and P.

Let Nz be the number of non-negligible C 's which ap-
pear in Eq. (5.3); Nc can be defined precisely via

Nc '=g ~C ~, and crudely estimated as Nc-nh,
where n is the energy level density near U = U [cf. Eq.
(4.6)]. The order of magnitude of each non-negligible

~
C [ is then Nc '~ (so that g (C [ =1).

Now consider doing the double sum in Eq. (5.3). If the
phases of the C 's are not carefully correlated with those
of the 4~(p, )'s, then each of the two sums will yield a
random-walk result: the square root of the number of
"steps, " N&~, times the size of each step, C -Nc '

With an overall factor of (L/X) from Eq. (5.6), we
obtain

the desired result.
Once again, however, we must study the fluctuations of

fqM(pi, t) that are predicted by the eigenstate ensemble.
%'e can write

i( U —UI3)t/fi—
fqM(pi, t)=fMa(p, , T)+gC'Cpe 4 p(pi),

aP

(5.3)

P @ (p ) (L Ig) —3N/2

aP
(5.7)

which again is extremely small. If we let 6/U be larger
than A, /N' L, then the result is even smaller.

On the other hand, we can certainly set up an initial
state which is very far from thermal. For example, we
cold give each particle the same initial value (to within
quantum uncertainties) for its individual momentum,
leading to an fqM(p„O) which is sharply peaked at that
value. In this case, though, the phases of the C 's must
be correlated with those of the 4~(p, )'s in exactly the
right way to produce the desired nonthermal distribution

fqM(p„O). In this case, we want to see what happens as

time evolves.
Let us begin with Eq. (5.3) at t =0, with the phases of

the C 's carefully chosen to give us a nonthermal distri-
bution. Now let the clock run. Each of the off-diagonal

(asap) terms in the double sum begins acquiring an extra
phase; there are roughly Nc off-diagonal terms in all.
The growing phase of each individual term will cause its
contribution to the sum to have a random orientation in
the complex plane once

~
U —Up)t/A& 2m.. We will say

that such a term has decohered. The first terms to
decohere (those with the largest difFerence between U

and Up) do so at a time

t-hler.

The fraction of terms
which have decohered at later times is given roughly by
(b, —h/t) /b, . Thus the fraction of still coherent terms
at this time is roughly 1 —(b, —h/t) /l), (h/b-, )lt for
t »h/b, .

Now, each of the coherent terms should give its usual
contribution to the sum, since its phase is still (almost)
properly aligned, but the net contribution of all the
coherent terms will be suppressed by a factor of
0 (h/h)t ' due to their reduced population. On the oth-
er hand, the terms which have decohered will contribute
with random phases. Since almost all terms have
decohered for t »h/b„ their total contribution will be
given by Eq. (5.6), and is negligibly small. Thus overall
we expect that any nonthermal features present in the ini-

tial distribution fqM(p„O) will decay away with time like
0 (h/h)t

%e can test this conclusion with a very simple exam-
ple. The system we will analyze is classically integrable,
and so chaos plays no role in the following discussion.

Consider a single particle with mass m =100 in a two-
dimensional circular box with radius E. =1; we also set
%=1. The initial wave function for the particle is taken
to be

P(x, O)=n '~ a exp(ipo x) exp( —x. /2a ) . (5.8)

This is a Gaussian wave packet of width a at the center of
the box, moving with momentum po. If we Fourier trans-
form into momentum space, we obtain

P(p, O)=~ ' a exp[ —
—,'a (p —po) ] . (5.9)

%e will take a =0.1 and @0=100. Classically, the parti-
cle has energy E =go/2m =50, and just bounces back
and forth, changing directions at times t =1,3,5, . . . .
Quantum mechanically, the uncertainty in the particle's
energy is b, =po/~2ma =7. We can solve this problem
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exactly by expanding l((p, 0) in the energy eigenstate
basis and using Eq. (3.4). Then we can compute the
probability density for the particle to have its initial
momentum at time t; that is, we compute ~g(pc, r)

~
. Let

us see what we should expect for this quantity, based on
the general arguments outlined above.

First of all, note that the infinite time average of
~P(po, t)~ is given by

(5.10)

where f (po) is an energy eigenfunction in momentum
space. We expect ~P(po, t)~ to approach its infinite time
average at late times, with late-time fluctuations of the
same order of magnitude. If ~g(po, t)~ does not start out
close to its infinite time average at t =0, then it should
decay toward that value like O(h /h)t

The exact result for ~g(po, t) ~, normalized to its value
at t =0, is shown in Fig. 1. We clearly see the classical
bounces, as the probability to have the initial momentum
drops to zero at the first turning point t =1, then returns
at t =3, etc. However, the quantum probability does not
return to its initial value, but follows the (h/6}/t en-
velope predicted by the general argument outlined above.
It finally drops down to its infinite time average, with
fluctuations of the expected size. Thus we see that the
simple phase decoherence argument works very well for
this example.

If we now compare the right-hand sides of Eqs. (5.1)
and (5.10},we see the analogy between the infinite time
average of

~ g(po, t) ~
and the eigenstate ensemble average

of f&M(p„t). The main difference is that, because we
have integrated out almost all the degrees of freedom, the
fluctuations of f&M(p, , t) about its average value are very
small.

There is more we can learn from our simple example,
however. First, we have seen that the classical motion is
reflected in the quantum probabilities, a fact which is ex-
pected to be true for classically chaotic systems as well

[28]. This means that quantum initial states which can be
understood as representing classical initial conditions
may thermalize even faster, due to the effects of classical
chaos. If we can follow classical trajectories (with initial
quantum uncertainties) for some time, and classical chaos
spreads these out over a constant energy surface in phase
space, then the system has thermalized classically. This
argument may be needed in cases where the initial distri-
bution is so far from thermal that the quantum
O(hlh)t ' decay of its nonthermal features seems to
take too long. It also shows that the O(II/h)t ' rule
need not be related to more traditional diffusion times,
which are more likely to reflect classical physics.

Second, consider Fig. 2, which shows the ~C ~'s for
this problem plotted against the corresponding energy ei-
genvalues E . While they form a nice envelope, with
mean energy E=50 and uncertainty 6=7, there is a
great deal of fine structure. This is needed to obtain the
very special initial state, localized at the origin and mov-

ing in the x direction at a particular speed. Therefore, we
cannot think of replacing C by a smooth function of E .
This is unfortunate, since if we average Eq. (4.4} over a
smooth distribution of energy eigenvalues, the contribu-
tions of the long periodic orbits are suppressed [24,25,10],
and the problem becomes much more tractable. Howev-
er, as we see in Fig. 2, such smoothing is physically far
too restrictive, since it would prevent us from considering
a wide variety of initial states which we could actually
prepare in a real experiment.

Let us summarize the results of this section. If we con-
struct a particular initial state for the hard-sphere gas at
low density by superposing energy eigenstates, each of
which individually satisfies Berry's conjecture, then we
find that, at sufficiently late times, the quantum mechani-
cal prediction for the probability that any one particle
has momentum p is given simply by the Maxwell-
Boltzmann distribution of Eq. (1.1). The probability that
this wi11 not be the case is negligible, if we wait long
enough. Any nonthermal features of the initial distribu-
tion for a single particle's momentum wi11 decay away at
least as fast as O(it /h)t ', where 6 is the quantum un-
certainty in the total energy. Faster decays are possible,

10 1i
I

~0.8 - 1

co . 1

O0.6-
CC

UJ0.4-0
I-
5O.2
UJ
K

4 8 12 16 20 24 28
T1ME

0.10-
UJ
C5g008-
I-

~0.06-

UJ+0.04-

0
Kl
+0.02-

e e ~
~ ~ ~ ~~ ~

~ ~
4 ~ ~ ~

+ ~

e ~

g ~

~ ~ y
~ ~

~ ~

~ 0

~ ~ ~

I
~ ~ ~

0 ~0
~ ~

~ ~

~ ~ ~ ~ ~j + ~ ~ ~ ~ ~
~ ~~ ~

~ Q ~ Q I~ ~ ~ ~ ~ ~ ~ ~
~ 0 ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~~ ~

~ ~ ~ ~ ~Io 0 ~ ~ ~ 0 ~ ~
~ ~ ~ ~ ~ ~~ ~ ~ ~

~ ~ ~ ~ ~ ~I~ e e ~ ~ ~ ~ ~~ g ~ ~ 0
0~ 0 ~ ~ ~

~ ~ + + s ~ + ~ ~ ~a

FIG. 1.Solid line: ) P(po, t)
~ /) i)i(p0, 0) j vs r for a single parti-

cle in a two-dimensional circular box; the initial wave function
is a narrow gaussian at the center with momentum po. Classi-
cally, the particle bounces off the wall at t = 1,3,5, . . . . Dashed
line: (2M/h, )/t, where 6, is the uncertainty in the energy. Dot-
ted line: the infinite time average of the solid line.
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FIG. 2. Expanding the wave function of Fig. 1 in energy
eigenstates yields expansion coeScients C; here

~
C

~
is plotted

vs the energy eigenvalues E .There are 1736 energy eigenvalues
in the plotted range, 20~ E ~ 90.
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VI. SOSONS AND FERMIONS

The detailed analysis in Secs. II and III required the as-
sumptions of high energy (A, & a) and low density(¹«L ), which combine to give NA, «L . In Sec.
II we noted that this is precisely the condition needed for
the Bose-Einstein and Fermi-Dirac distributions to be
well approximated by the Maxwell-Boltzmann distribu-
tion. Nevertheless, even though the corrections due to
quantum statistics may be numerically small, a valid for-
malism should be able to reproduce them. In this section
we will see that the present formalism meets this test.

Define a symmetrization operator P+ via

&*f(pi pN)= ~, g (+1}f(p;, .1

' perms

(6.1)

and likely if the initial state has a classical interpretation.
Absolutely no averaging over initial states or times of
measurement is needed, in contrast with the classical
case.

This concludes our analysis of the high energy, low
density, hard-sphere gas in the case that we assume no
symmetries of the wave function on exchange of individu-
al particles. We will return to discuss lower energies and
higher densities in Sec. VII. Now, however, we turn our
attention to wave functions which are either completely
symmetric or completely antisymmetric functions of the
positions of the N particles.

the grand canonical ensemble, but in our case the number
of particles is Srmly Sxed at ¹ Thus we expect to Snd
that (@*a(p&})Ezis equal to f*(p&,T ) is given by the
canonical, rather than the grand canonical, ensemble.
Relevant formulas from the less familiar canonical en-
semble are gathered in the Appendix.

Let us warm up by computing A . The normalization
condition we need is

f d Pl ' 'd PN(0 (P}W (P) )EE (6.5)

We must first evaluate

P~5~ (P P ) ~p —p

1

, & (+—I}'4(pi—pi, } 5D(px pi »
'

perms

where 5~(p) is assumed to satisfy the substitution rules of
Eq. (2.8) with N~1. Now examine a particular term in
this sum. If a particular momentum is paired with itself,
we will say that it comprises a "l-cluster. " If a particular
momentum is not paired with itself, it will be part of an
"m-cluster" of momenta which are all set equal to each
other by the (approximate) 5 functions. For each term,
let m& be the number of momenta in the Ith cluster, with

m, - ~ mz. Also let C be the number of m-clusters,
and C be the total number of clusters. Obviously, we
have the relations

where the sum is over the permutations of the indices,
and I' is even (odd) if the permutation is even (odd). Now
we can construct completely symmetric and antisym-
metric energy eigenfunctions analogous to those of Eq.
(2.2):

+ ' ' +~c=N

C, + +C~=C,
C)+2C2+ . +NC~ =N .

(6 7)

f (X)=Wfd' P A (P)5(P —2mU )

XP~exp(iP X/A') . (6.2)

Each term in the sum in Eq. (6.6) can now be labeled by a
set of nondecreasing integers I m J

—= Im „.. . , mc ). The
number of terms with the same label is

We will need the generalization of Eq. (2.9). Using the
same assumptions as in Sec. III, namely A, ~a and
Na ((L,we obtain

(y*'(P)y (P'))

=5 (JV*) h 5(P 2rnU —)Pg5D (P —P') . (6.3)

We now want to compute

~ @ca(pl}~EH f d'~2' d PN ( Pa (PWa(P) ~EE

(6.4)

For nonsymmetric wave functions, we found in Sec. III
that (@aa(p& ) )FE was equal to a Maxwell-Boltzmann dis-
tribution at a temperature T related to the energy eigen-
value U by the ideal gas formula U =—,'NkT . We
therefore expect to find that (4 (p, ))Ea is given by a
Bose-Einstein distribution faE(p„T )=f+(p„T ) or a
Fermi-Dirac distribution f (pF„DT ) =f (p, T ). In
statistical mechanics, these are usually computed using

C

A! ! g(ml —1)!, (6.8)

where (m&
—1)! counts the number of ways momenta in

the lth cluster can be rearranged without breaking it into
smaller clusters, and

(m, ! . m~!)(C, ! . C~!)
(6.9)

counts the number of inequivalent ways of assigning mo-
menta to clusters. Each cluster has one redundant 5
function, which results in a factor of (L/h} . Further-

mI —1
more the 1th cluster contributes a factor of (Rl) ' to
(+1) . Now from Eqs. (6.3) and (6.5) we see that to
determine JV we must multiply each term in Eq. (6.6) by
5(P —2mU } and then integrate over all the momenta.
Under the integral, when multiphed by a term labeled by

I rn J, we can make the replacement

5(P —2mU )~5(m, pf+. . . +mcp~ —2mU ), (6.10)

All together, then, we have
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c
(JV ) =h g A! !(L/h} Jd Ir&. . .d Ir&5(rn&pf+ . . +mcpc —2rnU )g(kl) '

(m& —1)! .
Im I 1=1

The sum is over all [m ] with fixed N. We now make the change of variable p; —+m; '~ k;, which yields

c
(JV ) =h g A! !(L/h) I3C(2mU )g(kl) '

(m&
—I)!m&

(mI l=1

(6.11)

(6.12)

where ID(x) is defined in Eq. (3.9). It turns out that terms with C » 1 dominate, and so we can use the large-C formula

h '"(I, /h) "I„(2mU.) =X3"(L/Z. )3cr,„(2mU. ),
where iL =(2M /mkT )'~, to rewrite Eq. (6.12) as

(A ) =A, I (2mU )g A! } g(L/A, ) (kl) ' (m —1)!rn
Im I 1=1

Now we can apply the Mayer cluster-expansion theorem [29], which can be written as

c oo m

gA( ! ffW = exp g IV
!mj !=1 ' Bz m=1 m ~=o

where, in our case

W =(L/A, ) (kl) '(m —1)!m

(6.13)

(6.14)

(6.15)

(6.16)

From Eq. (A3}of the Appendix, we have

oo &m
W =(L/A, ) g~qz(z) .

m=1 ~
So putting all of this together, we Snd

(JV ) =& I3+(2mU ) ~ [exp[(L/A, ,) gsr2(z)]j l, =o
gz rr

=A~ I3~(2mU )N!Zc,

(6.17)

(6.18}

where Zc is the canonical partition function for a gas of noninteracting bosons (+) or fermions ( —}at a temperature
T in a box of volume L [cf. Eq. (AS)].

Clearly we are on the right track. Now we have to do it all over again, this time leaving one of the N momenta unin-
tegrated.

Following the same logic which led us to Eq. (6.12), we obtain

C
&C'~~(p~))aE=(~~)'h'"g A! !(L/h) Q(m;/N)I3c —3(2mU —m;p&)

Im I i=1

X(kl) ' (m; —I)!g(kl) ' (mi —1)!mi
li

(6.19)

The differences from Eq. (6.12}arise as follows. First, we must choose which cluster contains the unintegrated momen-
tum p1, this gives the sum over i =1 to C. Then we must choose which of the m; momenta in the ith cluster is unin-

tegrated; this gives the factor of m;. Now we have overcounted by N, which results in the factor of 1/N. The change to
the subscript and argument of I results from not integrating p„and the factor of m; is missing because we did not
have to rescale p, .

Again, terms with C ))1 dominate, and so we have

I3( —3 (2m U —m, pf )= (2m rnkT ) exp( —m;pf /2mkT )I3c(2m U ) (6.20)

Then using Eq. (6.13},we obtain

c
(4 (p)) =(JV ) A, I (2mU )gA( ) gV +IV

fm I i =1 (+i

where W is given by Eq. (6.16},and

Vk=(L /Nh )(kl) 'k![exp( —pf/2mT )]" .

(6.21}

(6.22)
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Starting with Eq. (6.15), it is not hard to prove a generalization of it which reads
I

C k m

gA( ) gV +IV = g, V exp Q, IV
I m I k =1 1&i ~z k =1 &Pl™

In the present case, we have

, k™Nh' exp(p', /2mT )+z
Combining Eqs. (6.17},(6.18), (6.21), (6.23),and (6.24), we finally obtain

z=0
(6.23)

(6.24)

gN L3
exp[(L /A) g (

Zc N. az" Nh exp(pf/2m T, ) +z z =0

=f (p), T ), (6.25)

where f*(pi, T ) is the Bose-Einstein (+) or Fermi-
Dirac ( —) distribution as predicted by the canonical en-
semble [cf. Eq. (A12}]. As expected, then, symmetriza-
tion or antisymmetrization of the wave function changes
the statistics from Maxwell-Boltzmann to Bose-Einstein
or Fermi-Dirac.

For the last time, we must study the fluctuations of
4 (pi} that are predicted by the eigenstate ensemble.
The relevant object is 54~(p, ), defined by the obvious
replacements in Eq. (3.12). b,4*&(p, ) is then given by Eq.
(3.13) with P~ acting on 5PP(P —P'). Explicit evaluation
of b4*&(p, ) is a fearsome combinatoric problem, but
luckily a simple variation of the general argument
presented after Ec(. (3.13) still applies, and can be used to
show that h4=&(p, ) is very small compared to
(4~~(p, ) )EE(&&(p, ) )EE. Therefore eigenstate thermali-
zation still holds, and the previous analysis (in Sec. V) of
time evolution still applies.

VII. DISCUSSION AND SPECULATION
Let us begin with a brief recap of the central results.

Berry's conjecture, as applied to a gas of N hard spheres
in a box, states that each energy eigenfunction appears to
be a superposition of plane waves with wavelength fixed
by the energy eigenvalue, but with random phases and
Gaussian random amplitudes. It is expected to apply
only to systems which are classically chaotic, and has
been found to be valid (with corrections that do not aff'ect
our conclusions} in simple chaotic systems. Given
Berry's conjecture for the hard-sphere gas, we have
discovered the phenomenon of eigenstate thermalization:
each energy eigenstate predicts a thermal distribution for
the momentum of each constituent particle. This distri-
bution is Maxwell-Boltzmann, Bose-Einstein, or Fermi-
Dirac, depending on whether the energy eigenfunctions
are nonsymmetric, completely symmetric, or completely
antisymmetric functions of the N particle positions.
Then a superposition of energy eigenstates with a small
fractional uncertainty in the total energy will also appear
to be thermal, unless the amplitudes and phases of the su-
perposition coeScients are carefully selected to avoid
thermal behavior. If this is done initially, then the usual
phase changes produced by Hamiltonian time evolution
destroy the needed coherence, and any nonthermal
features disappear as O(h/h)r ', where 5 is the uncer-

I

tainty in the total energy. However, classical effects

which are re6ected in the quantum theory can result in

faster thermalization.
All of the analysis in Secs. II, III, and Vl was done in

the limits of low density: Na'«L', where a is the ra-

dius of a hard sphere and L is the volume of the box,
and high energy: A, &a, where A, =(2M /mkT, }' is

the typical wavelength of one particle when the energy ei-

genvalue is U =—2NkT; numerically this means
0

T & (300/ma ) K, where a is in A and m is in amu. But
what happens if we relax these constraints?

There are no fundamental difBculties with carrying out
the analysis for moderately higher densities. A11 we need
to do is exact formula for the smeared 5 function in

momentum space, Eq. (2.7). In practice, however, this

greatly complicates the calculations. It would be very in-

teresting to try to develop some sort of perturbative (in
a/N'~ 1.) analysis, and compare the results with more
standard treatments of the hard-sphere Bose or Fermi gas

[30].
Lower energies present an entirely diferent problem,

since if we go low enough in energy, Berry's conjecture
will break down. The question is, how low can we go?
The generic expectation is that Berry's conjecture will be

valid if the relevant wavelengths are smaller than the
features which produce classical chaos [16]. For the
hard-sphere gas, the relevant feature is the nonzero ra-
dius a of each particle, which leads to I, & a. However,
this may not be good enough at high density [31]. Classi-

cally, if the density is large enough to result in very slow

diffusion of the particles, then their positions will be
correlated over long times; the Lyapunov exponents are
a11 very sma11. We would then naturally expect that these
correlations are re6ected in the quantum energy eigen-
functions, which would mean that Berry's conjecture is
not valid. In this case, a possible alternative criterion for
the validity of Berry s conjecture is A, l, where l is the
classical mean free path of a particle, which can be much
less than a.

Whatever the correct criterion turns out to be, at a low

enough energy Berry's conjecture will break down, and

we must ask what happens at lower energies. One possi-

bihty is that eigenstate thermalization will still be valid

for a wide range of energy eigenvalues, . even though
Berry's conjecture is not. The reason for this speculation
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appears in the results of Eq. (3.15} and Sec. IV. In Eq.
(3.15), we see that the fluctuations about the mean,
thermal value of 4 (p&) in the eigenstate ensemble are
extremely small; experimentally, we can tolerate much
larger fluctuations. Thus we may also be able to tolerate
significant violations of Berry s conjecture without des-
troying eigenstate thermalization. In Sec. IV, this specu-
lation receives some more support. Scars represent viola-
tions of Berry's conjecture which are quite obvious when
one looks at the Wigner density of an energy eigenstate in
phase space, since there the scars appear with a "signal-
to-noise" ratio of 1:1. Once we integrate out all of the
coordinates and most of the momenta, however, the scars
fade away almost completely. The same should be true of
more generic violations of Berry's conjecture. Thus
eigenstate thermalization may still be valid at energies
well below the threshold for the validity of Berry's con-
jecture.

If we go even lower in energy, presumably eigenstate
thermalization will eventually cease to be valid. If the
system is this low in energy, it will not be able to thermal-
ize itself. To find thermal behavior in a system below its
threshold for eigenstate thermalization, we must couple it
to an external heat bath, such as the refrigeration ap-
paratus in a low-temperature experiment. Of course,
once we have contact with a large, preexisting heat bath,
all the usual results of statistical mechanics can be ap-
plied without further worry.

The basic equation we have been trying to address in
this paper is how such a heat bath might form in the first
place. We have seen that this will happen for a hard-
sphere gas, provided that Berry's conjecture is satisfied

by the energy eigenstates which are superposed to form
the initial state. Whether or not other mechanisms exist
for self-thermalization of isolated quantum systems is an
open question, one to which we hope to return.
Meanwhile we believe that the present results constitute a
legitimate foundation for quantum statistical mechanics.
In particular, we have at least one answer to the question
of which quantum systems will approach thermal equilib-
rium. It is satisfying that this answer (those systems
which obey Berry's conjecture} is closely related to the
answer from classical physics (those systems which exhib-
it chaos}. In fact the situation in the quantum theory is
even better than it is in the classical theory, because we
no longer need to consider an ensemble of initial states.
Each and every superposition of energy eigenstates obey-
ing Berry s conjecture will eventually yield a thermal dis-
tribution for the momentum of a constituent particle,
provided that we wait long enough. Absolutely no
averaging of any kind is needed: not over initial states,
not over times of measurement, and not over Hamiltoni-
ans.

Finally we would like to comment on the much-
discussed question of an appropriate definition for quan-
tum chaos. Some time ago, van Kampen suggested that
quantum chaos be defined as "that property that causes a
quantum system to behave statistically" [32]. If we re-
place "behave statistically" with "obey the laws of statist-
ical mechanics, " then we have seen that the key feature
is Berry*s conjectured properties of the energy eigen-

states. In particular, properties of the energy eigenvalues
[such as Gaussian orthogonal ensemble (GOE) rather
than Poisson statistics for the unfolded level spacings
[33]] have played no role at all in the present work.
Steiner has suggested [21] that Berry's conjecture be
elevated to the status of the best definition of quantum
chaos, a proposal which we see to be equivalent to (our
version of) van Kampen's. More generally, in quantum
mechanics, where time evolution is always linear and
therefore essentially trivial, the only place to encode the
complexities of the classical limit is in the energy eigen-
functions: that is where quantum chaos, like thermal
behavior, must be sought.

Note added in proof. Recent results of Berry [34] show
that, in Eq. (2.2), A (P) will generically have a particular
kind of singularity. This singularity can be removed by
extending the integral to cover complex as well as real
momenta. The successful numerical method used by
Heller and his collaboraors (detailed in [18]) essentially
implements Eq. (2.2) as it stands, which demonstrates
that the effects of the singularity must be negligible for
sufBciently high U . I thank Michael Berry for
correspondence on this point.
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APPENDIX. THE CANONICAL ENSEMBLE
FOR BOSONS AND FERMIONS

We will use a notation close to that of [5]. We ignore
spin degrees of freedom.

The canonical partition function for N noninteracting
bosons or fermions in a box is given by

Np —~n, E,Zc=II X e ' 'S
on, =o

(Al)

1=0 n& =0

—13EI=exp + g ln(1+ze ')
1=0

=exp +L h Jd p ln(1+ze + ~
)

=exp[(L/A, ) g~&2(z)] . (A2}

where P= 1/kT, Et is the Ith energy eigenvalue for a sin-

gle particle in the box, and N+ = ~ for bosons and
N =1 for fermions.

Introducing the fugacity z, the grand canonical parti-
tion function for N noninteracting bosons or fermions in
a box is given by

N+
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+() ~ (+)
(A3)

Zoc must be supplemented with the condition

N =z lnZGc
Bz

= (L /&) g3y2 (z) (A4)

which can be thought of as fixing the value of z. We will
ca11 the positive real solution of this equation z0.

The relation between Zc and Z&c can be found by
writing the Kronecker delta in Eq. (Al) as

2@i

In the third line, we have replaced the sum over levels by
an integral over momenta (without separating out the
zero mode, which would be necessary for a discussion of
Bose condensation). In the fourth line, we have intro-
duced the thermal wavelength A=(.2vrA /mkT)'r, and
the Lerch transcendents

Evaluating this integral approximately by stationary
phase, treating both Itl and (L/A. ) as large, results in

Zc —[2rr(L /A, ) g &/Q(z(j)] Zoc,
where Zzc is to be evaluated at z =z0. The fractional er-
ror in this approximate equality is of order 1/N. Note
also that, using Cauchy's theorem, we can rewrite Eq.
(A6) as

)PAL

Zc =, [exp[(L/X) g5&2(z)]] ),N! gz-~

We would now like to compute the expected fraction
& f (p))d p of particles with momentum in a range d p
around p. The expected fraction of particles with energy
E& is given in either formalism by

&f,'-) = &n;-)/X
1 1 BZ

XPZ- aZ,
'

where Z- is either Zc or Zoc. Then converting to the
normalization required for continuous momenta gives
&f (p)) =(L/h) & ft ), with Et=p /2m. In the grand
canonical case this gives the well-known result

L z0
& f—'(p))Gc= (A 10)

Pp j2m +z0

Z-= dzz " 'Z-+= 1 +
c 2

~ Gc

ItIdz z ' exp[(L/A, ) g5&2(z)] . (A6)
In the canonica1 case, this procedure gives

where the contour encloses the origin. Substituting this
into Eq. (Al) and using the first and fourth lines of Eq.
(A2) yields

&f-(p) )c=
+ . ItIdz z ' exp[(L/A )'g,—rz(z)]

Zc+ 2m Pp /2m+

Approximate evaluation of this integral by stationary phase gives & f—(p) )c =
& f—(p) )oc, again with a fractional error

of order 1/N. Also, we can again use Cauchy's theorem to write

&f-(p)) =, „p[(L/&);„( )]
1 1 L-' ~

I ~

Zc ~ Bz Nh' e» /2~+z .=0

In the main text, we simplify the notation a bit via & f (p))c~f (p, T). —
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