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This work describes a class of phase transitions observed in large coupled map lattices (CML's) with
chaotic local maps. The phase transitions are seen to occur (1) when the coupling is fixed as other pa-
rameters are changed and (2) when the coupling is changed with other parameters fixed. The different
phases of the lattices of tent and quadratic maps are interpreted as rejecting different spectral properties
of the Perron-Frobenius operator for the CML s. The spectral characteristics of this operator induced

by piecewise linear CML's are investigated analytically using general results from the theory of linear
operators. SuScient conditions for the cyclical evolution of phase space densities are given. This im-

plies that the CML's under consideration can reach equilibrium states in which ensemble statistics are
not time independent (stationary), but time periodic.

PACS number(s): 05.45.+b, 02.50.—r, 05.70.Ln, 64.60.Cn

I. INTRODUCI'ION

In this paper we consider a class of phase transitions
observed in lattices of coupled one dimensional maps
[coupled map lattices (CML's)], which are characterized
by the discontinuous behavior of the statistical quantifiers
of the activity of the lattice (spatial and temporal correla-
tion functions, the Boltzmann-Gibbs entropy, etc.) as
control parameters are varied. Above a critical parame-
ter value (the temperaturelike parameter is the inverse of
the coupling between the elements) the system is sym-
metric under spatial translations and correlation func-
tions decay to zero exponentially fast; in fact, numerical
evidence suggests that it is spatiotemporally chaotic in
the usual sense [1-3] and therefore mixing. Below the
critical point, the system loses this symmetry and can
spontaneously form very large scale patterns for all cou-
pling strengths. These qualitative changes in the
behavior of the CML's are reminiscent of phase transi-
tions described in classical statistical mechanics, rather
than bifurcations in the traditional sense of the term [4],
because they correspond to changes of the thermodynam-
ic state of the lattice and are inherently "probabilistic"
(this is discussed further in Sec. II}. Similar transitions
have been recently numerically characterized by Miller
and Huse in an odd piecewise linear map CML with con-
stant coupling [5] and are described by these authors as
paramagnetic ferromagnetic tran-sitions. However, these
transitions have not yet been shown analytically to re6ect
the nonanalytic behavior of a function playing the role of
the free energy for the CML (namely, the topological
pressure; cf. [6] and Remark 2 of Sec. II below) and
therefore a rigorous analogy with statistical mechanics
remains somewhat premature at this point.

Here the phase transitions are explained in terms of

abrupt changes of the spectral properties of the Perron-
Frobenius (PF) operator induced by the CML. Above the
transition, this operator is asymptotically stable, a
dynamical property which implies mixing. Below the
transition, the PF operator displays asymptotic periodici-
ty, a dynamical property which implies that the thermo-
dynamic equilibrium for the lattice consists in a sequence
of metastable states visited periodically in time. This
type of cyclical behavior has been reported in various cel-
lular automata and in certain CML's by Chate and
Manneville [7], Gallas et al. [8], and Kaneko [9], and
commented on by Pomeau (cf. [10] and references
therein). The discussion of the PF operator for the
CML's undergoing the phase transitions allows one to de-
scribe both the equilibrium and the far-from-equilibrium
states using the same conceptual framework, which in-
volves looking at the spectral properties of a linear Mar-
kov operator governing the evolution of absolutely con-
tinuous measures (or their densities}.

In Sec. II we motivate the study of the evolution of
phase space densities for coupled map lattices as a means
to study the nonequilibrium thermodynamics of these
systems; the Perron-Frobenius operator is introduced. In
Sec. III the dynamics of CML's with dimusive coupling
and piecewise linear as well as quadratic local nonlineari-
ties are explored numerically. Statistical quantifiers of
the motion are introduced and their behavior is used to
characterize the two "phases" of the CML. Spectral
properties of the Perron-Frobenius operator in higher di-
mensions are discussed in Sec. IV. In Sec. V these spec-
tral properties are examined analytically in lattices of
diffusively coupled tent maps. We give sufhcient condi-
tions for the Perron-Frobenius operator for these CML's
to be asymptotically periodic and examine the numerical
results of Sec. II in hght of these conditions.
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Background on CML's

The systems we study here are arbitrarily large but
finite and of the form

x,'+, =(1—a)S(x,')+ — g S(x~),

p neighbors

where S: [0,1]~[0,1] is the local map and aE [0,1] is
the coupling term; i denotes a discrete space index (of ar-
bitrary finite dimension) and t denotes discrete time. As
an interesting special case, we focus on the nearest neigh-
bor coupling case on a two-dimensional L XM lattice
with periodic boundary conditions:

x,', =(1—a)S(x,' )+—[S(x,' ' )

+S(x,'+")+S(x'i ')+S(x"+')]
i =1, . . . , L; j=1, . . . , M; t EIR+ .

(2)

The nearest neighbor coupling on a body centered cubic
lattice is a discrete-space version of the diffusion operator
[11]. A series of papers dealing with various motivations
for studying CML's such as (1) and (2) can be found in
the references of [12].

There are important analytical results by Keller and
Kiinzle [2], Bunimovich and Sinai [1],and Gundlach and
Rand [3] related to the construction of equilibrium sta-
tistical mechanics for systems close to (1) (except for [1]
in which the couphng is somewhat different}. The main
questions addressed by these authors are the existence
and uniqueness of absolutely continuous invariant mea-
sures for the spatiotemporal (semi)dynamical systems as-
sociated with the CML. The investigations follow two
broad (and intersecting) paths. One involves mapping the
CML to a lattice spin system via the introduction of sym-
bolic dynamics and then considering the evolution of the
CML using the theory of Gibbs random fields. This is
the approach of Bunimovich and Sinai, and Rand and
Gundlach, and it is essentially an extension of the so-
called thermodynamic formalism [13] of Ruelle, Bowen,
Sinai, and others to infinite-dimensional hyperbolic
dynamical systems. The other involves the study of the
Perron-Frobenius operator for CML's (defined in Sec. II).
This is the approach of Keller and Kiinzle [2], which
yields results similar to those of [1,14] in the case of
infinite-dimensional lattices, with more general coupling
schemes, but somewhat more restrictive expansion condi-
tions. For finite-dimensional lattices, they describe the
spectral decomposition of the PF operator for a CML,
but the conditions they give for the applicability of their
results involve lengthly calculations. Here we use results
of Gora and Boyarski [15] to demonstrate that asymptot-
ic periodicity of the Perron-Frobenius operator is a prop-
erty which permits a rigorous mathematical description
of the thermodynamic equilibrium of CML's discussed in
the literature [7,16,12] and which display "statistical cy-
cling. "

II. THE EVOLUTION
OF ENSEMBLE DENSITIES FOR CML'S

Statistical quantifiers of CML dynamics are computed,
like their counterparts in classical statistical mechanics,
with respect to some ensemble density. At equilibrium,
this density can be derived for some systems [e.g., the
Boltzmann density for the Ising model at a finite temper-
ature, the invariant density f (x)= 1 lm &x (1—x) for the
quadratic map when r=4, etc.]. Formally, the thermo-
dynamic state of a (semi)dynamical system 4: X~X is
the measure space (X,g, p, , ), where S is a finite o algebra
and p, is a measure defined on S at time t. In the cases
which concern us here, the measure p, is absolutely con-
tinuous with respect to the Lebesgue measure and there-
fore is associated with a density function f, (x) by the re-
lation p, (A)= f„f,( x)d x for all 3 ES. As time

evolves, the phase space X and 8 (which is a partition of
X) remain the same, so that the evolution of the thermo-
dynamic state of 4 is described by the evolution of the
phase space densities f, (x) associated with the measures

p, . The state of thermodynamic equilibrium for a non-
singular CML 4 is therefore described by the fixed point
f ' of the operator Pz, governing density evolution, when
such a fixed point exists (i.e., when there exists f ' such
that P+f' =f' ). Nonsingular means in this case that
)Mx(4 '( )} is absolutely continuous with respect to the
Lebesgue measure px on X. Here we study situations
where the fixed point exists, but is almost never reached.
Instead, the densities almost always evolve to a cycle, and
this results in the cycling and time-periodic behavior of
statistical quantifiers. If the (semi}dynamical system is
associated with a nonsingular CML, then the density evo-
lution operator is the Perron-Frobenius operator.

The Perron-Frobenius operator Pz, . D ~D (D, the
space of densities, is defined in Sec. IV A} is induced by a
measurable transformation 4: X) X, which is nonsingu-
lar. For any f, &D, the Perron-Frobenius operator is
defined by

f V,ydx= f, ydx, (3)
'( A)

where A CX. An equivalent definition is also useful in
practical examples since it applies to piecewise
monotonic transformations. Let 4;=4~„,where the

A; C X, i = 1, . . . , m, are the sets over which 4 is mono-
tonic, and U, A;=X. If 4 is nonsingular, the corre-
sponding Perron-Frobenius operator is defined by

f, (@, '(x))
A+)(x) =&ef«x) = g ', Xe,(~, )(x),

;=i det()t{@,. '(x))

where y~ („)(x)= 1 if and only if x E@;(A; ) and 0 oth-

erwise, and detd((Z) is the absolute value of the Jacobian
of Z. A more intuitive version of (4) is

f, (y)

+(@( ))yea '[x&

The operator P@ is called asymptotically periodic (AP}
if there exist finitely many distinct functions
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g&, . . . , g, E-L+ with disjoint supports [i.e.,
g, (x)gj(x) =0 for all x ifi'; cf. [17] for details], a per-
mutation a of the set I 1, . . . , r I, and positive continuous
linear functionals I„.. . , I, on I.+ such that

T

&" fo g—I;[fol;lim

and

m f, (@, '(x))

;=~ ~det8(4, '(x))]~

which reduces to our previous definition when P=1.
Changing P allows us to determine which of the preim-
ages dominate the transfer of mass from f,(x) to f,+,(x)
(i.e., which microstates contribute to the density most}.
To illustrate the connection with classical statistical
mechanics, apply Pe, & T times to the uniform initial den-
sity f(x,O)=yx(x),

fz(x)=
y"'ee ~(x)

l

[detd'(4, (y"))]

y'E4 (x)
l

=Zt'P(p),

exp —P g in~@,'(y")~

where the simplified notation detd'( )~~ '~ is used. The
sum over the 4, (x) is over the Tth preimages of x
(which is a sum over i), whereas the sum in the exponent
runs over iterates of initial values xo [distributed accord-
ing to fo(xo)]. Zz'P(p) is known as the topological parti
tion function [6],which is instrumental in the definition of
meaningful thermodynamic quantities for dynamical sys-
tems (such as the topological pressure which plays the
role of the free energy for hyperbolic systems since it
satisfies a variational principle, much as the free energy

~g =g~(l), l 1$ 0 ~ ~ p r ~

If 'Pe, satisfies these conditions with r =1, it is said to be
asymptotically stable, a property which implies mixing
and the exponential decay of correlations.

Remark 1. The phase space density f, of an AP sys-
tem at any (large) time t is a linear combination of "basis
states" (denoted g, above) with disjoint supports, and at
every time step the coefficients (I';) of this linear com-
bination are permuted by a. Therefore, the density evo-
lution in such systems is periodic, with a period bounded
by r., but with the exact cycle depending on the initial
preparation since the I s are functionals of the initial
density [cf. (5)]. A direct consequence of asymptotic
periodicity is that the thermodynamic equilibrium of the
system consists in a sequence of metastable states which
are visited periodically. AP systems are ergodic if and
only if the permutation a is cyclical.

Remark 2. When discussing the thermodynamics of
dynamical systems, it is useful to generalize the definition
of the Perron-Frobenius operator and introduce the so-
called transfer operator [13,18]

does in classical statistical mechanics). The interested
reader is referred to the clear discussion of the connec-
tion between the generalized Perron-Frobenius operator
and the transfer matrix methods of classical statistical
mechanics found in [6].

For numerical examples, we focus our attention on sys-
tem (2) with S(x) given by the generalized tent map

'ax if x &[0,—,')
S(x) (1 ) 'f ~[ f 1] 1 (a (2 ~ (6)

This CML is interesting because there is strong numeri-
cal evidence of asymptotic periodicity in large regions of
the (a, e) plane; in addition, the piecewise linear nature of
the CML allows one to explicitly compute the eigenval-
ues of the absolute value of the derivative transformation
and carry out calculations efBciently in Sec. V.

There is also analytical proof that asymptotic periodi-
city is present in the one-dimensional map [19,20] and in
two diffusively coupled maps [21]. The Perron-Frobenius
equation (3) for the hat map (6) is

1 x XPf(x)= —f —+f 1 ——
a a a

This operator was described by Yoshida, Mori, and Shi-
gematsu [20] and Provatas and Mackey [19] and the fol-
lowing results on asymptotic periodicity are available:

&a&2 ~

asymptotic periodicity of period-2",

n =0, 1,2, . . . (8)

A generalization of this result was derived for two
diff'usively coupled tent maps [21]. The next section gives
numerical evidence that period-2" asymptotic periodicity
is also present in large CML's. Before proceeding, we
show in Fig. 1 the nature of the density evolution for the
hat map when its Perron-Frobenius operator is asymptot-
ically periodic with period-2 and period-4.

The other system that will be considered here is the
CML (2) with the local nonlinearity given by the quadra-
tic map

S(x)=rx(1—x}, r&(r„4],

where r, =3.57. . . is the parameter value at which the
transition to chaos occurs beyond the period doubling
scenario. The motivation for including the quadratic
map in this discussion is that it is shown to display much
of the behavior displayed by the simpler tent map, there-
fore leading us to the conjecture that the phase transi-
tions explored here are to be expected generically in large
classes of systems (not necessary everywhere expanding).
Again from (3} and using A = [0,x] it is easy to see that
the Perron-Frobenius operator for the quadratic map is
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Pf(x)=
4x

1 1 4x
' 1/2 f —+—1—

1/2 f'(x)= 1

rr&x(1 —x)

1 1 4x+f ———1—
2 2 1'

1/2

(10)

When r =4 the Perron-Frobenius operator is asymptoti-
cally stable and the density of the invariant measure is

It was proved by Jakobson [22] that an absolutely con-
tinuous invariant measure exists for values of r forming a
set of positive Lebesgue measure, although r=4 is the
only value at which f can be given explicitly. There is,
in addition, a spectrum of values, labeled r„,n =1,2, . . . ,
where so-called banded chaos [23] has been reported nu-

merically. At these values, the iterates of the quadratic
map resemble those of the tent map when it is asymptoti-
cally periodic: The phase space densities oscillate periodi-
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FIG. 1. Density evolution in the tent map (6): top row, when it is asymptotically periodic (AP) with period-4 (a =1.15) (the initial

density is uniformly distributed on [0.562:0.565]); middle row, when it is AP with period-2 {a= 1.4) (the initial density was uniform

on [0.3:0.4]); bottom row, same parameters as in the middle, except the initial density is now uniform on [0:1]. This illustrates a gen-

eric property of asymptotically periodic systems: The density cycle depends sensitively on the initial ensemble density.
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cally in time. A recipe for finding the r„'sis given in [24].
A rigorous proof of the asymptotic periodicity of P is
available at these values (not in their neighborhood), and
the numerics strongly indicate that the "banded-chaotic"
behavior is in fact asymptotic periodicity [19].

In the next section, we given numerical evidence that
statistical cycling is observed in large lattices of coupled
quadratic and tent maps and that it is a signature of un-
derlying asymptotic periodicity.

III. PHENOMENOLOGY

In this section we numerically investigate the behavior
of a two-dimensional lattice of diffusively coupled maps,
when the local dynamics are given by the quadratic map
(9) and by the generalized tent map (6). The systems con-
sidered are Eq. (2) with L =M=200. The two parame-
ters describing the evolution of the motion are r (for the
quadratic map), the local slope a (for the tent map), and

LATTICE OF 200 TENT MAPS. COUPLING IS 6' = 0.45 256 GREY SCALES: WHITE ~ 1) BLACK ~ 0

II illa' ig i

FROM LEFT TO RIGHT: a = 1.1, a = 1.2, a = 1.3

~ I I

". 4 I I

4wsRMaass at Il

FROM LEFT TO RIGHT: a = 1.4, a = 1.5, a = 1.6

FROM LEFT TO RIGHT: a = 1.7, a = 1.8, a = 1.9

FIG. 2. Snapshots of the activity at the surface of a 200 X 200 lattice of diffusivity coupled tent maps when the coupling is constant
(a=0.45), but the local slope is increased from a =1.1 to 1.9. For all panels, the transient discarded is of length 10 . The 256 grey
scales range from black when x' =x;„to white when x"=x,„,where x;„andx,„arethe lower and upper bounds of the attract-
ing subinterval of [0,1], respectively. The initial values on the lattice were in all cases given by a random number generator yielding
uniform distributions on the unit interval. The transition from statistical cycling to statistical equilibrium occurs between a =1.5 and
1.6 for this value of the coupling. This observation is not made from the figure, but with the help of the statistical quantifiers of the
motion described below (cf. Figs. 5—7). The time evolution for the a = 1.3 case looks very much like the evolution of the three panels
in Fig. 3(a) for the quadratic map. For other statistically cycling cases, the light shades of grey are mapped into darker shades and
vice versa at each time step. The bottom three panel displays spatiotemporal chaos. They have reached their asymptotic state.



848 JEROME LOSSON AND MICHAEI. C. MACKEY 50

LATTICE OF 200 QUADRATIC MAPS. 256 GREY SCALES: WHITE ~ 1; BLACK ~ 0

( +.i,'tA.

FRoM LEFT TO RIGHT: t = 10, t = 10 + 1, t = 10 + 2

FROM LEFTTo RIGHT: t=10 t t= 10 +1, t= 10 +2

FIG. 3. The six panels display two phases of a 200X200 lattice of coupled quadratic maps with @=0.45. 10 transient iterations

are discarded. (a) The system is statistically periodic with period-2 and r =3.678. The evolution is reminiscent of that already ob-

served in the tent map lattices with a =1.3 and e, =0.45. It is of interest to note that qual'atic map lattices were not observed numer-

ically to form large scale patterns in the AP region, when the initial preparations did not contain any spatial information. This is in

contrast with the pattern forming behavior of the tent map lattices. (b) The system is fully turbulent and the parameter r =3 9 For. .
other parameter value, cycles of period-3 can also be observed in the lattice. In all cases, the exact asymptotic cycle depends on the

initial preparation of the system, a property expected in an symptotically periodic dynamical system.

the coupling parameter c. Two difFerent sets of numeri-
cal experiments can therefore be carried out. The erst in-
volves changing parameters in the local nonlinearity (r or
a) while keeping the coupling s constant and the second
involves changing the coupling s while the local non-
linearity parameter remains Sxed.

Figure 2 displays nine panels, each of which is a
snapshot of the activity of the lattice after a transient of
10 iterations has been discarded. The coupling is con-
stant in the Sgure and the parameter that is being
changed is the slope a.

In Fig. 2 two qualitatively different types of behaviors
are observed in parameter space: One is characterized by
the evolution of large scale patterns from the random ini-
tial conditions; this is the clustered, or ordered, state
a = l. 1, . . . , l.5 {the panel a = 1.3 presents an interesting
limiting case for which the "cluster" covers the entire
area of the lattice; different initial conditions for such pa-
rameter values evolve to the more usual large scale pat-
terns). This pattern-forming behavior is accompanied by
statistical cycling in the lattice (the term is explained in
detail below). The other is characterized by the absence
of such patterns; this is the spatiotemporal chaos state

[9], which is described statistically by a unique invariant
measure generated by almost all initial conditions. Fig-
ure 3 displays the activity of a lattice of 200X200 quad-
ratic maps coupled ddfusively. The top three panels illus-
trate the behavior of the lattice in the statistically cycling
region, while the bottom three illustrate the fully tur-
bulent and statistically stable regions. Note the absence
of large scale patterns even in the asymptotically periodic
regime, in marked contrast to the tent map lattice.

We now discuss the second set of numerical experi-
ments which involves studying the evolution of the lattice
when the slope is Sxed but the coupling is varied. Figure
4 displays a transition from statistical stability to statisti-
cal cycling in the tent map CML when the slope is
a =1.S as the coupling is increased from 0 to 1. %hen
the coupling is 0, it follows from the results in [19] that
the lattice will possess a unique invariant measure which
will be reached for almost all initial preparation, because
the local map possesses this property. For low values of
the coupling, an invariant measure is also reached numer-
ically, and this result is consistent with the analytical in-
vestigations of Keller and Kiinzle [2] and Gundlach and
Rand [3]. When the coupling is increased (for a =1.5),
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there is a critical value c„above which the lattice no
longer reaches statistical equilibrium. Rather it reaches
the "ordered" phase, characterized by cyclical statistical
behavior. This statistical cycling is therefore coupling in-
duced and it is the generalization to higher dimensions of
a phenomenon described analytically in two-dimensional
maps, constructed by coupling two identical maps of the
interval [21]. It was shown numerically in [21] that this
behavior could be expected in generic maps with quadra-
tic maxima.

Sometimes it is a nontrivial task to decide to which
state a particular panel belongs to by simply looking at
the activity of the lattice. To this end, we characterize
the two phases with the help of statistical quantifiers
which behave qualitatively difFerently depending on the
phase of the lattice.

A. The "collapsed density"

This time-dependent quantity is simply the density
of activity on a lattice at time t. Let f(x, } denote

the phase space density for the lattice (3), where

x, =(x, ', . . . ,x, ' } is the state of the lattice. This den-

sity clearly cannot be represented graphically and it is nu-
merically expensive to obtain when working with large
lattices. We therefore approximate its "collapsed ver-
sion"

f;( )=f f f(*)g5(,"—)d "
with the density f; of activity across a single lattice
defined implicitly by

(x, )= g x,"f;(x,"),
l,J

where ( ) denotes the average of the quantity inside the
angular brackets. The purpose of this reduction is to
characterize the two phases of the CML eSciently and
unambiguously, and f; is appropriate for this task. In
addition, it is easy to show that if f, is stationary in time,
then f is almost surely stationary, while if f; cycles, f

LATTICE OF 200 TENT MAPS. SLOPE IS 8 = 1.5 256 GREY ScALEs: WHITE ~ 1; BLAcK ~ 0

FROM LEFT TO RIGHT: ir = 0.05, 8 = 0.1, 8 = 0.15

'f ' 1 1 '~~~
spy . —~%MI& s""I I.

y I
Rl i I

yl' ll

FROM LEFT TO RIGHT: 8 = 0.25, f = 0.35, 8 = 0.45

'Ms14

FIG. 4. Snapshots of the ac-
tivity of a 200X200 lattice of
tent maps with a slope of
a = 1.5. The transients discard-
ed are of length 10' in each
panel. At low values of the cou-
pling, the lattice generates an in-
variant measure for almost all
initial preparations and displays
fully developed spatiotemporal
chaos. At values of e. &e„the
lattice possesses an invariant
measure, but it is almost never
observed numerically. Instead,
the phase space densities evolve
to a periodic cycle which de-
pends on the initial density.
This refiects the coupling-
induced asymptotic periodicity
of the Perron-Frobenius opera-
tor for the lattice. The critical
value of the coupling is c,,=0.2
when a=1.5. The time evolu-
tion of the lattice in the bottom
three panels is similar to the
"fiipping" shown in Fig. 3(a).

'F

FROM LEFT TO RIGHT: g = 0.55, 8 = 0.65, 6' = 0.85
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must cycle. By almost surely, we simply mean that it is
possible to initialize a lattice such that the cyclical
behaviors of groups of sites on the lattice (a group con-
sisting in a number of sites not necessarily spatially close)
cancel each other's cycling on average, so that f,' does
not reflect the behavior of f. This situation is not expect-
ed to be observed for typical preparations of finite size
lattice, because it is not "robust": A slight statistical per-
turbation of the initial preparation will almost surely (in
the space of initial densities) yield a preparation such that
the groups of sites do not cancel anymore, and therefore
f and f,' will both be time periodic. Therefore f; gives
an efficient tool for studying certain properties of f, and
its behavior is illustrated in Fig. 5.

Figure 5 displays the evolution of f; when the lattice is
in a period-four region, a period-2 region, and in the equi-
librium (fully turbulent) regime. It is easy to show that if
cycles f, in time, then f(x, ) will also. This observation is
important since in Sec. IV we give conditions on a and c
which are sufficient to guarantee the cycling of f, and in-
terpret numerically observed cyclicity in the CML as the
manifestation of a simple property of the operator
governing the evolution of f. When the cycling in the
collapsed density is difficult to discern visually, studying
the Boltzmann-Gibbs (BG) entropy of f,' highlights ei-
ther stationary behavior or cycling behavior.

B. The Boltzmann-Gibbs entropy

The Boltzmann-Gibbs entropy of a system is the
Boltzmann-Gibbs entropy of the phase space density
which describes the ensemble statistics for the said sys-
tem. In our case, the Boltzmann-Gibbs entropy for the
CML is

H, (f)=J flnf dx, , (12)

where X is the phase space of the CML. This quantity
was first introduced by Boltzmann [25] in a slightly
different form, which assumed that the equilibrium in-
variant density was uniform over the phase space. Subse-
quent work confirmed that the definition (12) was the
only (up to a multiplicative constant) possible definition

of the thermodynamic entropy if the equilibrium density
was the uniform density. For systems in which this is not
the case, a generalization of (12), called the conditional
entropy and discussed in Sec. VI, must be introduced and
can be shown to satisfy the strongest forms of the second
law of thermodynamics [26]. In Fig. 6 difFerent types of
entropy evolution displayed by the tent map lattices are
shown. It is easy to show that the cyclical behavior of
the BG entropy for the collapsed density implies cyclical
behavior of the BG entropy of the phase space densities.
This provides us with a powerful numerical tool with
which we can probe the behavior of the thermodynamic
equilibrium states of CML's.

Finally, the autocorrelation and cross correlation func-
tions were used to confirm the statistical oscillations ob-
served in the "ordered phase. " In the tent map lattice, it
is seen that the oscillations of the temporal autocorrela-
tion function

c

Cp

X—k

ck =— x,'J—x 'J x,' k
—x '~

t=1

shown in Fig. 7, correspond to slow oscillations in the
spatial cross correlation, thus reflecting the presence of
large clusters of synchronized activity.

The numerical results presented in this section clearly
indicate that in the CML s considered, there are two easi-
ly identifiable "phases": In one, the statistical quantifiers
of the motion reach a unique equilibrium, while in the
other, the same quantifiers reach a periodic cycle. These
two phases reflect qualitatively different properties of the
operator which evolves densities in the CML's: the
Perron-Frobenius operator. A description of this opera-
tor in higher dimensions is given in the next section.

IV. PROPERTIES OF THE PERRON-FROBENIUS
OPERATOR FOR CML'S

In Sec. II the Perron-Frobenius operator for the tent
map and for the quadratic map was explicitly given.

Entropy- & -&

Hg (f)
-1 5 -1 5

t &000000000000000000000000
~000000000000000000000000

-2.5

-3.5
10

-2 5

-3.5
10 + 50 10

-2 5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

10 + 50 10 10 +50

FIG 6 The Boltzmann Glbbs entropy for the collapsed density 0f a lattice of 200 X200 dlffuslvely coupled ten™ ps- 6 0.45 1n

all three panels. (a) a = 1.99, the CML 1s spatlotemporally chaotic. (b) a = 1.4, the CML 1S Ap peaod-2. (c) a = 1.3, the CML 1s

period-4. Tbe initial density was uniformly distributed on [0,1] for all three panels.
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p$0, 1$$($)

0

~0,&$$(i )

0 ~uiue~~maauem~~~ik~k~hiii
tl1lllt Illllllfll . IIIIRf'THAN

-0.5
1DO

-0.5
1DO

FIQ. 7. Temporal autocorrelation function {13)of the activity at site {36,156}{chosen for no particular reason) on a lattice of tent
maps digusively coupled with @=0.45 with the 6rst 10' iterations discarded as transients and the initial activity of the lattice uni-
formly distributed on [(),1]. (a) The lattice is fully turbulent with a=1.99. (b) The slope is a=1.4 and the cyc1ical behavior of
p3$ "${k) refiects the statistical cycling in the lattice [k denotes time in this expression, as in (13)].

Since we are interested in the dynamics of CML's, we
must discuss the dynamics of the Perron-Frobenius
operator acting on JV-dimensional densities if there are JV
elements in the lattice. Explicit expressions are not very
useful in this case; rather one can obtain some insight
into the dynamics of the system by studying the spectral
properties of the PF operator. The kinds of properties we
seek are, for example, the existence of a complete set of
eigenfunctions in terms of which densities can be ex-
pressed and, more importantly, conditions on the param-
eters of the CML which guarantee a "cyclical" spectral
decomposition, which implies the statistical behavior
defined in (5) and observed numerically in Sec. III. To do
so, a few mathematical definitions are needed.

DeSnitions

Let the set of non-negative elements of L ' be denoted

L+ =
IfEL ': f (x) &0 almost everywhere)

and the set of densities by

D=[f«': Ilfll, =I],
where

il ll ~ denotes the L ' norm

lifii i—= I if(x)idx= I f(x)dx

for densities. The bounded variation norm, which we will
use later, is denoted by il llsv and defined by

llfllav= llf ll, ~+ ll~dfll, ~

—= llfll, +V{f) *

~he~e V(f) denotes the variation of f and the Vd opera-
tor is defined in the distributional sense: In dimension A;
it is a vector-valued measure (div, (f),
div2(f), . . . , diff)), where f is a real-valued function
defined on a open subset XCI and such that there are
signed measures p„.. . , p~ and test functions PE C (X )

I f div, (P)dpL= I /de, , . i =1, . . . , JV,

where C(X) is the space of functions from X to X having

compact support, div, (1()=Bp/Bx;, and pL is the Lebes-
gue measure in R (cf. [27,2] for details). With these prel-
iminaries, the definition of variation off is [27]

V(f)= ll~dfll, ~

=sup I f div(p)dpi. $=(gi, . . . , gz)EC(X)

The result we present follows from the application of a
theorem of Ionescu Tulcea and Marinescu [28] to the
Perron-Frobenius operator, considered as an operator
acting on functions of bounded variation. In order for
this theorem to apply, we need to verify that the Perron-
Frobenius operator satisfies four conditions, which are
discussed in [15]. Gora and Boyarski show in Sec. III of
[15] that three of these conditions are essentially satisfied
by Pc, irrespective of 4 (unless X possesses pathological
properties, which we need not worry about here), since
they depend on the operator norm of P~ and on basic
properties of the function space BV(X) in which it
operates. The last condition to be satisfied in order for
Ionescu Tulcea and Marinescu's theorem to apply is (a)
that there exist constants Q & 0 and 0(q ( 1 such that

IIPefllav-qllfllBV+Qllfll, i «r f&&V(X),

where BV(X) is the Banach space of real-valued func-
tions defined on X with finite (i.e., bounded) variation
([27], Remark 1.12). When considering probability densi-
ties, the condition (a) can be replaced by the following:
(a') there exist constants Q & 0 and 0 (ai ( 1 such that

V(P~f)(coV(f)+0 for f ED .

If condition (a') holds (as well as the three other ones, al-
ways satisfied in practice, and discussed rigorously in
[15]), then the Perron-Frobenius operator induced by the
CML 4 and defined by (4) is asymptotically periodic: The
density evolution is as described in Remark 1 and (1) P~
has a finite number of eigen values of modulus l:
~, , . . . , a.l. They are the roots of unity and
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Pq, = g «;P, +T, (15)

where P;: SV(X)~BV(X) are linear projections with
finite-dimensional range .(2) P, =P;, P, PJ =0 (i%j),
and P;T=TP; =0, 1&i,j &l. (3) For any fED,
([T"f((~&~0, as n~ ao (Tis a "transient operator").

As a direct consequence of this representation for the
Perron-Frobenius operator, it is possible to show that
there are probability densities g &, . . . , g, of bounded vari-
ation, a measurable partition C&, . . . , C„,and a permuta-
tion a of [1, . . . , r J such that (1'}for every fED

1 I'

XP; (f)= X J, fdiÃgk
i —1 k=i

where again d(uL denotes the Lebesgue measure in R
(2') Pgk =g~(k), k =1, . . . , r; and (3') f cgkdpr.
=5;k, where 5 is the Kronecker symbol.

In other words the evolution of densities is as described

in Remark 1 for asymptotically periodic systems. The
proof of the connection between the spectral representa-
tion [(1},(2),(3}]of the Perron Frobenius operator and the
cyclical density evolution [(1'),(2'), (3') ] is given in [29].

V. APPLICATION TO LATTjCES OF TENT MAPS

In this section we use the ideas developed in the previ-
ous one to examine the spectral properties of the Perron-
Frobenius operator as the parameters a and c are varied
and give suScient conditions for asymptotic periodicity
in a square lattice with N elements as a function of a, e,
and lattice size. Our condition is obtained by verifying in
which regions of parameter space inequality (14) is
satisfied: The quantity V(Pz,f} is estimated and the con-
stant co in (14) is determined. It is seen to be greater than
0 all the time, and setting co(1 therefore yields the
desired suacient condition.

It is useful to visualize the CML 4 defined in (2) as a
matrix acting on a state vector x, : 4(x, }=x,+), where

(1—e)S(x,') —S(x )
4 4 f 4

—'S(x~) 0—'S(x" -~) —S(x )
4 t

4(x, )=
—S(x ')
4

(1—s)S(x, ) —S(x, )
e S( )((+1) 0 s S( N N+1)—
4 t t

(16)

with

—S(x ')
4 t

—S(x )
4 4

sS( N2 N) 0——S(x, ') (1—e)S(x, )

x, =

x"2

As an aside, this representation of the lattice activity highlights the fact that local coupling in two dimensions is
equivalent to long range coupling in one. More importantly, it allows us to calculate the Euclidean matrix norm of 4
readily, and we need this norm to apply some results of [15] to set upper bounds on V(Pz,f ).

Statement of result

The CML (2) with nonlinearity (6) (and N elements) induces a Perron Frobenius operator P@ which admits a repre-
sentation of the form (15) [which implies (1',2', 3')] if

Q2

g A, [1+(r]&1, (17)
j=l

where (r is given explicitly below Eq (20), and. where the AJ s are the eigenvalues of 8(4), the absolute value of the
derivative matrix of 4:

(1—E)a

E—a
4

(1—e)a —a 0
4

E—a
4

E,0 —a
4

4
—a 0 0—a 0 —a (1—s}a

4 4
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In order to obtain inequality (14), we calculate bounds on V(P@f):

m f(@, '(x))
V('Pef)=V X i Xe.(~ )(x)

; = i det6"{@,. '(x ) }

m f{@.i(x))

det8{4, '(x))
m

=detail(4 ') ' g V(f(4, '(x))yz,
~
„~(x)),m =2

i=1
(18)

where the substitution cP{4, '(x))~d'(4 ') follows from the fact that the determinant detcF(4, . '(x)) can always be
shown, by an appropriate multiplication of the columns of di(4, (x)) by either 1 or —1, to be equal to the determinant
of the simpler matrix di(4 ') [this is a straightforward consequence of the basic properties of determinants (namely,
general property 39, p. 25 of [30])]. d'(4) is real and symmetric, and therefore it is diagonalizable and its determinant is
the product

N

detS(4)= P A,, =detdi(4 ') (19)

where the AJ's are its eigenvalues.
Using the proof of Lemma 4 and the example of Sec. II in [15], and Example 1.4 in [27], the quantity

V(f(@, '(x))ye, ,„,(x)) is seen to satisfy

V(f(@; '(x))pc, ~& i(x)) &V(f(C, '(x)))+ J iif(@,. '(x))p'dy~ („)ii,dp+

=V{f{C', '(»))+ J, ,„,if(4; (x))idpg+
I

~ V(f(@; '(x)))+o'I V(f(4, '(x)))+%I

=V(f(c; '(x)))[1+o]+oR (20)

with R)0 and cr defined to be

—1/2
Ni[1+ (N —2)cos8]

CT =
1 —cos8

4(1—s)[e —16(l —s) ]e=tan '
s[s +16(1—s) ]

lattice of tent maps because the eigenvalues can be ob-
tained exactly: 8(4) is a circulant matrix and it is well
known that the eigenvalues of such matrices can be com-
puted [31]. In our case,

A. =(1—E)a+as cos (1—1/N)KJ
1 N

X cos (1+1/N) (22)

N

V(Pz f ) ~ + k.; [1+o]V(f)+2 oA . (21)

[To obtain the factor 2 oA we have used the fact that
for a square lattice of tent maps, the eigenvalues are
bounded above by the maximum slope, which in our case
is a =2; cf. Eqs. (22) and (23).] Comparing (21}with (14},
identifying co in (14) with the coefficient of V(f) above,
and letting A=2 o%' we immediately obtain condition
(17}.

We can explicitly evaluate this condition for a square

Both cr and 8 depend on the geometry of the sets A, .
The formulas given here hold if the faces of the A, meet
at right angles, which is clearly the case since S is the tent
map. Their detailed derivation is rather lengthy and will
be presented elsewhere. Using (19), and summing the
terms such as (20) in (18), we reach the inequality

=(1—s)a+as cos, j=0, 1, . . . , N 1(23)—

A, =(1—e)a+aecos 2&J
J j=O, . . . , X—1 . (24)

It should be noted that difFerent coupling schemes can
be studied using this formalism (as long as the same cou-
pling is applied to all the elements of the lattice). The key
to the apphcability of the method lies in choosing systems

when X is large.
Similar conditions can be obtained for rings of

diffusivity coupled piecewise linear maps. Condition (17)
will still hold, the transformation matrix N will now be
tridiagonal, and if there are N elements in the ring with
periodic boundary conditions, the eigenvalues of S(4)
for the ring are
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FIG. 8. The criterion (17) plotted for a lat-

tice of 200X200 difFusively coupled tent maps.
The line indicates the values of a and c at
which the left hand side of (17) equals one. In
the upper left part, the criterion (17) is satisfied
and the Perron Frobenius operator induced by
the lattice of tent maps is asymptotically
periodic. The stars indicate the positions in
the (a, c) plane of the nine panels of Fig. 2.
The full circles indicate the positions of the
nine panels of Fig. 4.
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which have periodic boundary conditions. If this is not
the case, the condition (17) holds, but the eigenvalues
cannot be evaluated explicitly as easily as when the ma-
trix 4 is circular, although special architectures are
amenable to analytic investigations. Applying the cri-
terion (17} to the 200X200 lattice which is investigated
numerically in Sec. II yields Fig. 8.

VI. DISCUSSION

It is clear that the suScient condition (17) does not
give the exact locations of the numerically phase transi-
tions discussed in Sec. III, although the phase diagram
predicts the phase transitions with an accuracy of about
S%%uo in certain regions of parameter space. The approach
described here is promising because it is general: It only
makes use of basic results of the theory of linear opera-
tors and it is feasible that inequalities such as (14) will be
satisfied by CML's which are not expanding everywhere,
although the algebra for nonpiecewise linear maps has
not been tackled yet. In addition, condition (17}will hold
for any piecewise linear CML which can be represented
by a real symmetric matrix 4 acting on a state vector x, .
Despite its lack of quantitative precision, it allows us to
understand the cycling discussed in Sec. III as a manifes-
tation of an interesting dynamical property of the
Perron-Frobenius operator for the CML: asymptotic
periodicity. This has interesting consequences for the
construction of nonequilibrium statistical mechanics for
these systems.

The first consequence is that ensemble statistics will de-
pend on the initial ensemble in a sensitive way [this sensi-
tivity is due to the dependence of the I s of Eq. (5} on
the initial density] when the Perron-Frobenius operator
satisfies inequality (14). In addition, in this case, even if
the existence and uniqueness of an invariant measure can
be proven, this measure will almost never be the relevant
natural measure because it will almost never be associat-
ed with the behavior of an ensemble of systems.

The second consequence is that the thermodynamic en-
tropy for the CML displaying asymptotic periodicity is
not the Boltzmann-Gibbs entropy. Rather it is the condi-

tional entropy with respect to the density of the invariant
measure H( f

~

f'):

H(f~f')= —f fin dx,f
x f' (25)

VII. SUMMARY

We have numerically explored a class of nonequilibri-
um phase transitions in finite-dimensional coupled map
lattices of tent maps and quadratic maps. It is shown
that these systems possess two "phases": One can be de-
scribed as being spatiotemporally chaotic, and the statist-
ical quantifiers in this case can be computed with respect

where f* is the density of the invariant measure. This
definition arises from the observation that the thermo-
dynamic entropy is an isolated system should increase as
it relaxes to equilibrium. It can be shown that H is the
only possible definition of entropy which satisfies all the
requirements that such an extensive quantity should
meet. This illustrates the fact that in general dissipative
spatially extended dynamical systems, the spontaneous
ordering (refiected here by the appearance of large scale
patterns) is consistent with the evolution of the entropy
to a maximum.

It should be noted that the application of the Ionescu
Tulcea —Marinescu theorem should yield information on
the spectral properties of the transfer operators describ-
ing the evolution of measures p, induced by cellular auto-
mata schemes. In this last case, however, the discrete na-
ture of the phase space precludes a consideration of abso-
lutely continuous measures (and their densities}. Instead,
the supports of the measures are now generalized func-
tions and the Perron-Frobenius operator acting on mea-
sures must be considered. The measure spaces associated
with such measures can still be endowed with the bound-
ed variation norm, and inequalities concerning the evolu-
tion of

~(f, )(z~ under the action of the Perron-Frobenius
operator can be obtained, yielding conditions on the pa-
rameters such that the inequality above (14) holds.
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to a unique absolutely continuous invariant measure.
The other is characterized by a cychcal evolution of the
phase space densities. The transitions from one phase to
the other can occur as a result of changing the parameter
in the local nonlinearity or as a result of increasing the
interelement coupling.

The spectral properties of the Perron-Frobenius opera-
tor for large CMI.'s are examined generically to account
for these phase transitions. Specifically, we give condi-
tions on the slope of the tent map and on the strength of
the coupling which guarantee a representation of the
Perron-Frobenius operator implying that at equilibrium,
phase space densities cycle periodically. Changes in the
spectral properties of the Perron-Frobenius operator as

parameters are varied are shown to be consistent with the
numerical observations of diferent phases.
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