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Symmetry in phase space for a system with a singular higher-order Lagrangian
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A generalized first Noether theorem for singular Xth-order Lagrangians and generalized Noether
identities for a variant system in phase space is derived. The strong and weak conservation laws in a
canonical formalism are also obtained. Based on the canonical action, the generalized Poincare-Cartan
integral invariant (GPCII) for singular Nth-order Lagrangians is deduced. The GPCII connected with

canonical equations of a constrained system is discussed. A counterexample to a conjecture of Dirac for
a system with a singular higher-order Lagrangian is given. Applying the theories to the Yang-Mills field

theory we find a new PBRST charge. Some additional information about the Lagrangian multipliers

connected with first-class constraints is given.

PACS number(s): 03.20.+ i, 11.10.Ef, 11.30.—j, 11.15.—q

I. INTRODUCTION

Dynamical systems described in terms of higher-order
Lagrangians were first given by Ostrogradsky [1,2] (see
Ref. [2] and references cited therein}. Recently, higher-
order derivative Lagrangians obtained by many authors
have exhibited a lot of interesting aspects in connection
with the gauge theories [3], gravity [4,5], modified
Korteweg —de Vries (KdV) equations [6], supersymmetry
[7,8), string models [9,10], and other problems [11—15].
Higher-order Lagrangians have emerged as effective La-
grangians in gauge theories [16]. Baker et al. argued
that at large distances (strong coupling}, the Yang-Mills
theory could be approximated by an effective Lagrangian
containing the second derivative of field-strength tensors
[17]. In recent years, there has been a certain amount of
interest in applying the methods of molecular dynamics
to systems containing complex molecules discussed by de
Leeuw, Perram, and Peterson [18]. This has led research-
ers in this field to make practical use of constrained dy-
namics with the holonomic constraints which arise in
classical statistical mechanics. In addition, in some mod-
els of field theories the field variables are subjected to
holonomic constraints (for example, the nonlinear o
model [19], etc.). These holonomic constrained systems
can be treated as constrained Hamiltonian systems by in-

troducing Lagrangian multipliers. The approach present-
ed here is a more general case: studying the symmetry
properties in canonical formalism for singular Nth-order
Lagrangians (N refers to the highest time derivative in
the Lagrangian} with the aid of the Ostrogradsky trans-
formation and the Dirac theory of a constrained system.

As is we11 known, the discussion of the symmetry prop-
erties of a system is usually based on examination of the
Lagrangian in configuration space. Classical Noether
theorems were formulated in terms of Lagrange's vari-
ables. For a system with a regular Lagrangian and a
finite number of degrees of freedom, the invariance under
a finite continuous group in terms of the canonical vari-
ables was discussed by Djukic [20]. A diff'erent version of

the Noether theorem for constrained Lagrangian systems
has been proved by Ferrario and Passerini [21]. The ex-
tended second Noether theorem has also been discussed
by Lusanna [22]. The system with a singular Lagrangian
is subject to some inherent phase-space constraints, and is
called a constrained Hamiltonian system [23). The sym-
metry properties of this system in canonical formalism
for ordinary singular and second-order Lagrangians have
been given in our previous work [24—26]. The generali-
zation of those results to the singular Nth-order Lagrang-
ians is straightforward. In this paper, the generalized
first Noether theorem (GFNT) and generalized Noether
identity (GNI) in canonical formalism for singular Xth-
order Lagrangians have been derived and some new ap-
plications are given. The GPCII for singular ¹h-order
Lagrangians has also been deduced. The invalidity of
Dirac's conjecture is further discussed.

The paper is organized as follows. In the beginning of
Sec. II, we discuss some aspects of the Dirac theory for
singular ¹h-order Lagrangians relevant to the following
discussion. Then, we derive the GFNT and GNI in
canonical formalism and point out that in some variant
systems there may also be a Dirac constraint. Another
form of GNI is also formulated, combined with the con-
cept of a weak quasi-invariant system, with which one
can further analyze the canonical constraints. The strong
and weak conservation laws are formulated in a more
general form. Based on the symmetry properties of the
constrained Hamiltonian system, we present in Sec. III a
counterexarnp1e without linearization of constraints for a
system with a singular higher-order Lagrangian. In this
example Dirac's conjecture fails. In See. IV, we present
our approach for obtaining the GPCII for singular Nth-
order Lagrangians in which the constraints depend on
time explicitly. The advantages of this derivation of the
GPCII are that one can easi1y discuss the connection be-
tween the GPCII and canonical equations for a con-
strained Hamiltonian system. In Sec. V, the applications
of the theory to the Yang-Mills theory with singular
higher-order Lagrangians are given and a new partial
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Becchi-Rouet-Stora-Tyutin (PBRST) charge and some
additional information about the Lagrange multipliers
connecting with the first-class constraints are obtained.
Section VI is devoted to the conclusions.

where I, J denotes the generalized Poisson bracket

Bu Bv Bu ()v

aq' ap(') ap(') aq'
(2.8)

II. GFNT AND GNI
FOR SINGULAR Nth-ORDER LAGRANGIANS

The stationary conditions of the primary constraints

P, enable one to define successively the secondary con-
straints

A. Preliminaries

We start this section by reviewing very brie6y the tran-
sition from Lagrangian to Hamiltonian formalism for
singular higher-order Lagrangians given in a paper [13],
by Saito, Sugano, Ohta, and Kimura. Consider a system
whose Lagrangian is given by

1 2 nq
M ( t q(p) q(1) &

~ ~ ~ & q(N) )& q ~q, q, . . . , q

gyo' + [())'„H,] =0,
yak

—i

yk f—yk
—i — s + [yk

—i H ] ()

This algorithm is continued until

pm+1 f—ym —Cb yk

(2.9a)

(2.9b)

(2.9c)

d

The Euler-Lagrange equations of this system are given by

N

g ( —1)'D* =0 .
s =0 q(s)

(2.1)

The Ostrogradsky transformation introduces canonical
momenta

Pi.
(N —1) BL

Clq (N)

(2.2a)

(s —1) ()—p; (s =1,2, ...,N —1),i
q(s)

(2.2b)

and using these relations one can go over from the La-
grangian description to the Hamiltonian description.
The canonical Hamiltonian is defined by [13] (the sum-
mation is taken over repeated indices)

+c Pi q(s+1)

is satisfied. All the constraints P, are classified into two
classes. A P, is defined to be first class if [(()„(()b]=0
(mod P, ) for all Pb', otherwise it is second class.

t'=t+ht,
qI, )(t')=qI, )(t)+hqI, )(t),
p(s)(t )p()(t)+gp(s)(t)

(2.10)

where hq(, ),hp ' are total variations which can be ex-
pressed in terms of the simultaneous variations

i (s)5q(, ),5p;

Let it be supposed that the variation of canonical action
integral

B. GFNT

Let us consider the transformation properties of the
system under the continuous group with the infinitesimal
transformation given by

n N —1

g p,
'

q(, +i) L(t, q(0q)(,—(). . . , (q)))v. (2.3)
i =1 s=p

(,)Ip= f Lpdt= f (p,"q(,+, ) H, )Ct—(2.12)

We suppose the extended Hessian matrix

dLHJ= . . (i j =1,2, .. ,n).
Bq (N) Bq (N)

(2.4)

under the transformation (2.10) is given by

AI = DA+V dt,
1

(2.13)

P, (t, qI, ),p ))=0 (a =1,2, . . .,R), (2.5)

where the sign = (weak equality) means equality on the
constrained hypersurface. Equations (2.5) are called the
primary constraints. The total Hamiltonian is given by

to be singular and its rank to be (n —8). Thus, one can-
not solve for all q(N) from (2.2a) because det~H; ~

=0; this
implies the existence of constraints [27]

where A and V are functions of t, q(, ) and p;"'. Under the
transformation (2.10), from (2.12) and (2.13) one has

5I . 5I5p" +5qi

+D[p,"5qI,)+(p,"q(,+, ) H, )ht]=DA+ V—,

(2.14)

H =H +ay' (2.6) where

where A, '(t) (a =1,2, ...,R) are Lagrange multipliers.
The canonical equations of the singular Xth-order La-
grangians are given by [28)

5r, i aa, 5I, „, aa,

~ i i - (s) (s)
q( )

= Iq( ) Hra P = [p; Hr] (2.7)
Let us first consider the finite continuous group G„and
let
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'q(s) ak(s)( ~'q(s)spi

gp (s)
& +(s)a(t i (s) }

(2.10')

where e (o = 1,2, ..., r ) are parameters. For a weakly

quasi-invariant system [22] V='0, where = means "eval-
uated on the trajectory of motion. " Let it be supposed
that the constraint conditions (2.5) are satisfied,

ay'. . a(().'
5(|) = 5q' + 5p"-0a a i (s) a (s) i

g(q) P~

(2.16)

D[p '(g('
)
—q(', )~ )+(p 'q(', +, ) H, )~—]=DA

under the transformation (2.10'). These conditions imply
that the constraints (t), =0 are invariant under the simul-

taneous variations determined by (2.10). Introducing a
set of Lagrange multipliers V(t}, combining the expres-
sions (2.14) and (2.16},and using the canonical equations
(2.7), one obtains

C. GNI

As is well known in the massive Yang-Mills theory, the
Lagrangian is not invariant under gauge transformation;
gauge-invariant interaction of massive Fermi fields with

gauge fields is not invariant under the chirality transfor-
mation of the Fermi fields; the effective Lagrangian with
Faddeev-Popov ghost fields is not invariant under the
gauge transformation; the invariance is restored only un-

der the BRS transformation. Therefore, for the Lagrang-
ian of a system which is not invariant under an infinite
continuous group, the discussion of the transformation
properties is necessary. The discussion of this problem in

configuration space was given in our previous work [29].
Now we discuss the transformation properties for those
systems under an infinite continuous group 6„, in ex-

tended phase space. This will lead to the GNI in canoni-
cal formalism. In quantum theory, the GNI corresponds
to the %ard-Takahashi identity.

Let us consider an infinite continuous group G „„gen-
erated by the transformation of time and canonical vari-
ables given by

(o =1,2, . . . , r ), (2.17)

where A satisfy A=a A . Therefore, we have the fol-

lowing generalized first Neother theorem (GNFT) in

canonical formalism for a singular Nth-order Lagrangian.
If, under the transformation (2.10'), the canonical action
(2.12) is a weak quasi-invariant and the constraint condi-
tions (2.5) are invariant under the simultaneous variations

5q(, )
and 5p ' induced by (2.10'), then the r expressions

J
t'=t+ht=t+ g A, DJE (t},

j=0

q (, )
(t') =q t, )

(t}+bq I, ) (t}
K

)(t)+ g 8I )kD E(t),
k=0

p,
'" (t') =p '"(t)+ap,"(t)

(2.20)

p '/Is) —H, r —A =const ((r=1,2, . . . , r) (2.18) p (s)( f ) + y c(s)aD m

m=0

are constants of motion for the singular Nth-order La-
grangian. This theorem is a generalization of our previ-
ous results [24—26].

For example, if the Lagrangian L and constraints ((),

do not depend on time explicitly, for the translation 4t of
. time t, one has b,L =0 and b, its, =0; hence

where e ( t) (o = 1,2, .. . , r } are arbitrary infinitesimal
functions and A, 8, C's are functions of t, q(, )(t), and

p,"(t). Under the transformation (2.20), from (2.14) one
has

ay'.
5$ = 5q' + 5p"

ay'. , ay'. dyO

dt
(2.19)

where

Sa Pi 5q(s) (Pi q(s+() Hc )~t ]'
tl

According to the stationary conditions of constraint, the
conditions (2.16) are satisfied. In this case the GFNT
gives us the conservation law of generalized energy. Con-
versely, if one requires the conservation of generalized
energy in agreement with the Lagrange description, then
the constraint must be preserved in time. This is just
Dirac's consistency condition for the constraint.

The GFNT in canonical formalism can be easily ex-
tended to the case when the system is subjected to extra
holonomic constraints fb(t, q(o), ...q(o) ) =0. In this case

one needs to require further that the extra holonomic
constraints are invariant under simultaneous variations

5q(o) induced by (2.10').

A =gu D'
i=0

V = gu„D",
n=0

(2.22)

and u, U*s are functions of t, q(, ), and p,.". Since e (t}are

arbitrary, one can choose e (t) and their derivatives up to
a required order to vanish on the end points of the inter-

val [t„tz]; then the integral of the right-hand side of
(2.21) is reduced to zero. We repeat the integral by parts
of the remaining terms on the left-hand side of the identi-

ty (2.21};appealing to the arbitrariness of the e (t} one

can force the end-point terms to vanish, after which one
can apply the fundamental lemma of calculus of varia-

tions to conclude that
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M 5I
1)mDm C(s)c' P + y ( 1)j+1Dj

im g (s
m=0 ~Pi j=0

K 5I
g lT ~ (s) P + ~ ( 1)kDk birr P

(s) (s)k i
5Pi k =0 5q (s)

No

+ g( —1)j+'Dj A,. q(, ) . = g ( —1)"D"U„
j =0 ~0(s) n =0

(2.23)

Thus, we have the following generalized second Noether
theorem in canonical formalism. If the variation of
canonical action is given by (2.13) under the transforma-
tion (2.20), then there are r identities (2.23) between the
functional derivative 5I /Sq(, ),5I /5p," and their
derivatives up to some fixed order. These identities (2.23)
are called generalized Noether identities (GNI's) in
canonical formalism. If VAO, these systems are called
variant systems. In the case of invariance (V=O), the
right-hand side of (2.23) equals zero. Thus, we have iden-
tity relations between the functional derivatives and their
derivatives and this leads to a reduction in the number of
linearly independent functional derivatives 5I /5q(, ) and

5I, /5p, '*'.

Let us now derive the alternative form of the GNI in
phase space. If we consider a set of local transformations
for fixed s (s =c),

b,t=a(tr (t)co (t),
bqI, ) =a/I, )(t}(0 (t),
Qp(c) —af(chr(t)~ (r)

(2.24)

f2

EIP =f aID[A (t, qI, ),p(*))co (t)]

+ V(t, qI, ),p ))co (t)Idt, (2.25)

where V='0 and A and V are functions of t and the
canonical variables. Then, one can get

where co {t) {o=1,2, ..., r) are arbitrary functions of
time and a is an infinitesimal parameter, under which it
is supposed that the canonical action is weakly quasi-
invariant, i.e.,

5I 5I~ —p. ~ + . (,)
—j(,) ~ —y ~ g= p —p,

'
(,)

—~,
1 pg. g (~)

(2.26)

As 0) (t) are arbitrary functions, the integrands of volume and surface terms have to vanish identically and we get the
two sets of Noether identities in phase space,

I
( g(c)lr P (c))ttro )+ P

( gllr q
l

itilr ) VIT —0
Jl q(c)

Asr p (c)yi lr IIcylr 0

(2.27)

(2.28}

Using the equations of motion, one can obtain some constraints in phase space froin these Noether identities (2.27) and
(2.28).

D. Dirac constraint

Let us now give a preliminary application of the GNI to the Dirac theory of constrained systems. Let us put ht =0
in (2.20), as is usually done in the discussion of gauge transformation. Let it be assumed that the variation of canonical
action satisfies (2.21}with ht =0 on the right-hand side. For the sake of convenience, it is supposed that M &E,N0 &E
and, in this case, the GNI becomes

M aa,
1 )mD m C(s)c q(l

m=0
rm (s) 5 (s)

T

+ X ( —1) D &(s)k Pi'——
k=0

No
= g ( —1)"D"v„

n=0
(2.29)

Using the Ostrogradsky transformation (2.2), one finds BL

Bg (N)

82L
'q(s+ i)

s =0 ~9(N) ~e (»
(2.31)

N

Pi
(0) ~ ( 1 )s

—1D (s —1)

s=l a

and

(2.30)

Substituting the expressions (2.30) and (2.31) into the
identities (2.29), one finds that in these identities the
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highest derivatives of q
' must occur in the terms

D (8Io))rP ') which contain the (2N +E)th-order
derivatives of q', and these must cancel each other ir-
respective of other terms as Bergmann did for the singu-
lar first-order Lagrangian [30]

$2L
&(o)x; ~(zx+z) =0 .

dq (tt) dq4)
(2.32)

These conditions are to be fulfilled for any (2K+K)th-
order derivatives of q', thus, one obtains

BLpic (2.33)
()q IN) ()q'4)

Because 8(o)z are not all identically zero, this implies
that

ht=aoe (t),

~qI. ) =(bo(.)+b)(.)D)e (t)

gp(s) (c(s)cr+c(s)uD) (t)

(2.35)

where a, b, c's are functions of t, q(, )(t),p '(t) and it be
supposed that the variation of canonical action satisfies
(2.21). Multiplying the GNI (2.23) by e (t) and subtract-
ing the result from the basic identity (2.21), one obtains
the exact differential identity

conservation laws are valid whether the equations of
motion are satisfied or not. Along the dynamical trajec-
tory of motion one finds weak conservation laws.

Let it be supposed that in transformation (2.20) one
uses

dL
det

iraq (x) i3q4)
(2.34)

5I 5I
bio & + (s)a

1(s)
~ i li

fi (s)
9(s) Pi

Then, the extended Hessian matrix is degenerate and
therefore we conclude that this variant system also has a
Dirac constraint. For example, the massive Yang-Mills
field theories belong to this category.

+p "(bo(, +b', )D) H, a() ——A

g ( —1)J(D'v„)D" ' ' c (t) =0,
n =1 j=o

(2.36)

E. Strong and weak conservation laws

According to the GNI (2.23), one can obtain strong
conservation laws or exact differential identities for
higher-order Lagrangians in certain cases. The strong

I

which implies the existence of strong conservation laws.
If the transformation group has a subgroup and

e = cog (t), where e are numerical parameters of the Lie
group, one can get the weak conservation laws along the
dynamical trajectory of motion

aH, , aH, 0 n —1

bi(, ) . +ci'; +p '(bo( )+b'(( )D)—H, a() —A —g g ( —1) (D~v„)D" p =const (p=1,2, ... r) .
q(s) Pi n=1 j=o

(2.37)

Thus, we have seen that the GNI may be converted into
weak conservation laws in certain cases even if the canon-
ical action of the system is not invariant under the
specific local transformation. This algorithm deriving
conservation laws difFers from the first Noether theorem,
where the invariance under a finite continuous group im-

plies the existence of conservation laws. To illustrate this
result, we shall discuss it further in Sec. V.

III. DIRAC'S CON JECIO'RE
FOR A SYS'IKM W1TH A SINGULAR

HIGHER-ORDER LAGRANGIAN

At present, Dirac's theory of constrained systems plays
an important role in theoretica1 physics, especially in
modern quantum field theory. With its help, many of the
central problems which appeared in the development of
the quantization procedures of gauge and gravitational
fields have been solved [28]. However, in spite of these
general achievements, some basic problems in the theory
are still being discussed widely in the literature, one of
them being Dirac's conjecture [23]. Dirac in his work on
generalized canonical formalism conjectured that all
first-class constraints are independent generators of the

gauge transformation which generate equivalent transfor-
mations among physical states. It had been pointed by
Henneaux, Teiteboim, and Zanell [31], Costa, Girotti,
and Simples [32],and Cabo [33] that this problem is close-
ly connected with the problem of whether Dirac's pro-
cedure in terms of the extended Hamiltonian Hz and the
Lagrangian description are equivalent. From time to
time there have been objections to Dirac's conjecture
[34—38]. Costa, Girotti, and Simples pointed out that all
these objections are based on the straightforward obser-
vation that the equations of motion derived from HE are
not strictly equivalent to the corresponding Lagrange
equations [32]. Several examples given by Alicock [39],
Cawley [40], and Frenkle [41] indicate that Dirac's con-
jecture is invalid when the constraints are written in
linearized form. Recently, Qi has argued that Dirac's
conjecture is valid [42]. A number of counterexamples
are reexamined in which the constraints are not linear-
ized as Cawley and others have done. Owing to the lack
of a rigorous proof of Dirac's conjecture [22,43] (or even
a proof that it is not correct), we have provided two ex-
amples of a system with a singular Srst-order Lagrangian
to show that Dirac's conjecture fails [24,26]. Our exam-
ples differ from others in that we do not write the con-
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straint in linearized form. Some points in our previous
counterexamples need further discussion. First, if one
writes the constraint in linearized form as is done in the
literature [24,26], the full set of secondary constraints be-
comes second class. Second, because the secondary con-
straint p„enters into the total Hamiltonian in these ex-

amples, the total Hamiltonian H~ is not differentiable on
the constraint submanifold. We have presented another
example of how to avoid these ambiguities [44].

We did not know of any system with a singular
higher-order Lagrangian in which Dirac s conjecture was

invalid. Now we will further discuss this problem.
Dirac's conjecture for a singular ¹h-order Lagrangian
states that all first-class constraints in those systems are
independent generators of gauge transformation. If this
conjecture holds true, then the dynamics of a system pos-
sessing primary [iI},] and secondary [P, ] first-class con-
straints should be correctly described by the equations of
motion arising from the extended Hamiltonian

H =H +H'=H +A.'it} +p'iI}"=H +p'P (3.1)

where pk(t) are also Lagrange multipliers.
The present paper discusses the validity of Dirac's con-

jecture for a system with a singular higher-order La-
grangian from the viewpoint of the generalized Noether
theorems in phase space. Let us consider whether con-
servation laws derived from HE via GFNT in canonical
formalism are equivalent to conservation laws arising
from Lagrange's formalism via the classical first Noether
theorem [45]. In this way one can judge the validity of
Dirac's conjectures as we did in our previous discussion
for a singular first-order Lagrangian [24,26). Using the
GNI (2.23) one can also examine this problem. If Dirac's
conjecture holds true in a problem, the canonical equa-
tions of constrained Hamiltonian systems are derived
from the extended Hamiltonian HF. Along the trajectory
of motion, from (2.23) one has

M M E H'
g ( —1) D C" + g( —1)J+'DJ A "' + g ( —1)"D" 8'

im lsd j Pi is) (s)k i
m=0 ~pi J =o i)P 'k =0 ~P (s)

J BH'+ g( —1)J+'DJ A~
''

j=O ~~ Is)

No
= g ( —1)"D"u„.

n=0
(3.2}

The expressions (3.2) may become either a trivial equality

or may give more relationships for the Lagrange multi-

pliers connected with the first-class constraints [26]. If
these expressions (3.2) give us inconsistent results for an
admissible Lagrangian, then Dirac's conjecture regarding
secondary first-class constraints may be invalid in this
circumstance [26].

Let us consider a model with Lagrangian [46]

—p p +px X(1)+p p(1) +p (1)

+Px ~(1) X(1) (1) (Q) (Q) ~(Q) (1)
(1) (3.6)

with the primary constraint it}o=p'"=0. The total Ham-

iltonian is given by Hr=H, +hi}), where A(t) is a
Lagrange multiplier. The stationary condition of the
constraint [Q,Kr j =0 yields the following secondary
constraints:

L =xi2&zizi+xiiiziii+xio)z(oi yi„z„,—y, o,z„, . (3.3}

The Lagrangian (3.3) is invariant under a "scale" trans-
formation

0'={0'H ]=—p"' —p"'-o
y2 —[y& H ]

—p(0) 0

iI} = [its Hr ] =z(o) =0 ~

(3.'7)

(3.8)

(3.9}
—1

X( )=P X( )

&(.) =P

zi, ~
=pzi, i (s =0, 1,2),

(3.4)

where p is a numerical parameter. This leads to the con-
servation law via the classical first Noether theorem
given by Anderson [45].

The canonical momenta px'",p~",p~"' and p„' ',p~ ',p,' '

that conjugate to x(1),y(, ),z(, } and x(Q} J (Q} z(Q) are

(1)— (1)—0 (1)—

All constraints [P"] (k =0, 1,2, 3) are first class. The
phase space Lagrangian and the primary constraint P
are invariant under the following transformation:

—1 Ix()=p x() &()=p &(), ()=p ()
p(i )pp( i )p(0)p ip(o)(s= 0, 1)

(3.10)

(s) (s) (s)
p, z(, )

—p„x(,)
—p„y(,) =const, (3.11)

Using the results (2.18) of the GFNT one obtains the con-
servation law

(Q) ~ (1), (Q)
Px Z(1) Px Py Z(2) &

respectively. The canonical Hamiltonian is given by

(3.5)
which can also be obtained by using Lagrange's variables
via the classical first Noether theorem [45].

If Dirac's conjecture holds true, then the dynamics of
this system should be described by the equations of
motion arising from the extended Hamiltonian
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HE=H&+pi(t)'+@zan +@3' . All secondary first-class
constraints in this Hamiltonian are taken into account as
Costa, Girotti, and Simples did for a singular first-order
Lagrangian [32]. According to the GFNT, for the ex-
istence of the conservation law {3.11)one must further re-
quire that all secondary constraints (f) (k =1,2, 3) satisfy
the conditions (2.16), but these secondary first-class con-
straints cannot satisfy the conditions (2.16) under the
transformation (3.10). Hence one cannot obtain the con-
servation law (3.11}from the extended Hamiltonian HE.

Now let us give a brief discussion about the generator
of gauge transformation of a constrained Hamiltonian
system. Let it be supposed that the set of all independent
constraints is first class and let these constraints be divid-
ed into primary (f), and secondary yb ones. According to
Dirac's prescription, the generator 6 of the gauge trans-
formation for a system can be written as

G =8'(t)(I},+to (t}yb . (3.12)

(mod (t}0 ) . (3.13)

The quantities [p,H, j and [yb, H, j can be expressed as

I yb, H, j ab.y. (mod—((), ),
[(g H j p fgf (mod(f), )

(3.14a)

(3.14b)

Substituting (3.14) into (3.13}and taking into account the
linear independence of the constraints, one obtains the
following difFerential equations relating the coefficients
8'(t) and cob(t) in generator (3.12):

Hei»
+ab, co, +pb, 8'=0 (mod/, ) . (3.15)

dt

This result has been given by GalvXo and Boechat for an
ordinary singular Lagrangian [43]. But they have dis-

carded the last term on the left-hand side of Eq. (3.8} in

their paper. Here we have given a simple treatment to
obtain the result, clarifying some confusion in their pa-
per.

Applying this result to the above example, Eq. (3.12}is
given by

G =8(t)p +e))(t)p' +to~(t}(t) +co3(t)p (3.16)

From (3.14) and (3.15}, one finds &(t)= —8(t),
io2{t)= co)(t), &3(t—)= co@(t). Let 8(t}=—V(t}; then the
generator (3.16) assumes the form

G = e(t)z(o)+ e(t—)p„' '+ s(t)(l»„' '+p» ')+Y(t)p»" .

It has been pointed out by Saito et al. [13] that the gen-
erator 6 of the gauge transformation must be conserva-
tive. So we have

d8' GIN
Q, +8'(f„H, j+ yb+tobfyb, H, j =0

5x(, )
= [x(,), G j =s'+"(t),

E(s+2)(t)

5z...=0, 5p,( '=E(t),
(3.18)

5 "'=5 "=5 "=0 (s =0 1)

where E'"'=D "s(t). Under the transformation (3.18) the
conserved quantity (3.11) is gauge invariant, and there-
fore this constant of motion is a physical, observable
quantity in the Dirac sense. The total Hamiltonian HT
and the extended Hamiltonian HE may generate di8'erent

equations of motion for gauge-dependent variables. As
pointed out by Henneaux, Teiteboim, and Zanell [31]and
Costa, Girotti, and Simples [32], although one can change
the equations of motion, one cannot change the gauge-
invariant quantities of the system. The gauge-invariant
constant of motion (3.11}cannot be obtained from the ex-
tended Hamiltonian HE,' this means that Dirac s conjec-
ture fails in this example in which there is no lineariza-
tion of the constraint. This example shall be investigated
with the aid of GPCII later.

IV. GPCII FOR A SINGULAR
HIGHER-ORDER LAGRANGIAN

A. GPCII

The Poincare-Cartan integral invariant plays an impor-
tant role in classical mechanics and field theories. The
generalization of this invariant to the case with an ordi-
nary singular Lagrangian has been given by Benavent and
Gomis [47] and Dominici and Gomis [48], and some ap-
plications have also been given by Dominici and Gomis
[49] and Sugano [50]. Now a more general case will be
discussed. Let us consider a system whose ¹h-order La-
grangian is singular and depends on time explicitly; the
GPCII for this system has been deduced. Our starting
point di8'ers from traditional ones, which are based on
the analysis in configuration space. Here, the treatment
is based on canonical action and transformation proper-
ties of the system in extended phase space. %'e deduce
the GPCII for a system with a singular 5th-order La-
grangian in which the constraint conditions are invariant
under the simultaneous variation of canonical variables.
It is easy to show the connection between the GPCII and
the canonical equations of a constrained Hamiltonian
system from this point of view.

Let us consider a system whose Lagrangian
L(t, q(o) q(N)) is singular and depends on time t explic-
itly. This system is subjected to some inherent phase-
space constraints. Let (() (a=1,2, . . . , A) denote the pri-
mary first-class constraints and 8 (m =1,2, . . .,M}
denote all the second-class constraints. The canonical
equations for this system can be written as [51]

(3.17)

This result can be obtained by using the method that has
been given in our previous paper [26].

The generator (3.17) produces the following transfor-
mation:

oa, aa.+pa
~ (s& ~ (s)

00 '.[[8 .,H, j+()8 !()t],
( g ) ??1??1 ??1 & C

(4. la)



SYMMETRY IN PHASE SPACE FOR A SYSTEM WITH A. . . 883

aH, ap

aq (s) aq (s)

ae
+ . 5 ' [[8~ H +ae /ar],

BQ( )

(4.1b)

g ~t'=r+ b t(co),

q( )(t)~qI )(r )=q( )(r)++qI )(tsar)) s

p "(r) p" (r')=p "(t)+hp '(t, co),

where ~ is a parameter which satisfies

(4.2a)

where A(t), are Lagrange multipliers and,
= [8,8 ]. In general, the constraints t)I) and 8 are
also explicitly dependent on time.

Let us consider the following transformation in extend-
ed phase space:

qI„(r,O)=qI„(r), p,"(r,O)=p,"(t) . (4.2b)

Under the transformation (4.2), the variation of canonical
action (2.12) is given by

(()s)pro= f ( )
5p ~ + . 5qI )+D[p 5q(~ )+(p q( +)) H )kr] 'dr

ps 9(s)
(4 3)

aV. „ ae.
(,)

5p '+,. 5q (,)
=0, (4.4)

Let it be supposed that the simultaneous variation 5q(, )

and 5p,"determined by (4.2a) satisfy the following condi-
tions:

any point on C& there is a dynamical trajectory of the
motion. The dynamical trajectories through every point
on C, form a tube of trajectories. Choose another closed
curve C2 on this tube that encircles this tube and inter-
sects the generatrix of the tube only once. Suppose the
equation of C2 is given by

ae. . . ae.
5p '+ . 5q(,)=0. (4.5) t =t2(co), q(', ) =qt, )2((0), p,"=p,'2'(co) . (4.10)

+D(p('hq'(,
) H, h t ) dt . —

The stationary conditions of constraint yield the follow-
ing results [51):

(4.6)

X.= —~.—.).[[e „H,]+ae„,par] . (4.7)

Using the Lagrange multipliers A, (t) and s{, (t) and com-
bining the expressions (4.3), (4.4), and (4.5), one obtains

AI~ =I&(co)he@

5I a ~ ae~
pg

' +Z +X 5 "
s) 5p ($) ap (s) ap ($)

5I a ae
+ +A. . +A, . 5 '

l l q(s)
5q (s) aq (s) aq (s)

Taking the integral for the expression (4.8) in the interval
[0,I] along the curve C, and Cz, one obtains

W= g [p,"hqI, ) H, ht]=—S (k =1,2) (4.11)

(where S denotes invariant}. Consequently, for any sim-
ple closed curve C lying in the subspace I of the extend-
ed phase space defined by the constraints, the integral
(4.11) is invariant with respect to an arbitrary displace-
ment (with deformation} of the contour C along any tube
of dynamical trajectories. 8' is called the generalized
Poincare-Cartan integral invariant (GPCII) for a system
with a singular ¹h-order Lagrangian.

It is worthwhile to point out that owing to the station-
ary condition of constraint the conditions (4.4) and (4.5)
imply that the constraints ()(} and 8 are also invariant
under the total variation of canonical variables including
time:

Substituting Eq. {4.7) into Eq. {4.6) and using the canoni-
cal equations of the constrained Hamiltonian system
(4.1},one gets

".~+".~ +".~ =0q(s)
a (s) Pf

~ (s) p]
(4.12)

EI =Ip(a))hn)=[p, "hqts) H, h.t]) . — (4.8)
ae. ae. . ae.
at aq' ' ap"

(4.13)

In the extended phase space spanned by the variables

q(, ), p and t, one can choose a closed curve which
satisfies the constraint conditions /~=0, 8 =0. This
closed curve C, lies in some subspaee I owing to these
constraints. Let it be supposed that the equation of this
closed curve C, is given by

(4 9)

where co=0 and co=1 are some points on C&. Through

In the literature [47,48], the system with a singular first-
order Lagrangian was discussed in which the constraint
does not depend on time explicitly, which is a special case
of the more general consideration given above.

B. GPCII and canonical equations

Let us consider a dynamical system described by an
¹h-order Lagrangian. Due to the singularity of the La-
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grangian, the motion of the system is restricted to a hy-
persurface of the phase space, determined by a set of con-
straints in which the first-class constraints are

A, (t, q(, ),p,")=0 (a =1,2, .. . , A),

and the second-class constraints are

8 (t, q{,),p ')=0 (m =1,2, . . . ,M) .

(4.14)

(4.15)

Let it be supposed that the dynamical trajectories of the
system satisfy a set of di8'erential equations involving
functions A, '(t) (a =1,2, ..., A),

l i (s) a
q(, ) =f(,)(t,q(, ),p, , X ),
P(s) g(s)(t qi p(s) ga)

Let H, be a function with the property

BA,
+[A„H,}=0.

(4.16)

(4.17)

q(s)

dH, BH,+ — + At=0 .
dt Bt

(4.18)

Due to constraints, bq(, ) and hp ) are not independent
and satisfy

(4.19)

(4.20)

Introducing the Lagrange multipliers V(t) and A. (t),
from (4.17—(4.20) one obtains

Then, Eqs. (4.16) are the canonical equations if the gen-
eralized Poincare-Cartan integral (4.11) is invariant.

In fact, following Refs. [48,52], introducing an auxili-
ary variable, and using GPCII (4.11), one can obtain

g + . b,q{,)+ —f{,)+ ( ) hp
~P;

extended Hamiltonian HE, obtained by adding a linear
combination of all secondary first-class constraints to the
primary ones, the GPCC (4.11) can also be deduced as
long as the simultaneous variations of the canonical vari-
ables satisfy the conditions (4.19) and (4.20). Thus we
conclude that the necessary and sufBcient condition for
Eqs. (4.16) to be the canonical equations arising from an
extended Hamiltonian is that the GPCII exists for such
systems. Use of the GPCII enables one to write the equa-
tions of motion for a dynamical system as canonical equa-
tions arising from an extended Hamiltonian, and one sees
that all the first-c}ass constraints appear in the Hamil-
tonian. Here one cannot introduce any distinction be-
tween primary and secondary ones. That is to say, the
existence of the GPCII for a system implies that Dirac's
conjecture holds true for this system. The GPCII di8'ers
from the usual ones for a regular Lagrangian in that the
variation of canonical variables must satisfy Eqs. (4.19)
and (4.20). Applying this result to the example given in
Sec. III, the constraints P" (k =0, 1,2, 3) and the varia-
tions 5q{,),5p,"must satisfy the conditions (4.19) and
(4.20) for the existence of the GPCII. This requirement
leads to hz=0. Owing to this restriction on canonica1
variables in the GPCII, one cannot deduce all the canoni-
cal equations (arising from HE) via the GPCII even with
the help of the transformation (3.18). This implies that
the equivalence between the GPCII and the canonical
equations (arising from HE) is violated The. refore, the
GPCII does not exist under the condition hz=0 for an
extended Hamiltonian. Thus, one cannot predict that the
Dirac's conjecture is valid in that example.

V. APPLICATIONS TO THE GAUGE FIELD
THEORIES

To illustrate the use of the results of Sec. II, we give
some preliminary applications to the Yang-Mills theory
with higher-order Lagrangians.

(i) The Yang-Mills theory with a higher-order La-
grangian was proposed by Baker et al. [17]. The canoni-
cal formalism for the theory was discussed by Saito et al.
[13],whose Lagrangian is given by [13]

(4.21a) X = —)F" F vDi'F""D F—0 4 pv

BH, BA,

~q (s) ~ (~)

88
QP1

i
(4.21b)

where

F„,, =(3„A,, —8 A„+[ A„, A, ], (5.2)

dH, BH, BA, BO
+A, +A,

dt Bt Bt
(4.21c)

(5.4)

Substituting Eqs. (4.7) into Eqs. (4.21a) and (4.21b), one
gets the canonical equations (4.1). Equation (4.21c) is a
consequence of Eqs. (4.2 la) and (4.21b).

In the above derivation for the GPCII (4.11), only .he
primary first-class constraints have been taken into ac-
count. If the dynamics of the system is generated by an

sc is a constant, and T, are generators of the gauge group.
Let m„"' and m„denote the canonical momenta conjugate
to fields A" and A~, respectively. The canonical Hamil-
tonian and constraints were found by Saito et aI. to be as
follows [13]:
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H, = dx%,

= fd'xi (~', ")'+~',"(D;~(,)+[~',~(()]+[F0; ~'])+&DOFJD' "
8x

+2&D;FO.D'F +]cD;F.kD'F "+—,'F" F,+n.„A(i) ', (5.5)

(1) 0

P = —no —Dn, =0,1 i (1)

D'n—+D'[A n'"]+[F ' n' )-0
P =[/, A ]=0.

(5.6)

(5.7)

(5.8)

(5.9)

All the constraints are first class.
We have shown that the canonical action for the La-

grangian (5.1) is invariant under the following transfor-
mation [53]:

5A' =D' e (x)

5~(1) ~o bps( )

5&=fb, Ws (x)+fb, m(,""e (x),
( l))a, fa (1))aeb(X)~a bc ~c

(5.10}

5H'

5A„'

Da 5ag +fa pc

5H'
'" 5W'

(1)p,

=0, (5.12)

(5.13}

along the dynamical trajectory of motion arising from the
extended Hamiltonian; substitution of Eq. (5.11) for the
above expression (5.12) gives us the relationships for

Lagr ange multipliers connected with erst-class con-
straints. As is well known, in theories with second-class
constraints all Lagrange multiplier s connected with
second-class constraints are determined by the canonical
Hamiltosian and second-class constraints themselves, but
in theories with first-class constraints, the Lagrange mul-
tipliers connected with first-class constraints are not
determined by the stationary conditions of constraint be-
cause the Poisson bracket of the first-class constraints
equal zero on the constraint hypersurface. If Dirac's

I

The extended Hamiltonian for this system is given by
Hz =H, +H', where

f d 3& ( ZayO +Zap 1 +Zay2 +Zay3 )

Dirac's conjecture is valid for this system. Using the
QNI (2.23), (5.10), and (5.11),one gets

H' H' 5H'fa ~(1)p +fa ~ fa
Q ~(1)p

bc c 5 (()p bc c 5~ bc o ~c
5 (1))aSg a 7TQ

conjecture holds true in a problem, along the trajectory
of motion the GNI (2.23) may become a trivial equation
or sometimes give us more additional relationships for
these Lagrange multipliers connected with the same
first-class constraints as the above expressions (5.12).
Therefore, the application of the GNI in canonical for-
malism enables us to obtain some additional information
about the Dirac constraints and the corresponding
Lagrange multipliers.

(ii) In non-Abelian gauge theories, the Lagrangian
without ghosts violates unitarity. Using the Faddeev-
Popov "trick" through a transformation of the generat-
ing functional for the Lagrangian (5.1) in a Lorentz
gauge, one can obtain the effective Lagrangian with
derivatives of higher order

2 s=Xo+B'c}A'"+ —(B') —() C'DPC (5 14)

5B'=0,
5C'= 'fb C C'r, —

5C'=8'~,

where ~ is Grassmann's parameter, and

5Z„=a&F„r, F =B'D; Cb

(5.15)

(5.16)

A consequence of the BRST invariance of the effective
Lagrangian is the presence in the theory of conserved
Noether current J",

where C' and C' are ghost fields, 8' are additional even
fields, and a is a parameter. One can also derive the
effective Lagrangian (5.14) by using the Dirac theory of
constrained systems through functional integrals as dis-
cussed in Ref. [28].

The effective Lagrangian (5.14) is invariant up to a
divergence term under the following BRST (Becchi-
Rouet-Stora-Tyutin) transformation:

J = "D'Cb+
aA'

P, V

"Ctc,s. ~er (ILer ~en
g (Da C")—g

e~ Da C + e~5Ca+ e+5Ca BCDa C"—
aA' ' '" ' aA' '" ac' ac'

i', ~ VP P~VP , V ~V

=Jv FavpDa C b+BaDavC i 8 Caf a C"Ce
1 bp b be 7 (5.17)
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where

Jv [ [fmy epg Fmpv+f'mf m g e g f)Fdpv1

K

—() ((3pF'" +f' A 'pF"""))D' Cb
P ed bp

+(~Fa)ev+f a g epFdNv)g (Da Cb)
~

which implies the conserved BRST charge

(5.18)

5A„'=Db„c ~, 5A('()„=do(Db„c"~),

5)rP =f riPC'r f—m,("Pc'r,
s~"'~= ~' ~'"~c'~~a & be~e

5C'=5C'=58'=0, 5m, =5%,=5+,=0 .

(5.20)

Under the transformation (5.20), the effective Lagrangian
is variant, and

Q= J d x= d x[J F'o—"D' Cb+B'D' Cb
bp b

5X,(r=F(8)+u,"()„8'+u, () 8'

1gOCaf a Cbce] (5.19) =F(8)+f' ( )("O'C' —8'3'")() 8 +8'() 8' (5.21)

Now let us consider only the transformation of the
Yang-Mills fields, fixing the ghost fields and additional
even fields in the BRST transformation, i.e.,

where F(8) does not contain the derivatives of
8'(8'=C'r). According to the weak conservation laws
(2.37) for field theories, one obtains the conserved PBRST
charge ("P"stands for the word "partial" )

Q(&)—J d&x,
V

5H(5' uo—uo—Pa+a u'P+WD' C"+ ")Pa(D C')b
5 ea b b )a a bp a 0 bp

0
v ~

3 gpa Cb+ (1)& Da gb + a CaCeCb gag OeCb +gaC gaC (5.22)

with

D bF~i ~0 = , D bDe~i o,=1 =1
~a aj b & ~a aj b e

i — (DbjDe FOi+DbDe~ii) Db (1)i+Foi~ 1
~a a bj e aj b e aD~b a (5.23)

It is easy to check that this conserved PBRST charge
Q' ' differs significantly from the conserved BRST charge
(5.19). Similarly, if we fix the gauge fields A „' and change
only the ghost fields, the weak conservation laws (2.37)
imply a trivial identity.

We have shown that for certain cases the GNI (or
strong conservation laws) in canonical formalism may be
converted into the weak conserved charge along the tra-
jectory of motion, even if the Lagrangian is not invariant
under the specific local transformation. This algorithm,
which deduces the conservation laws, differs from the
classical first Noether theorem, where the invariance un-
der a finite continuous group implies that there are some
conservation laws.

VI. CONCLUSIONS

The GFNT and GPCII in canonical formalism for
singular Nth-order Lagrangians and GNI in canonical
formalism for variant systems have been deduced, and
the strong and weak conservation laws are also obtained.
Applying the GNI, we have established that for certain
variant systems there is also a Dirac constraint. In cer-
tain cases the GNI may be converted into the conserva-
tion laws along the trajectory of motion, even if the La-
grangian of the system is not invariant under the specific
local transformation. Applying the present theory to the
gauge theories for a system with a singular second-order
Lagrangian, a new conserved PBRST charge is obtained
which difFers from the BRST charge. Applying the GNI

I

to singular second-order classical Yang-Mills theory, we
obtain some relationships for Lagrange rnultipliers con-
nected with first-class constraints. Deriving the GPCII
with the aid of canonical action, we have carefully dis-
tinguished the conditions imposed by constraints on the
simultaneous variations from those imposed on the total
variations. In deriving the Poincare-Cartan integra1 in-
variant for nonholonomic systems, we have emphasized
the same distinctions of these conditions [54]. Using
canonical formalism, it is easy to show that the GPCII is
equivalent to canonical equations for a system with a
singular ¹h-order Lagrangian, which depends on time
explicitly.

Based on the symmetries of the constrained Hamiltoni-
an system, using the GFNT and GPCII we have dis-
cussed the validity of Dirac's conjecture. A counterex-
ample is given in which there is no linearization of con-
straints for a system with a singular second-order La-
grangian to show that Dirac's conjecture fails. A brief
discussion about the generator of gauge transformation
for a constrained Hamiltonian system is given. The time
evolution of the coeScients of secondary constraints con-
nected with the coe%cients of first-class constraints in the
generator of gauge transformation has been obtained
clearly. Some confusion in the literature has been eluci-
dated.

The extension of the present theory to field theories for
a system with a singular Nth-order Lagrangian is
straightforward. The extension of theory to supersym-
metry needs further discussion.
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