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In nonsmooth maps intermittency can arise when a periodic orbit loses stability by crossing a set
where the mapping is nondifFerentiable. Motivated by the impact oscillator, which gives rise to a dis-
continuous mapping with in6nite stretching, we consider classes of continuous but nondiKerentiable
maps in one and two dimensions. %e show that the largest Lyapunov exponent A has a discontinu-
ous jump at the bifurcation and the scaling when the bifurcation parameter e is A 1/~ 1ne~. For a
similar class of discontinuous maps there can be no immediate transition to intermittent chaos.

PACS number(s): 05.45.+b, 03.20.+i

I. INTRODUCTION

The theory of smooth dynamical systems has grown
explosively in recent years, but less attention has been
given to dynamical systems which do not satisfy the usual
smoothness assumptions. Such systems arise very natu-
rally in many physical applications, for example, impact-
ing systems, relaxation oscillators, and electronics. In
this note we analyze a form of intermittency, identi6ed
in [1,2], which occurs when a periodic orbit, associated
with a map, suddenly loses its stability by crossing a set
where the map is nondifferentiable. We shall call such an
event a nonsmooth bifurcation.

Intermittency is characterized by long regular excur-
sions, known as the laminar phases, which are interrupted
by short chaotic bursts and in smooth maps it has been
observed and investigated by many authors. A simple
mechanism which often produces intermittent behavior,
identified by Pomeau and Manneville [3], is the loss of
stability of a periodic orbit. Suppose that the mapping
has a parameter ~ such that when e increases through 0
a periodic orbit loses its stability. For smooth mappings
this can only happen when an eigenvalue (or a complex
conjugate pair) crosses the unit circle. Then for small
positive e intermittency arises as follows. A nearby tra-
jectory will spend a long time in the neighborhood of
the periodic orbit, first moving in along the directions
of the stable manifolds before being (slowly) forced away
along the unstable direction. This corresponds to the
laminar phase. Then in many instances, depending upon
the global properties of the map, the trajectory will be
reinjected into the neighborhood of the periodic orbit via
a typically short, irregular motion, which is the chaotic
burst. Pomeau and Manneville considered each of the
ways in which an eigenvalue can cross the unit circle and
showed that the intermittent behavior described above is
chaotic with a positive Lyapunov exponent which scales

1
like e~.

However, for nonsmooth maps periodic orbits can lose
stability in another way. VKe suppose that the map is
nondiHerentiable at a set of points that we shall call the
discontinuity set 8 (later we shall distinguish between the

cases where the mapping is discontinuous or merely non-
difFerentiable at these points). Now a periodic orbit can
suddenly lose stability by colliding with the discontinuity
set Th. is possibility was first examined in [1], where it
was shown that the average length of the laminar phase
scales like 1/~ inc~ (where again e denotes the distance
from the bifurcation point in parameter space).

The present study was motivated by the authors' work
on the impact oscillator system, which naturally gives rise
to a two-dimensional nonsmooth mapping. In [4] it was
shown that intermittency of the type described above can
occur. In Sec. II we describe the impact oscillator and
this map and construct a simpli6ed map which can be
analyzed in detail.

In Sec. III, rather than plunge straight into the analy-
sis of the two-dimensional case we will consider a family
of closely related one-dimensional maps, 6rst introduced
in [5], and derive the scaling for the Lyapunov exponents,
which, as expected from the results of [1], is A 1/~ inc(.
We also show that there are important qualitative dif-
ferences between mappings which are discontinuous and
those that are continuous but nondifferentiable.

In Sec. IV having clari6ed the important issues with
the one-dimensional case we perform a similar analysis
for the simplified two-dimensional map and show that
the same scaling exists. Numerical calculations for the
actual impact oscillator map provide good evidence for
the generality of the results.

IE. THE IMPACT OSCILLATOR

The impact oscillator is a mass on a linear spring,
moving in one dimension subject to a sinusoidal forc-
ing, which impacts against a rigid obstacle referred to
as the wall (Fig. 1). The impact itself is modeled as
an instantaneous process with coeKcient of restitution
r, 0 ( r ( 1. With suitable rescaling we can write the
equations of motion as
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cos (fd t)

P, which maps one impact onto the next one. The ith
impact can be described by (double) the kinetic energy
z; = v2 of the mass immediately before the impact and
the phase of the forcing cycle 4; = ut; mod 2n, where t;
is the time of the ith impact. Therefore, de6ning Z =
2vrS~ x IR+,

Z w Z, P: (4;,z() w (4;~g, z;~g) .

FIG. 1. The mechanical impact oscillator.

where Id is the forcing frequency (the natural frequency of
spring is 1) and 0, the clearance, is the position of the wall
relative to the equilibrium position of the mass. Thus
the system has three parameters r, 0, and ~. The most
effective way to study this system is via the impact map

The precise definition (see [4,6]) of P is more complicated
since it is possible for the mass to impact in6nitely often
in finite time and then stick to the wall before moving
away again, but these details are unimportant here.

The motion between impacts is simply that of the har-
monic oscillator and implicit differentiation of the equa-
tions of motion gives the following (implicit) form for the
Jacobian of P:

(NoS —r~zp C)/~z~ rs/2gzoz,
( 2(NoNx —rgzozx) S —2(Noix + re zo)C r(Nx S —~z&C)/~zo ~

(2)

0.0
Graze

where S = sin(tq —to), C = cos(tq —to), and N;
cos(ut, ) —cr, i = 0, 1. The N; are the accelerations of the
mass just before the respective impacts The d.eterminant
of the Jacobian is simply rz and explains our (at first
sight) rather strange choice of z as one of the variables.

The map P is smooth everywhere except at the preim-
age of the line u = 0 due to a phenomenon known as
grazing, which is shown in Fig. 2. On trajectory B the
mass approaches the wall, touches it, and is then pulled
away again by the spring. Nearby trajectories will ei-
ther (just) hit the wall (trajectory C) and be defiected
by it or miss the wall and go on to impact at a later
time (trajectory A). Surprisingly, low velocity impacts,
such as those which occurred on trajectory C, strongly
distort the phase space and are an important source of

unpredictability and chaos in the impact oscillator. Zero
velocity impacts are known as grazes and the disconti-
nuity set 8, vrhich is the preimage of the line v = 0, is
defined by

S = ((4 e): P(& e) = (@ 0))

Similarly ere de6ne the set lV as the image of the line
v=0.

As can be seen from (2), as e,+q +0 the elem-ents of
the Jacobian become arbitrarily large. To illustrate the
nature of P close to the discontinuity set S we imagine
a line segment I of initial conditions on Z, which trans-
versely crosses S (Fig. 3). Let I and S meet at point B
and call the resulting two sections of I, I+ and I . The
particle motions corresponding to the points A, B, and C
are those shown in Fig. 2. As we move along I+ from A
to B the image curve P(I+) is traced out and moves to-
vrards the line R' and meets it transversely. Suddenly, at

P '(C)

P (C)

V=O

FIG. 2. Trajectories in the neighborhood of a graze. FIG. 3. The dynamics close to 8 in the impact oscillator.
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B a graze occurs at an intermediate point of the trajec-
tory and so P(B) lies on the line v = 0. As we continue
Rom B to C the next impact is now a low velocity im-
pact. So the curve P(I ) grows out of the line v = 0
and the line I would appear to be split in two. How-
ever, the second iterate of I rejoins P(I+) meeting it
at P (B) and Whiston [?] showed that P12(I ) meets W
tangentially. The side of S that does not map directly to
low velocity impacts is called the nonixnpact side and the
side that does is the impact side. The line I is locally
stretched by P by a factor of O(~ ~ ), where e is the dis-
tance from S. Together the cutting and stretching have
important implications for the dynamics. Because grazes
tend to collapse trajectories onto W, W and its iterates
strongly infiuence the overall dynamics [?]. Although the
map P is tech~ically discontinuous at S, this is not really
the case since by replacing P with P on the impacting
side of S (and therefore ignoring the extra low velocity
impact) the impact map in the neighborhood of S can be
treated as nondifferentiable but continuous.

An example of a nonsmooth bifurcation, which we shall
call a gruzing bifurcation, occurs when a stable periodic
orbit of P, on the nonimpact side of S, crosses S as
a parameter is varied. Suddenly, the trajectory expe-
riences an additional, low velocity impact which intro-
duces a large degree of stretching and therefore has a
sudden destabilizing infiuence. Following this bifurca-
tion it is possible to observe intermittent behavior [8,4],
which consists of a long laminar phase as the trajectory
moves in towards the previous location of the periodic
orbit and the set S from the nonimpacting side, followed
by a small number of low velocity impacts (usually just
one). It should be emphasized that after the bifurcation
the stable periodic orbit no longer exists, but part of the
stable manifold on the nonimpacting side does still exist
and this accounts for the laminar phase. The stretching
associated with low velocity impacts provides the rein-
jection mechanism which starts the trajectory oE on the
next laminar phase. A grazing bifurcation of a fixed point
occurs at the paraxneter values r = 0.8, u = 2.0, and
0' = 0' = —0.3312.. . (see [4]) and a nearby intermittent
trajectory is shown in Fig. 4.

This extremely short interruption of the laxninar phase
by a single low velocity impact is untypical of intermit-
tent behavior since a chaotic burst usually involves a
seemingly random excursion around cMerent parts of the
phase space. However, the existence of scalings for the
average laminar length and largest I yapunov exponent
will justify our use of the word "intermittent. "

The map P is dif5cult to analyze, because it is implicit
and the location of S cannot be coxnputed analytically.
For this reason we introduce the following mapping which
"straightens" out the sets S and R" and models the dy-
namics close to the singularity set,

zi ——A.yp
yo (0

yi = Qyp+xo+&

xi ——Ayp
yo&) 0

yl B ~yo++0+~ J'

I

Phase y

FIG. 4. The intermitteat attractor for the impact oscillator
with parameter values r = 0.8, cu = 2.0, and o —o' = 0.01.

[In [8] a similar mapping was constructed, but this was
more complicated than (3) and introduced additional dis-
continuities. ] For e & 0 there is an attracting fixed point
X, which collides with the z axis at (0,0) when e = 0. If
pi and p,2 are the two eigenvalues of X, then A = —pi p2
and B = p, i + p2. In order to observe intermittency for
~ ) 0 we require 0 ( p2 & p, i & 1. This condition ensures
that trajectories in region I attracted by X can approach
it without imxnediately entering region II. The param-
eter B' & 0 reinjects the trajectory back into region I.
The Jacobian of the mapping has constant determinant
—A = y, i@2, which corresponds to r in the impact oscil-
lator.

The line y = 0 gets mapped to the line x = 0. These
two lines play the roles of S and TV, respectively. Region.
I, y & 0, corresponds to the nonimpacting side of S in the
impact oscillator and the mapping here is linear. Region
II, y & 0, corresponds to the impacting side of S and will
model the stretching and contracting close to y = 0 by
a square-root-type singularity. This map describes the
behavior of P close to S as shown in Fig. 3, but ignores
the extra low velocity impact on the impacting side.

For ~ ( 0 the position of X is given by

(Ae/(1 —A —B), e/(1 —A —B)),
from which we see that e is proportional to the distance
of the 6xed point &om the discontinuity set y = 0. For
e & 0 this fixed point no longer exists for the map (3) but
continues to exist for the related map where the linear
part de6ned on region I is extended to the whole plane.
Therefore, for more complicated systems, such as the im-
pact oscillator where the position of the singularity set is
also a function of the parameters, it is natural to deane
the distance of the 6xed point of this related map kom S
as our bifurcation parameter. In fact any parameter that
causes the periodic orbit to move across 9 transversely
will suffice. An intermittent attractor for the map (3} is
shown in Fig. 5.

Before examining the two-dimensional case it will be
helpful to Grst analyze a family of one-dimensional maps
with similar properties.
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III. THE ONE-DIMENSIONAL CASE

Nusse, Ott, and Yorke [5] introduced the following fam-
ily of one-dimensional maps:

F( )
nz+e ifz&0
p2."+e if 2: & 0, (4)

FIG. 5. The intermittent attractor for (3) with parameter
values A. = —0.64, B = 1.6, B' = —2.0, and ~ = 0.01.

The laminar phase corresponds to motion in x & 0
and this is interrupted when the motion reaches the re-
gion x ) 0 and the square-root singularity and is then
reinjected back into the region x & 0. From Fig. 6 it is
clear that, for e ) 0, a trajectory started in x & 0 can
only reach the interval (O, e] in x & 0. In what follows
we assume that the chaotic burst consists of just one it-
eration in the region x ) 0 and that the distribution
over the interval (0, e] is uniform (these assumptions are
seen to hold very well in numerical experiments). For all
the mappings considered here, where the stretching on
one side of the discontinuity set becomes infinite, it is
shown in the Appendix that the errors in making these
assumptions are of small order.

The case z =
2 corresponds most closely to the impact

oscillator, being a very natural one-dimensional analog of
the family of maps (3), but we shall obtain results for all
0 & z & 1. We start by estimating the average length
of the laminar phase for 0 & e « 1 (a more detailed
argument is given in [1]). After an excursion into x & 0
the trajectory will be reinjected into x ( 0 with a value of
x that is typically O(e*). At each iteration, the trajectory
moves closer to x = 0 by a factor of approximately a and,
&om Fig. 6, the laminar phase ends when the trajectory
returns to within e/n of the discontinuity at x = 0. So if
we denote the average number of iterates in the laminar
region by L, then for ~ &( 1,

where 0 & n & 1, P & —1, 0 & z & 1, and e is the bifur-
cation parameter which belongs to some interval I of 0.
An example of such a mapping is shown in Fig. 6. This
family of maps is smooth everywhere except at x = 0,
where it is only continuous. As in the impact oscillator,
the derivative at the nondifferentiable point becomes in-
finite on one side (corresponding to the impacting side of
8). For e & 0, F,(z) has an attracting fixed point (with
negative Lyapunov exponent A = inn). The parameter
a corresponds loosely to the coe%cient of restitution r in
the impact oscillator. This fixed point collides with the
point z = 0 when e = 0.

which gives

(1 —z) lne +C,lna

where K and C are O(1) constants, which reflect the
mean position of the reinjection into z & 0. This scaling
of the average laminar length is different to the power-law
scaling usually found in smooth systems (see [3]).

Now we can calculate the Lyapunov exponent A, which
for a one-dimensional map is defined by

N

lim —) ln l(F;)'(xp) l
.

i=1

(0, c)

This has contributions from both parts of the map (4)
that have to be evaluated separately.

Let p be the proportion of points that land in z ) 0.
Then the contribution to (7) from z & 0 is

(-e/a, 0)

(1 —p) ln n .

But p = 1/L, so from (6) this is

lna linn.
(1 —z) ln e + C ln n p

Then from (7) and the assumptions that we made about
the distribution on (0, e] the contribution to A &om x & 0
1S

FIG 6. The mapping of the interval defined by (4).
(10)

1no, 1 » [Pz*. 'Id-
(1 —z) ln e + C ln n e
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f lna
1naI 1—

1 —z
+ +ln IzPI C ln a )

1 —z 1 —z)
Table I shows the results for the system with parame-

ters z = 2, a = 08, and P = —2. There is good agree-
ment between the above theory and the numerical results
both for the scaling of the average laminar length and the
Lyapunov exponent.

There are two things to note about (11). First, the
scaling as e -+ 0+ is generically A 1/I ln eI, which difFers
Rom the scaling observed close to smooth bifurcations.
Pomeau and Manneville [3] showed that A normally scales
like e s when a fixed point of a smooth system loses stabil-
ity, although other authors [9—11]have identified different
power-law exponents, such as s or 1 for particular sys-
tems. Thus, for 0 ( z & 1 we have a family of mappings
with a dHFerent scaling for A.

The second point is that as ~ increases through 0, A

jumps suddenly &om ln o; to 0. In general, for this kind of
nonsmooth intermittency, A will exhibit a discontinuous
j»mp, but it will not necessarily ji~mp to 0. For example,
if we introduce a new parameter p into (4) and consider
the family of discontinuous xnaps

where 7 is negative and O(l), then the reinjection into
z ( 0 occurs at a value of z which is O(l) and this
changes the scaling behavior of 1. Equation (5) now
becomes

Kn

for all z. Proceeding as before we obtain the following
expression for the Lyapunov exponent:

which after soxne elementary integration becoxnes

inn
I I

(z —1) inn
(1 —z) inc+ Clna (1 —z) in&+ Clnn

and after rearranging and adding to (9) gives (to leading
order in e)

TABLE I. Results for small e for 2 x 10 iterates at pa-
rameter values z = —,n = 0.8, and P = —2. As predicted,
& - 1/I &n(&) I.

10
10
10-4
10-'
10
10
10

A

0.231
0.141
0.102
0.079
0.067
0.058
0.050

L
6.747

11.339
16.182
21.269
26.267
31.126
36.382

AI ineI
1.063
0.974
0.940
0.910
0.926
0.935
0.921

firmed by numerical experiments where the system settles
onto a stable intermittent periodic orbit.

IV. THE TWO-DIMENSIONAL CASE

We now analyze the scaling close to the grazing bifur-
cation in two dimensions, using the map (3). The exis-
tence of the Lyapunov exponents for mappings such as (3)
is guaranteed by Oseledec's xnultiplicative ergodic theo-
rem. Obtaining analytic expressions for the Lyapunov
exponents of higher dimensional systems is in general an
extremely dificult problem because it depends upon be-
ing able to compute the eigenvalues of complicated, non-
commutative, matrices. Very few results exist and even
then only for perturbations of sets of commutative ma-
trices. However, for the family of maps (3) it is possible
to obtain some analytical estimates.

At the end of the ith laminar phase the trajectory will
land in region II with a y value that we denote by y;. The
y; are O(e) and we make the same ass»mptions as before,
namely, that the y; are uniformly distributed over (O, e]
with the trajectory immediately returning to region I. In
addition we assume that the fluctuations in the laminar
lengths about the mean L are nnimportant.

%'e start by defining the Jacobians in regions I and II

1
A = z ln n + (ln a[(1 —z) —ln n

ln~
+ ln IzPI+ C inn]), (14)

where once again C is O(1) and now includes a contribu-
tion &om p.

The exponent A still increases like 1/I ineI for e ) 0,
but now it starts kom a negative value rather than G.
Therefore there can be no imxnediate bifurcation to a
nearby intermittently chaotic attractor. This is con-

I

where we have used the variables p, q and p2 instead of A
and B. Once again, we can estimate the average length
of the laminar phase L, which by a similar argument to
the one-dimensional case is given by

%pi ~ +E

It is easily shown by induction that
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10
10
10-4
10 '
10
10
10

Ag

0.159
0.098
0.072
0.05?
0.047
0.041
0.037

I
13.30
20.23
26.66
32.82
38.80
44.58
49.99

0.732
0.677
0.663
0.656
0.650
0.660
0.681

TABLE II. Results for small e for 2 x 10 iterates at pa-
rameter values A = —0.64, B = 1.6, and B' = —2.0.

10
10-4
10
10

A~

0.089
0.070
0.058
0.047

I
24.37
30.63
35.71
41.32

AgJ inc/
0.614
0.644
0.668
0.649

TABLE III. Results for small e for 5 x 10 iterates of the
impact oscillator with parameter values t = 0.8, ~ = 2.0, and
o" = —0.3312.. .. Again Aq 1/( ln e~.

from which it follows that

JIIJL

( ) I 1—
I»)

J

(o(v.) o(~) &

O(1)

L
Px gg~ 1 ~P

Pl p2 I
2 0+1)

low velocity impacts can never be excluded). The conver-
gence of the Lyapunov exponents, although slower than
for smooth systems, is quite rapid and reliable estimates
can be obtained after just a few thousand iterates.

For the parameter values r = 0.8, cu = 2.0, and
0 = 0' = —0.3312.. . it is shown in [4] that there is
a grazing bifurcation where a fixed point of P becomes
an intermittently chaotic attractor. The small parameter
is e = u' —cr. For these parameter values pq ——p,2 ——0.8.
The Lyapunov exponents have been calculated for small
values of the bifurcation parameter and are shown in Ta-
ble III. The agreement with the theory for the family of
maps in (3) is very good and strongly suggests that the
scaling Aq 1/~ ln e~ also holds for more general systems.

Matrices of the form

&o(~) o(~)
1 O(1)

V. CONCLUSIONS

&, =hm )~~~ NL . ( 2 Ep&)

Mu'(v~ —
r i) )~

(20)

Using Eq. (16) and some more algebra we obtain the
result that, assuming the attracting set is chaotic and
the y; are uniformly distributed over the interval (0, e],
then Ag 1/~ in&(.

Table II shows numerical calculations of L and Aq for
the case shown in Fig. 5 and there is very good confir-
mation of these scalings.

A. The impact oscillator

when multiplied together, can be renormalized to yield
another matrix of the same form. By keeping track of
the renormalizations and neglecting terms of small order
we find the following expression for the largest Lyapunov
exponent Aq.

We have considered families of continuous maps in one
and two dimensions where intermittency arises close to
nonsmooth bifurcations. This intermittency is unusual
since the chaotic burst which separates and decorrelates
the laminar phases is just a single iterate which is highly
destabilizing due to the arbitrarily large stretching in
these maps. We proved that the largest Lyapunov ex-
ponent A has a discontinuous jump at the bifurcation
and then scales like 1/~inc~. Numerical results for the
impact oscillator suggest that the results are generic in
some larger class of maps. However, the situation is sub-
tly altered if we allow the maps to be discontinuous. This
changes the scaling of the average laminar length with
the result that when E increases through 0, A Jumps to
a new value that is still negative so there cannot be an
immediate transition to intermittent chaotic behavior.

We conclude by noting that the type of nonsmoothness
analyzed in this paper was motivated by a particular ex-
ample, the impact oscillator, and a complete classifica-
tion of the various kinds of nonsmooth bifurcation may
be a &uitful enterprise.

Finally we examine numerically the scaling behavior
of the impact oscillator close to an intermittent grazing
bifurcation. In order to generate trajectories of the im-
pact oscillator it is necessary to calculate the time of the
next impact using a root-finding algorithm and this is
both quick and accurate since no numerical integration
is needed (although the possibility of missing extremely
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APPENDIX

In Sec. III we made two ass»options. First, that for
the maps (4) the distribution of impacts over the interval
[0,e] was uniform and second, that the "chaotic bursts"
comprised just one iterate. We now show that the error
in making these ass»options is small.

Let us denote the nth preimage of the interval [0, e], as
defined by the linear part of (4), by I . This gives us a
set of disjoint intervals of length O(e) lying in z & 0. The
reinjection into the region z & 0 after a chaotic burst in
[O, e] can occur at any point in the interval [Pe' + e, O]

(remember that P & 0) and may therefore lie in any one
of O(s' ~) of the intervals I„,each of which is eventually
mapped back onto [O, e]. This implies that the return
map from the start of one chaotic burst to the next is
strongly m(xing for small e and justifies (but does not
prove) the ass»option of uniformity.

We now estimate the error in the calculated Lyapunov
exponent made by ass»~ing that all the chaotic bursts
are of length 1. Clearly a chaotic burst can be of any
length as there is an»»stable fixed point in the interval
[0, e] (Fig. 6). This fixed point z' satisfies

O(e~ *). This enables us to estimate the probability
of a chaotic burst of length n, which is the probability
that a point in the region x ( 0 is mapped to a, point y
sufBciently close to x' so that after n iterates it still lies
in the region x & 0. Prom the estimate of the gradient at
x* this can only occur if y lies in a small neighborhood
of x' whose length / is of order

O(
— ( —1)-(m-1))

Therefore the probability that a chaotic burst mill be
of length n is of leading order l/e, which is of order
O(&n(

', —1—)
)

The contribution to the Lyapunov exponent &om
chaotic bursts of length n & 2 is

) 0 (F.
"i 'inlniPe i)

=2

This can be rewritten as

P(z')' + s = z'
1

and so z' = O(e ~ ) to leading order. Furthermore the
gradient of the map at z' is found from (4) to be of order

These terms are of decreasing order for increasing n and
all of them are of smaller order than the leading order
term in (11).
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