PHYSICAL REVIEW E

VOLUME 50, NUMBER 2

AUGUST 1994

Influence of boundary reflection and refraction on diffusive photon transport

D. J. Durian
Department of Physics, University of California, Los Angeles, California 90024-1547
(Received 24 November 1993)

We report computer simulations which test the accuracy of the diffusion theories used in the analysis
of multiple light scattering data. Explicitly including scattering anisotropy and boundary reflections, we
find that the predicted probability for transmission through a slab is accurate to 1% if the slab thickness
is greater than about 5 transport mean free paths. For strictly isotropic scattering and no boundary
reflections, the exact diffusion theory prediction is accurate to this level for all thicknesses. In addition,
we predict how the angular distribution of transmitted photons is affected by boundary reflectivity, both
with and without refraction. Simulations show that, to a similar extent, corrections to diffusion theory
from a more general transport theory are not needed here, either. Our results suggest an experimental
means of measuring the so-called extrapolation length ratio which characterizes boundary effects, and
thus have important implications for the analysis of static transmission and diffusing-wave spectroscopy

data.

PACS number(s): 05.60.+w, 42.68.Ay, 07.60.Dq, 66.90.+r

1. INTRODUCTION

Dispersed forms of condensed matter such as colloids,
foams, and emulsions all strongly scatter light so that
even thin samples can appear white in the absence of ab-
sorption [1]. Many previously inaccessible aspects of
their structure and dynamics are now being studied ex-
perimentally [2-9] with recent techniques, such as
diffusing-wave spectroscopy [10,11] and interferometry
[12], which exploit the diffusive nature of light propaga-
tion. Biological tissues also strongly scatter visible light,
and efforts are underway to develop noninvasive medical
probes [13,14] based on this feature. In addition,
diffusive photon transport in general has been of interest
for comparison with transport near the onset of localiza-
tion [15]. In all cases, a crucial issue is the accuracy with
which the propagation of multiply scattered light can be
quantitatively described as a diffusion process. Here we
address this issue in a simple yet experimentally impor-
tant setting: the probability for an incident photon to be
transmitted through an opaque, multiple scattering slab.

In all cases, a key quantity whose value must be known
accurately is the transport mean free path /*. This aver-
age distance required for complete randomization of the
instantaneous propagation direction is related to the pho-
ton diffusion constant and propagation speed by
1*=3D /c; it can be thought of as the average step size in
a random walk. For the ideal experimental case of a
well-characterized suspension of colloidal spheres, the
value of /* may be computed from Mie scattering theory
and the sphere number density. For other systems, where
the scattering structure and form factors are not known a
priori, the transport mean free path is commonly estimat-
ed from the probability that an incident photon will be
transmitted through a sample of uniform thickness. To
avoid the difficulties of absolute measurement, the usual
procedure is to image a portion of the exiting light onto a
detector for both the sample in question and also for a
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reference colloidal suspension. Since the transmission
probability generally varies with sample thickness as
T «<]* /L, the transport mean free path is estimated as
I*=IR(IL /Ix Ly ), where I represents the detected inten-
sity and the subscript R denotes the reference sample.
This procedure can, however, be subject to unknown sys-
tematic errors from the exchange of samples and from
unwarranted assumptions in the analysis. The latter in-
clude not only the accuracy of the diffusion approxima-
tion, but the sample independence of both the constant of
proportionality between T and /* /L, as well as the angu-
lar distribution of existing photons. To test the validity
of these assumptions, we perform a series of random walk
computer simulations which quantify the effects of finite
slab thickness, anisotropic scattering, and the reflection
and refraction of photons at the sample boundaries.

Our central result is that for slabs thick enough that
essentially no ballistic photons are transmitted, the
transmission probability for incident photons is described
to the level of 1% by

1+z,

T (L/1*)+22, ’ 4D
where z,, called the extrapolation length ratio, is a
sample-dependent number of order unity which can be
found for an unknown sample from analysis of the angu-
lar distribution of transmitted light. Our simulations also
show that the extrapolation length ratio is more accurate-
ly predicted by conventional diffusion theory than by a
modified version currently in wide use. These results are
independent of anisotropy in the scattering form factor
and have important implications for both the collection
and analysis of multiple light scattering data.

In Sec. II we review the theoretical foundation for the
functional form of Eq. (1.1) and the value of the extrapo-
lation length ratio. In Sec. III we then systematically
compare diffusion theory with computer simulation as a
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function of system parameters. In Sec. IV we derive a
simple prediction for the angular distribution of the ex-
citing photons and confirm the accuracy of our result by
computer simulation for the case of constant boundary
reflectivity. When the Fresnel angle dependence of the
boundary reflectivity is included, however, we find good
agreement only for photons transmitted within about 45°
of the surface normal. In the Appendixes we consider
diffuse transmission in a continuum of arbitrary dimen-
sion and on various lattices.

II. DIFFUSION THEORY

The complete diffusion theory formalism within which
the fraction T of normally incident photons transmitted
through a slab of thickness L may be calculated is given
by Ishimaru [1]. Ingredients include the diffusion equa-
tion, the source term, and the boundary conditions for
the time-independent density U (z) of photons at trans-
verse distance z into the slab as measured from the in-
cident edge. The flux of exiting photons is found by solv-
ing for U(z) and evaluating its gradient at the boun-
daries. The source of diffusing photons is provided by
photons scattered away from the incident beam and is as-
sumed to decay as exp(—z /l), where I is the scattering
mean free path of the medium. For the case of isotropic
scattering, where the transport mean free path /* equals
the scattering mean free path g, the boundary conditions
are

vl

32 =0. (2.1

z=0,L

For the case of anisotropic scattering, where the trans-
port mean free path is greater than the scattering mean
free path according to an average of the angular
deflection suffered in one scattering event,
*=]3/(1—cosf), the boundary conditions are modified
such that the right hand side of Eq. (2.1) is nonzero [1].
Note that the length h represents the distance outside the
sample at which the density of isotropically scattering
photons vanishes; it is therefore called the extrapolation
length. The dimensionless extrapolation length ratio, as
appears in Eq. (1.1), is z,=h/I*; its value is 2 in
Ishimaru’s diffusion theory, but is affected by the
reflectivity of the boundary walls. By setting the fictional
flux of diffuse photons entering the sample to an average
boundary reflectivity R times the diffuse flux of photons
leaving the sample, Zhu, Pine, and Weitz [16] predict
that the extrapolation length ratio is more generally given
by

1+R

1—R ° (2.2)
This reduces to Ishimaru’s result when there are no
boundary reflections; for realistic values of R, however,
the extrapolation length can be two or three times larger.
In Appendix A we generalize for a d-dimensional contin-
uum and find that only the numerical prefactor in Eq.
(2.2) changes.

Ishimaru’s diffusion theory can be exactly solved for a

z,=

W

slab of arbitrary thickness and scattering anisotropy. We
find that the density of diffusing photons normalized by
the value at the incident wall is

1—exp(—z/lg)—zT /1*

U(z)___1
z,(1-T) ’

U(0)

(2.3)

where T is the total transmission, or fraction of incident
photons which are transmitted through the sample. For
the case /*=Iy=L /10 the photon density is plotted in
Fig. 1; tangent lines at z=0 and L are included to
demonstrate the extrapolation length boundary condi-
tions of Eq. (2.1). The total transmission T is the sum of
a “ballistic”” contribution Tp =exp(—L /Ilg) from pho-
tons which remain unscattered from the incident beam
and a “diffuse” contribution given by
[1+z,]—[1+z,+L /I*]exp(—L /lg)

Tp= . Q4
P (L/1*)+2z,

For isotropic scattering, expansion of Eq. (2.4) gives the
correct result in the limit of thin slabs, L <<[*, in which
incident photons scatter at most once: In this single
scattering regime the diffuse transmission varies with
thickness as T, =L /2l*, since the fraction of incident
photons which scatter is 1—Tz =L /I* and the fraction

1

of those which scatter into the forward direction is 5.

For anisotropic scattering and very thin slabs, however,
the diffusion theory prediction of Eq. (2.4) cannot in prin-
ciple be correct since the fraction scattered forward is
greater than the fraction scattered backward according to
details of the scattering form factor which cannot be in-
cluded in a diffusion theory. Indeed, for sufficiently an-
isotropic scattering and small thicknesses, the sum of
ballistic and diffuse transmission probabilities given
above by diffusion theory can be greater than one, which
is blatantly and dramatically incorrect.

In this paper, we are more concerned with transmis-
sion through opaque slabs which are sufficiently thick
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FIG. 1. Diffuse [Eq. (2.3), bold curve] and ballistic (dashed
curve) photon density vs transverse distance across a slab which
is ten transport mean free paths thick, L /I* =10, for the case of
isotropic scattering and zero boundary reflectivity. The thin
lines tangent to the diffuse photon density at z=0 and L, re-
spectively, intersect at z=1I* and go to zero at h=z,I* outside
the sample, where z, = % is called the extrapolation length ratio.
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that essentially no ballistic photons are transmitted. In
this limit Ty <<Tp, the exponential term in Eq. (2.4) is
negligible and the simple algebraic form of Eq. (1.1) is
recovered. For such opaque slabs, the predicted
transmission has no direct dependence on scattering an-
isotropy; the only two relevant lengths are the cell thick-
ness and the transport mean free path. For extremely
thick slabs, the transmission follows an Ohm-like law
L ~! with a constant of proportionality which depends on
the extrapolation length ratio and hence on the boundary
reflections. For thinner opaque slabs, Eq. (1.1) provides
corrections to strict Ohm-like behavior.

Though Eq. (1.1) was derived above from the full
diffusion theory formalism of Ishimaru and can also be
derived using Green’s function techniques assuming a
point source of isotropically scattering photons located at
exactly z=1* [17], the functional form has a simple phys-
ical interpretation. Away from source terms, the steady
state diffuse photon density must vary linearly with trans-
verse position since 3°U/dz2=0. The density would
therefore decrease linearly in both transverse directions
away from a source at z=1I* in such a way as to reach
zero at z,/* outside the sample; in other words, it would
behave like the tangent lines in Fig. 1. The diffusely
transmitted and backscattered fluxes must then be
Jre<(L+z,1*—1*)"" and Jp x(z,I*+1*)"!, respective-
ly, since the flux is proportional to the density gradient.
This gives the diffuse transmission probability as
Tp=Jr/(J;+Jg), which reproduces Eq. (1.1) exactly.

The functional form of Eq. (1.1) is even more robust
than diffusion theory, as we further demonstrate with a
third derivation assuming only that photons execute a
random walk which starts at z=/* and stops at either
zg=—z,1* or zpy=L+z,I* for backscattering and
transmission, respectively. Since a photon that reaches
the center of the sample will have equal probability of be-
ing backscattered or transmitted, we must have
Tp(L)=Tp(L')/2, where L’ is given by L'+2zI*
=(L +2z,1*)/2. Repeating n times gives Tp(L)
=Tp[(L+2z,1*)/2"—22,1*]/2" and stopping the recur-
sion with T (21*)=1 yields Eq. (1.1) exactly.

While the functional form of Eq. (1.1) for transmission
is thus on very firm theoretical ground, the concept of an
extrapolation length for the average photon density, let
along the value predicted by Eq. (2.2), is not. An unwar-
ranted assumption implicit in diffusion theory is that
diffusing photons can be described merely by their local
concentration, as though their velocity distribution were
isotropic everywhere in the sample. A more general
transport theory that relaxes this assumption is the
theory of radiative transfer, which provides an analytical
formalism for calculation of the density U(z,u) of pho-
tons at z traveling at an angle cos '(u) from the +z
direction [18]. For example, note that diffusion theory
cannot describe the introduction of photons anisotropi-
cally scattered from an incident beam, nor can it account
for photon transport within roughly one transport mean
free path of the sample boundary; the more general radia-
tive transfer theory is needed for analytical description of
such phenomena. Radiative transfer theory can, in addi-
tion, be applied to a wide variety of transport phenomena

where boundary reflections play a role, such as for pho-
nons in a crystal [19,20], molecules in a rarefied gas
[21,22], and of course photons in a highly scattering
medium [23]. The so-called Milne problem of astrophy-
sics is to calculate U(z,u) for the case of steady flux em-
erging from a semi-infinite medium. This is intended to
mimic photons emerging from the sun, as well as neu-
trons emerging from a reactor. The result is that the fol-
lowing second moment of U possesses an extrapolation
length [24]:

f llU(z,y)uzdu« (z/1*)+2, . 2.5)
The value of the Milne extrapolation length ratio is
z,==0.7104, which is, of course, on the order of unity and
happens to be numerically close to the diffusion theory
extrapolation length ratio of 2 even though the two have
different physical meanings.

Recently, a modified diffusion theory has been pro-
posed in which the Milne extrapolation length ratio is
used instead of % in the otherwise standard diffusion
theory formalism [25]; the intention is to increase the ac-
curacy of diffusion theory without sacrificing its analyti-
cal simplicity. This minor change would be more appeal-
ing conceptually if radiative transfer theory had predict-
ed that the average photon density, rather than the
second moment in Eq. (2.5), extrapolates to zero outside
the sample. Reference [25] includes a computer simula-
tion purported to justify the modification of diffusion
theory; the transmission probability for four different slab
thicknesses L /1*=3, 5, 11, and 32 is found to be de-
scribed by

_ 0.8126 _ 140.1552
0.7034(L /1*)+1 (L /I*)+2X0.7108

We have rewritten the result for direct comparison with
Eq. (1.1). Note that only the term responsible for small-
thickness corrections gives an effective extrapolation
length ratio close to the Milne value; the leading behavior
gives an entirely different number. Nevertheless, the
modified diffusion theory is widely used in analyzing ex-
perimental data [17,26] and proponents argue that 0.7104
should be the numerical prefactor used in Eq. (2.2).

(2.6)

III. TRANSMISSION SIMULATION

In order to definitively settle the issue of the numerical
prefactor in Eq. (2.2) and to generally examine the accu-
racy of the diffusion theory prediction Eq. (1.1) for the
transmission through an opaque multiple scattering slab,
we perform a series of random walk computer simula-
tions. While in principle it may be possible to use radia-
tive transfer theory to analytically account for deviations
of diffusion theory from simulation results, our interest is
rather to directly assess the applicability and accuracy of
diffusion theory as it is currently widely used in analysis
of experimental data. Also, since localization and other
interference phenomena are not included, our results
could help to distinguish wave effects from transport
effects in experimental situations.
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A. Isotropic scattering, no boundary reflectivity

The simplest random walk model of transport through
a slab is one where the propagation direction of an indivi-
dual photon is completely randomized at each scattering
event and where boundary reflections are not allowed. In
our first simulation, then, successive photons are
launched in the +z direction starting from z =0 and are
allowed to wander by a series of scattering events, or
steps, until exiting at either z =0 or L. To generate such
walks one step at a time, we keep track of the current po-
sition and take a new step whose size and direction, re-
spectively, are

As=—1*InN,pe, B=2Non—1, (3.1

where N4 is a random number between zero and one
and @=cos™ '(u) is the angle between the propagation
and +z directions. The corresponding change in trans-
verse coordinate of the photon’s position is Az =puAs.
Note that the step length is variable and that the stepping
rule in Eq. (3.1) ensures that the unscattered intensity
falls off exponentially with distance in comparison with
the transport mean free path. The direction rule ensures
that the scattering is isotropic, since in three dimensions
the infinitesimal solid angle element is dQ
=sinfdf0dp=—dudg and the azimuthal angle ¢ has
no influence on transverse position.

We compute the ballistic and diffuse transmission
probabilities from the fraction of random walks transmit-
ted through a slab with and without scattering. The sta-
tistical uncertainty improves with the total number of
transmitted and backscattered walks according to

AT=T(1—T)[N;'>+Nz'"?]. (3.2)

For thin slabs in which there is only very rarely more
than one scattering event, the run time required for a
given number of diffuse transmission events, and hence a
given level of uncertainty in the diffuse transmission,
scales with slab thickness as L ! since the diffuse
transmission is proportional to L. For thick slabs in the
multiple scattering regime, by contrast, the required time
scales as L2 since the average number of steps per
transmission scales as (L /I*)?. Accordingly, good statis-
tics are acquired most quickly for slab thicknesses on the
order of one transport mean free path, and it is far more
time consuming to simulate the multiple scattering re-
gime. Note that to improve AT by a factor of 10, for ex-
ample, requires an increase in runtime of 100.

Simulation results for the diffuse transmission probabil-
ity in the case of isotropic scattering and no boundary
reflections are plotted in Fig. 2 for slab thicknesses vary-
ing over six orders of magnitude, from the single scatter-
ing regime to deep into the multiple scattering regime.
For thicknesses in the range 0.001 <L /I* <100, each
data point is based on either 10° or 2X10° diffuse
transmission events and the statistical uncertainty is ap-
proximately 0.1%. For thicker slabs, the number of
diffuse transmission events decreases roughly as a factor
of 3 for every factor of 2 increase in L /I* and the uncer-
tainty blooms to 1% at L /I*=1000; better statistics
were impractical to achieve. Over the entire range of
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FIG. 2. Diffuse transmission (left) vs slab thickness for iso-
tropic scattering and zero boundary reflectivity. The diffusion
theory prediction [Eq. (2.4), solid curve] is indistinguishable
from simulation results on this scale. The percent deviation of
simulation data (open symbols) and modified diffusion theory
(dashed) from Eq. (2.4) is shown on the right; error bars indicate
counting uncertainty. The different symbols distinguish runs
designed to test for the presence of systematic errors.

L /1* examined, we find good, but not perfect, agreement
with the diffusion theory prediction of Eq. (2.4) where the
extrapolation length ratio is z, = %. In particular, the de-
viation plotted on the right axis becomes systematic out-
side the single scattering regime, but is never more than
about 1%. Note that the small statistical uncertainty in
our data is crucial for the observation of this deviation.
It is perhaps surprising that diffusion theory works well
even for slabs on the order of one transport mean free
path in thickness, where an anisotropic velocity distribu-
tion would be expected throughout the entire sample.

We stress that the comparison in Fig. 2 is made using %
as the extrapolation length ratio; had 0.7104 been used,
the dashed curve on the right axis in Fig. 2 demonstrates
that the deviation would be greater. Straight diffusion
theory therefore more accurately describes photon trans-
port than the modified diffusion theory discussed earlier.
If one wishes to modify diffusion theory by altering the
extrapolation length ratio, the value most consistent with
our simulation is found by inverting the transmission
data using Eq. (2.4) and computing a weighted average
and statistical uncertainty. This gives z, =0.67310.002
with normalized average square deviation y?>=20; evi-
dently, Eq. (2.4) cannot truly describe our data to better
than about 1%. Nevertheless, the value we find for z, is
significantly closer to 2 than 0.7104, which again shows
that straight diffusion theory is superior to the modified
diffusion theory of Ref. [25]. If the 1% accuracy level of
diffusion theory is not as great as desired in an analytical
theory, then recourse to radiative transfer theory is
recommended.

As a technical note, we discuss possible systematic er-
rors in the simulation data of Fig. 2. More perhaps as a
check on our computer code, we first confirm that the
ballistic transmission results vary as T =exp(—L /I*) to
within statistical uncertainty for 0.001 <L /I* <10; for
thicker slabs no ballistic transmission events are ob-
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served. This check is reflected less stringently in the
diffuse transmission in the single scattering regime shown
in Fig. 2, where T, =(1—Tg)/2~L /21* is observed as
expected [see the discussion immediately following Eq.
(2.4)]. To test for the effect of sequential correlations or
other nonrandom behavior in our code, we employ two
qualitatively different random number generators: a
system-supplied ANSI-C conformant linear congruential
generator, plotted as circles in Fig. 2, and the RAN3 sub-
tractive generator published in [27], plotted as squares;
the results are indistinguishable. This further eliminates
the finite number of possibilities for N ;.4 in Eq. (3.1) as a
source of systematic error, because the system-supplied
routine and RAN3 respectively produce 32767 and 10°
different numbers. Next, the simulation results plotted as
squares in Fig. 2 represent a run using the system-
supplied generator, but where all lengths are scaled by /*
rather than by L as in the other two cases. This third run
involves one less multiplication per random step and so
should accumulate less roundoff error in the walker’s in-
stantaneous position; since all runs show identical
behavior, such roundoff cannot be important. Finally we
note that roundoff error in the transmission computation
is easily made insignificant by use of long integers and
double precision floating point numbers. Based on these
tests, we conclude that counting uncertainty is the most
significant error in our simulation data.

B. Angle-independent boundary reflectivity

Next, we incorporate into our code the possibility for
photons to occasionally reflect from the sample boun-
daries in order to test the accuracy of the Zhu-Pine-Weitz
diffusion theory boundary condition Eq. (2.2). In general,
external boundary reflections can be expected to occur in
experimental systems [11,28,29], and Eq. (2.2) suggests
that even modest average diffuse reflectivities can sub-
stantially increase the value of the extrapolation length
and hence affect analysis of transmission data in terms of
the transport mean free path. The simplest simulation
that includes this effect is to take the diffuse boundary
reflectivity R as constant, independent of the angle with
which the photon strikes the surface. In our simulation
we thus compare a random number generated between
zero and one with R whenever a boundary is encoun-
tered; if it is less than R the photon exits, otherwise, it
reflects specularly and its new transverse position is taken
inside the sample so that the step length is unaltered.
Simulation results for the diffuse transmission are shown
in Fig. 3 for 20 values of R ranging between O and 0.95
and a variety of slab thicknesses. Note that the transmis-
sion increases with increasing boundary reflectivity; to
neglect boundary reflections in the analysis of actual ex-
perimental data would cause the transport mean free
path to be systematically overestimated. For comparison
with diffusion theory, the predictions of Egs. (1.1) and
(2.2) are included in Fig. 3 as solid curves. The agree-
ment is evidently very good over the entire range of R
and for sample sufficiently thick that essentially no ballis-
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FIG. 3. Diffuse transmission vs wall reflectivity; comparison
of Egs. (1.1) and (2.2) with random walk simulations results for
the case of isotropic scattering. From top to bottom, the slab
thicknesses are L /I*=3, 5, 10, 20, 50, 100, and 200.

tic photons are transmitted. For thinner samples, the de-
viation actually decreases as R increases, but cannot be
seen in the plot. To quantify the comparison, we use Eq.
(1.1) to invert transmission data with L > 10/* for the nu-
merical prefactor in Eq. (2.2). The weighted average of
this bare extrapolation length ratio is found to be
0.665+0.005 with Y>=0.55; with y*>=0.55; therefore our
simulation results are consistent with diffusion theory
and the full boundary condition of Zhu, Pine, and Weitz
at the level of 1%.

C. Anisotropic scattering

In order to further test the general validity of Egs. (1.1)
and (2.2), we conduct a set of transmission simulations
which relax the assumption of isotropic scattering. This
is an important issue not only because scattering is pref-
erentially in the forward direction for most scattering
materials, but because the derivation of the diffusive
boundary condition Eq. (2.2) explicitly assumes that the
scattering is isotropic. For anisotropic scattering, the
right hand side of Eq. (2.1) is nonzero and the concept of
an extrapolation length seems to be ill defined. To simu-
late the effects of scattering anisotropy, we choose the
simplest possible scattering form factor, namely a fixed
angular deviation 6y from the direction of the previous
step. The size of a new step and the azimuthal angle
about the previous step direction are respectively taken
to be

As=—IgInN_ 4y P=27N g - (3.3)

This ensures that the unscattered intensity falls off ex-
ponentially in comparison with the scattering length g
and that the transport mean free path is given by
*=]s/(1—cosOf). By straightforward geometry, the
change in coordinates of the photon position is
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As . AxoAz
Ax =—— |cosOrpAxy—sinfg cosp—————
Aso VvV Ax3+Ayd
AspA
+sin0,.~ sinq)—-%
\/Axo +Ay;
AxyAz
Ay = As cos@pAy,—sinfp cos¢%
Asg VvV Ax2+Ay2
. . AsyAx
—smBF sme———— (3.4)
V/Ax3+4y}

= AATS[COSBFAZO +sin6y cospV Ax3 +Ay2 |,
0

where the subscript O denotes the previous step
specifications. With these rules, simulation results for the
transmission as a function of R are presented in Fig. 4 for
nine distinct sets of slab thickness and scattering anisot-
ropy: L/I1*=S5, 10, and 20 combined with /* /=2, 5,
and 10. The diffusion theory predictions are included as
solid curves. Not only are the simulation results at a
given L/I* independent of scattering anisotropy to
within statistical uncertainty, but they agree very well
with the predictions shown. Analyzing transmission data
in terms of the numerical prefactor in Eq. (2.2) gives a
bare extrapolation length ratio marginally consistent with
diffusion theory: 0.67610.008 with y>=0.64. Anisotro-
py therefore has no effect on diffuse transmission for
opaque slabs, even in the presence of boundary
reflections, at the 1% level.

D. Angle-dependent boundary reflectivity

For the remainder of Sec. III, we address our previous
simplification that the boundary reflectivity is indepen-
dent of angle; this is done for a few special cases relevant
for multiple light scattering experiments on samples con-
tained in glass cells where photons may reflect or refract
at either the sample-glass or glass-exterior interfaces ac-
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FIG. 4. Diffuse transmission vs wall reflectivity; comparison
of Eqgs. (1.1) and (2.2) with random walk simulation results for
three different scattering anisotropies /*/Is=2, 5, and 10 (cir-
cles, squares, and diamonds, respectively). From top to bottom,
the slab thicknesses are L /I * =35, 10, and 20.

cording to the Fresnel laws [30]. Since actual cell walls
are always much thicker than the wavelength of visible
light, we assume that multiply reflected rays add in-
coherently, in the spirit of radiative transfer. Summing
the intensities gives the angular dependent reflectivity of
the entire boundary as

Rt Ry;3—2RpR 3
l’“R12R23 ’

R(p)= (3.5)

where R;; is the polarization-averaged Fresnel reflectivity
of the ij interface when a photon strikes the boundary at
an angle cos”!(u) from the normal. The average diffuse
reflectivity R, which determines the extrapolation length
ratio in Eq. (2.2), is given by Zhu, Pine, and Weitz as

R— 3C,+2C, ip " 16

3C,—2C,+2° fo (pudp . 3.6
Numerical results for R, and the corresponding predic-
tion for the extrapolation length ratio, are shown in Table
I for six cases of experimental interest: where the sample
has refractive index n; =1.33 or 1, for aqueous suspen-
sions and foams, respectively; where the cell walls have
refractive index n,=1.52 or 1.46, for Pyrex and quartz,
respectively; and where the exterior of the cell has refrac-
tive index n; =1, or 1.33, with the latter being for immer-
sion in a water bath. Reflections from a second interface
have not been considered previously [16,23]; however, the
predictions in Table I would be substantially different had
we also assumed R,;=0. Note that changing the cell
wall material from Pyrex to quartz affects the extrapola-
tion length ratio by roughly 3%.

The predictions in Table I can be tested by comparison
with random walk simulations in which the probability
for reflection at the boundary is now taken from Eq. (3.5);
we consider only the case of Pyrex cell walls and isotro-
pic scattering. Analyzing transmission results for cells of
thickness L /1*=35, 10, 20, 40, and 160 in terms of Egs.
(1.1) and (2.2) gives the bare extrapolation length ratios
shown in Table I. For all three refractive index profiles,
agreement with the diffusion theory prediction is perfect
to almost three significant figures. Once again we find
that straight diffusion theory is not in need of corrections
from the full theory or radiative transfer; furthermore,
we recommend the extrapolation length ratios in Table I
as the most accurate available for analysis of experimen-
tal data on the specified systems.

TABLE 1. Diffusion theory predictions and simulation re-
sults for the extrapolation length ratio in several cases of experi-
mental interest. Boundary reflections are due to refractive in-
dex mismatch between the interior (n,), cell wall (n,), and exte-
rior (n3) of the sample.

n n, ns R z, prediction z, simulation
133 152 1 0.4522 1.768 1.779+0.013
1.33 146 1 0.4453 1.737
1.33  1.52 1.33 0.04244 0.7258 0.728410.0059
133 146 133 0.02977 0.7076
1 1.52 1 0.1317 0.8785 0.8771+0.0040
1 146 1 0.1230 0.8536
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IV. ANGULAR DISTRIBUTION

A. Theory

Now that the accuracy of the diffusion theory predic-
tion Egs. (1.1) and (2.2) for the transmission through an
opaque multiple scattering slab of arbitrary boundary
reflectivity and scattering anisotropy is known to be
about 1%, the issue that remains is how to determine the
extrapolation length ratio for an experimental sample. In
this section, we show how to extract such information
from the functional form of the angular distribution of
transmitted photons. Consider the diffusive flux exiting
through an area element d 4 and within a solid angle d ()
centered at angle 6 from the normal. Assuming isotropic
scattering and that the photon density has an extrapola-
tion length A, we estimate the probability that an exiting
photon lies within this solid angle by integrating over the
corresponding space inside the sample:

d A cosO
— ¢

J fow[(h +r cosf)ridr dQ] xp(—r /1) .

4.1)

The term in square brackets is proportional to the num-
ber of photons in a volume element at a distance r away
from d A and r cos@ from the surface; the next term is
proportional to the fraction of those photons headed to-
ward dA4; and the exponential term is the fraction of
those which reach d A without scattering and therefore
exit. The integral over r, which is easily performed, gives
the total diffusive flux into d€). Since there is azimuthal
symmetry, we normalize our result in terms of the proba-
bility P(u)du that an exiting photon strikes the interior
surface at an angle between cos ™ '() and cos ™ '(u+dpu)
from the normal:

zu+p?

W= i

(4.2)

In contrast with Lambert’s cosine law [30], we predict
the angular distribution of diffusely transmitted light to
be a mixture of cosine and cosine-squared terms which
depends on the value of the extrapolation length ratio.
Physically, the origin of the cosine term is that a given
photon must travel further through the scattering medi-
um in order to exit at a larger angle from the normal and
hence is more likely to scatter before reaching the sur-
face. The origin of the cosine-squared term is this first
effect convoluted with the linear increase in photon densi-
ty with depth as controlled by the extrapolation length
ratio.

Note also that Eq. (4.2) is the proper form with which
to compare experimental data taken by moving a detector
of area D? in a circle of radius R, about the sample: The
detected intensity is

I;D?

27R ,_2,

. oD D
P(u)sind—
psin 27R ), sin@

I=I, 2
D

P(u),

4.3)

where I is the total transmitted intensity, the next term

is P(u)du, and the last term is the azimuthal fraction of
photons transmitted between cos ™ '(1) and cos ™ (u+dp)
which fall on the detector. The detected intensity thus
equals a constant times P(u). A critical way to judge the
functional form of the angular distribution is by inspect-
ing the linearity P(u)/u vs yu; this also provides a simple
means of estimating z, from the best fit to a line [31].

B. Simulation

Since the angular distribution in Eq. (4.2) was derived
within diffusion theory assuming both isotropic scattering
and the existence of an extrapolation length for the aver-
age diffuse photon density, we perform a series of simula-
tions to test its accuracy. Our previous routines are sim-
ply modified to first bin up exiting photons according to
the cosine of their exit angle and then to normalize by the
total number transmitted. In Fig. 5 we compare the pre-
diction of Eq. (4.2) with simulation results for fixed cell
thickness L =151*, two wall-reflectivities R =0 and 1,
and five different scattering form factors: isotropic and
fixed angle such that /*/Ig=3, 10, 30, and 90. In all
cases, P(u)/u is found to be nearly linear in u, especially
near the normal direction =1 where the agreement with
Eq. (4.2) is excellent. For exiting angles further from the
normal than about cos™ (0.5)=60°, the deviation of the
simulation data from prediction, though noticeable, be-
comes striking only for highly anisotropic scattering.
Additional simulation runs for different thicknesses
L /I*=10 and 20 and diffuse reflectivities R =0.25 and
0.75 are found to agree similarly well with our prediction
Eq. (4.2). Therefore, the arguments leading to Eq. (4.2)
quantitatively capture the essential physics for the angu-
lar distribution of photons transmitted through an
opaque multiple scattering medium.

Another effect that influences the angular distribution
is refraction. The exit angle 6, for photons striking the
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FIG. 5. Angular distribution of photons transmitted through
slabs of thickness L/I*=15 and different boundary
reflectivities as labeled. Solid circles are for isotropic scattering;
open circles, squares, diamonds, and crosses are, respectively,
for fixed-angle anisotropic scattering with I* /Ig=3, 10, 30, and
90. The solid lines represent the diffusion theory prediction,
Eq. (4.2) with extrapolation length ratios given by Eq. (2.2).
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interior boundary at angle 0 is given by Snell’s law
nsin@=n;sin6,, where n, and n, are the interior and
exterior refractive indices, respectively, as introduced in
Sec. IIID. Considering the change in solid angle upon
refraction and assuming that Eq. (4.2) describes the dis-
tribution with which photons strike the interior surface,
we find that the normalized probability density for the
cosine of the angle with which they emerge is

ng 172
z,+ |[1——(1—p)
Py, nr M
= 2 2 1372 4.4)
He LI ni 1— 11 n3
1o 12, ks
2% 33 "}

When there is refraction at the cell walls, therefore, we
expect P(u,)/u, to be strictly linear in p, only if the
sample interior and exterior have the same refractive in-
dices, in which case Eq. (4.2) is recovered. Expansion of
Eq. (4.4) for photons exiting close to the surface normal
helps reveal the influence of refraction:

P(u,) =l_n_§(1~ue) n3 1~n_§ (1—p,)?
P(1)u, n? (1+z,) n? n? | 2(1+z,)
+0((1—p,)%) . (4.5)

The second order term is small unless there is a substan-
tial index mismatch, so nearly linear behavior may ordi-
narily be expected.

The prediction of Eq. (4.4) can be tested by comparison
with random walk simulation of the angular distribution
of exiting photons for the experimentally relevant refrac-
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FIG. 6. Angular distribution of photons transmitted through
slabs of thickness L /1* =15 and different interior, wall, and ex-
terior refractive indices as labeled; circles are for simulation re-
sults with isotropic scattering. The solid curves represent the
diffusion theory prediction, Eq. (4.6) with extrapolation length
ratios given in Table I; the dashed line in the top plot shows the
leading behavior.

tive index profiles considered in Sec. III D. In Fig. 6 we
show three such comparisons for the case of L /I*=15
and isotropic scattering. We find that P(u,)/u, is linear
in the vicinity of u, =1, as expected, and that this leading
behavior is well described by Eq. (4.4). Further away
from the normal direction than about cos™ '(0.7)=45°,
however, we find that P(u,)/u, decreases significantly
faster than linearly in p,, in clear disagreement with our
diffusion theory prediction. Indeed, for two of the cases
shown the interior and exterior indices are the same and
exactly linear behavior was expected; for the other case,
the observed deviation from linearity is in the opposite
direction from Eq. (4.4). While an analytical explanation
of these results may perhaps be found using radiative
transfer theory, the leading behavior can nevertheless be
well understood by straight diffusion theory.

V. CONCLUSIONS

The diffusion theory prediction of Egs. (1.1) and (2.2)
for the probability that a photon which enters a multiple
scattering medium will be transmitted rather than back-
scattered is accurate to approximately 1% for slabs
which are sufficiently thick as to be opaque; only for
thinner slabs or higher accuracies must radiative transfer
theory be invoked in favor of diffusion theory. For
opaque samples and accuracies at the 1% level, anisotro-
py in the scattering events is irrelevant and the only two
important physical parameters are the ratio of sample
thickness to photon transport mean free path and an
average diffuse boundary reflectivity. For a well con-
trolled sample, the latter is accurately given by diffusion
theory; for unknown samples, it can be accurately es-
timated from the leading behavior of the angular distri-
bution of the transmitted light. Thus the systematic er-
ror introduced by properly using diffusion theory to ana-
lyze transmission experiments in terms of the photon
transport mean free path is at the 1% level. By contrast,
the procedure outlined in the Introduction can give er-
rors on the order of 10%. The means of achieving the ul-
timate accuracy of diffusion theory suggested here should
be useful for more precise characterization of the struc-
ture and dynamics of highly scattering materials using
diffuse transmission as well as diffusing-wave spectrosco-

py.
ACKNOWLEDGMENTS

Thanks are due to J. Rudnick for helpful conversations
and D. Weaire for pointing out the cosine dependence in
the angular distribution of diffusely transmitted light.
We are grateful to both NASA and the Donors of the
Petroleum Research Fund, administered by the American
Chemical Society, for partial support of this research
through Grants Nos. 26967-G9 and NAG3-1419, respec-
tively.

APPENDIX A

The diffusion equation for the density of photons in a
slab geometry depends only on the transverse distance z
across the sample, and consequently the form of Eq. (1.1)
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FIG. 7. Percent deviation of simulation results for the diffuse
transmission from Eq. (2.4) vs slab thickness in one, two, and
three dimensions; extrapolation length ratios are taken from Eq.
(A2) as 1, m/4, and %, respectively. Note that the deviation in-
creases with dimensionality.

for the transmission probability does not depend on the
number, d, of spatial dimensions. The diffuse transmis-
sion probability is, nevertheless, affected by dimensionali-
ty, but only through the value of the extrapolation length
ratio. Consider the flux through an area element at the
z =0 boundary from photons in a unit volume located a
distance r away, and assume that the photon density has
an extrapolation length 4. Then the diffuse flux through
the area element is

Tman [ [h+rcos0)dV] :3s_01 exp(—r /1%) .

(A1)

The term in square brackets is proportional to the num-
ber of photons in the volume element dV. The next term
is proportional to the fraction of photons in that element
which are headed toward the area element of interest and
the exponential term is the fraction of those which are
not scattered before reaching the surface. The integrand
has no dependence on the azimuthal coordinates and the
relevant part of the volume element s
dV «(sin? ~20d0)(r? ~'dr). Integrating separately over
each half space and requiring J;, =RJ,, gives

2 | 1+R

1-R

Var [1+l

z,(d)=

(A2)

d
dF2

For one, two, and three dimensions and R =0, the extra-
polation length ratios are 1, /4, and 2, receptively; for
much higher dimensions, z,(d) vanishes as V'7/2d. Ac-
cording to Eq. (1.1) for the diffuse transmission, then,
finite thickness corrections and boundary reflections are
more important in lower dimensions.

The accuracy of diffusion theory as a function of

TABLE II. Diffusion theory predictions and simulation re-
sults for the bare extrapolation length ratio when scattering
sites are confined to a lattice.

Lattice z, prediction z, simulation
sc (all d) 1 1.0020+0.0011
Triangular (d =2) (1+V2 2)/4==0.6036 0.6059+0.0011
fcc (d =3) (1+Vv'5/3)/4=0.5727 0.5743+0.0013
bee (d =3) (1+v'11/3)/6=0.4858 0.49171+0.0012

dimensionality can be tested by comparison with random
walk computer simulations for the case of isotropic
scattering and R =0. For d =3, we average the diffuse
transmission results shown in Fig. 2; for d =1 and 2, we
perform new simulations where steps are taken of length
As=—I1*InN,,y and of direction p==x1 and
pu=cos(2mN,,,q), respectively, where N, 4 is a random
number between zero and one and the change in trans-
verse position is Az=yuAs. The percent deviation of
simulation results for the diffuse transmission from the
diffusion theory prediction of Eq. (2.4) and (A2) is shown
in Fig. 7 for a wide range of slab thicknesses. For d =1,
no deviation is found at the level of about 0.1%; for
d =2, however, there is deviation outside the single
scattering regime which lies between the d =1 and the
d =3 results. We therefore find that the accuracy of
diffusion theory decreases with increasing dimensionality.

APPENDIX B

In order to examine the universality of Egs. (1.1) and
(2.2) for the diffuse transmission through a slab geometry,
we perform random walk simulations for transport
through four different Bravais lattices. In all cases, the
lattices are oriented so that the walk starts at one nearest
neighbor distance from the edge at z =0 and steps are
taken to a randomly selected nearest neighbor until the
photon lands at a site z <0 or z > L. Based on the recur-
sion argument presented in Sec. II for the form of Eq.
(1.1), we conjecture without further justification that the
appropriate extrapolation length equals the average dis-
tance outside the sample at which an exiting walker
lands. Simulation results for the bare extrapolation
length based on the 28 different combinations of seven
slab thicknesses L /I*=3, 5, 7, 10, 20, 50, and 100 and
four wall reflectivities R =0, 0.25, 0.50, and 0.75 are
compared with our conjecture in Table II. Agreement is
found nearly to within statistical uncertainty for all cases
except for the bec lattice; it is conceivable that Egs. (1.1)
and (2.2) with the conjectured bare extrapolation lengths
represent an exact solution. While this may or may not
be of mathematical interest if true, the close agreement
certainly further demonstrates how robust is the form of
Eq. (1.1) for the diffuse transmission through a slab.
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