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We study a simple aggregation model that mimics the clustering of traffic on a one-lane roadway. In

this model, each "car" moves ballistically at its initial velocity until it overtakes the preceding car or
cluster. After this encounter, the incident car assumes the velocity of the cluster which it has just joined.
The properties of the initial distribution of velocities in the small-velocity limit control the long-time

properties of the aggregation process. For an initial velocity distribution with a power-law tail at small

velocities, Po(u)- U" as u ~0, a simple scaling argument shows that the average cluster size grows as

m -t'"+" '"+ ' and that the average velocity decays as U —t ' '"+"as t ~~. We derive an analytical

solution for the survival probability of a single car and an asymptotically exact expression for the joint
mass-velocity distribution function. We also consider the properties of spatially heterogeneous traffic

and the kinetics of traffic clustering in the presence of an input of cars.

PACS number(s): 68.70.+w, 82.20.Mj, 05.20.0d, 89.60.+x

I. INTRODUCTION

A variety of approaches have been applied to describe
the collective properties of traSc Bows [1]. For example,
to mimic congested traffic flow in two dimensions, cellu-
lar automation models have been proposed [2,3]. Asym-
metric hopping processes have also been applied to model
traSc flow on a one-dimensional road [4—6]. When the
number of cars is large, traffic flows can be modeled phe-
nomenologically in terms of a one-dimensional compres-
sible gas [7-9]. Such an approach predicts the appear-
ance of shock waves, where hydrodynamic quantities,
such as the average density and velocity, become discon-
tinuous. However, the hydrodynamic approach does not
naturally describe the behavior of traffic flows in the
low-density limit where there are large heterogeneities in

traf6c density. For this situation, a microscopic model

may provide a more appropriate description.
In this article, we introduce a ballistic aggregation pro-

cess to model the kinetics of clustering in one-
dimensional traffic flows. Our approach is inspired, in

part, by the recent interesting results that have been ob-
tained for a variety of reaction processes which involve
ballistic particles, including ballistic agglomeration,
A;+A. ~A;+., with momentum conserving collisions

[10,11]; ballistic annihilation, A + A ~0 [12,13]; and
several nucleation and ballistic growth processes [14—16).
In our model, cars move ballistically in one direction, say
to the right, according to an initial velocity distribution.
Clusters form whenever a faster car overtakes a slower
car or cluster. The overtaking car then assumes the ve-

locity of the lead car in the cluster. This model is an
idealized description for one-lane traffic flow. While
there are obvious shortcomings in our model, it is exactly
soluble and permits a thorough understanding of the
kinetics of the aggregation process.

This paper is organized as follows. In Sec. II we

present the model and postulate the scaling behavior for
the velocity and the concentration of the clusters. This

approach makes use of the statistical properties of the
minimal random variable within a large sample. In Sec.
III we investigate the distribution of cluster velocities.
For this distribution, the cluster size is irrelevant and this
feature allows us to consider a simpler "coalescence
only" model. For this reduced problem, the velocity dis-
tribution is obtained exactly in terms of the initial distri-
bution of car velocities and then evaluated for general
continuous distributions. Building on these results, the
general clustering process is solved in Sec. IV and an
asymptotically exact expression for the joint cluster
mass-velocity distribution is obtained. In Sec. V we

present a formal solution for the velocity distribution
function for an inhomogeneous initial distribution of par-
ticles. We examine the temporal behavior that arises for
a simple step function initial spatial distribution. In Sec.
VI we investigate another generalization of the model to
the situation with a spatially and temporally homogene-
ous input of cars. Depending on the functional form of
the input velocity distribution in the low-velocity limit,
the input can give rise to a steady state or to a system
which continues to evolve indefinitely. We give our con-
clusions in Sec. VII. The details of specific calculations
are given in the Appendixes.

II. SCALING ANALYSIS

We consider an idealized one-dimensional traffic flow
in which the size of each car is zero. This is appropriate
for describing clustered traffic in the low-density limit, a
situation which is often encountered on rura1 secondary
roads. In the following, we will refer to such sizeless cars
as particles. We consider the initial condition when there
are only isolated particles ("monomers") in the system
with a random spatial distribution of density co. The ini-
tial velocity distribution P(u, t=0) can generally be writ-
ten in the scaling form

~o v
P(u, t =0)= Po, u )0

vp vp
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%"e present now a simple argument, based on the
statistics of extremes, to predict the asymptotic time
dependence of the typical cluster mass m and typical
cluster velocity v at time t Sin.ce the typical distance I
between clusters grows with time as l-vt, the typical
number of particles in a cluster is proportional to this dis-
tance, yielding m-l-ut. To find the typical velocity,
one has to relate the mass of a cluster to its velocity.
Such a relation may be found exactly for an auxiliary
"one-sided" problem in which particles are placed with a
fixed density co to the left of a given "target" particle
which moves at velocity v, and no particles are placed to
the right. Eventually, this target particle will form a
cluster that includes all consecutive particles to its left
whose initial velocities are larger than U. The probability
that there are exactly k such particles is equal to P P+,
with P+(v) [P (U)] defined as the probability that a par-
ticle has a velocity larger (smaller) than v, i.e.,
P+(v)= f „"Po(u')du'. Therefore the average number of
particles in the cluster that ultimately forms is given by

(m(v))= gkP P~+ =P+/P
1

(3)

Let us now assume a power-law behavior of the initial
velocity distribution for small velocities,

Po(u) =oui', U «1
with p & —1 for normalizability. Imposing this power-
law form in Eq. (3) yields

P+(v)
(m(v)) =

P (v) v~+'

for sufficiently low velocities. For a particle which moves
with the typical velocity, it is reasonable to expect that

with f c"Po(z)dz= l. Here we have tacitly subtracted the
assumed finite value of the velocity of the slowest car
from all velocities. In what follows, it is often convenient
to introduce the dimensionless density c/conc, velocity
u/vo~v, and time covot~t. This yields a rescaled ini-
tial concentration which is equal to unity.

In our model, particles move at their initial velocities
and whenever a particle overtakes a cluster aggregation
occurs. The aggregation rule is simply that two colliding
clusters form a new cluster with a velocity equal to the
smaller of the two incident cluster velocities and with a
mass equal to the sum of the two cluster masses (Fig. 1).
If we denote a cluster of mass m and velocity v by A
the process is described by the reaction scheme

A~ „+A~ „A +

this result for the "one-sided" problem gives the correct
behavior for the full "two-sided" problem. If we combine
Eq. (5) with our previous estimate rn -vt, we find the fol-
lowing asymptotic relations:

@+1m-~ with a ——"
p+2

1
v t-~ with p=

p+2
Since the mass is conserved in the aggregation process,

the typical cluster mass and the concentration of clusters
c are related by c —1/m -t . Notice that in the limit
p~~, the mass grows linearly with time. In contrast,
when p~ —1, the mass is roughly constant, since the ve-
locity distribution becomes effectively unimodal and col-
lisions are exceedingly rare. This qualitative dependence
on the form of the initial velocity distribution is reminis-
cent of the ballistic annihilation process [13],where bal-
listically moving particles annihilate upon collision. In
both processes, one finds that the fundamental exponents
are related by a+P= 1 as a consequence of the relation
c —1/Ut. Moreover, for the two processes the decay ex-
ponents have similar functional dependences on the form
of the initial velocity distribution. However, the values
of the decay exponents are different: for example, for a
uniform distribution (corresponding to p=O} one finds
a= —,

' for the traffic model, while a=—0.76 is obtained in
simulations of the annihilation process. Additionally,
despite the qualitative similarity between these two mod-
els for continuous velocity distributions, different
behaviors occur when the velocities are discrete. For
such discrete distributions, the concentration typically
decays algebraically in time for ballistic annihilation [13],
while the concentration decays exponentially in time for
the traffic model.

Since both the typical mass and the velocity scale as
power laws in time, the probability of finding a cluster of
mass m and velocity v, P (U, t), is expected to evolve to-
ward a scaling distribution. Taking into account mass
conservation, f0"dv g mP (U, t)=const we postulate
the scaling form

P (v, t)=t~ 4(M, V),

for the joint distribution, where the scaled mass M and
scaled velocity V are defined by

M=m/i and V=vt~.

Note that while the mass m is a discrete variable, the res-
caled mass M is continuous.

Once the joint mass-velocity distribution is found, the
single-variable mass and velocity distributions can be
found by suitable integrations over the subsidiary vari-
able. Thus the velocity distribution P(v, t)= g P (u, t)
should have the scaling form

W W P(u, t)=t~ f(V), (9a}

FIG. 1. Schematic illustration of the irreversible trafBc mod-
el. A faster car overtakes a slower car and after the encounter
the faster car assumes the velocity of the slower car.

with g( V)= J 0 dM @(M,V), while the cluster-mass dis-
tribution P ( r }=Io"d crP ( U, t) should have the scaling
form



824 E. BEN-NAIM, P. L. KRAPIVSKY, AND S. REDNER

P (t)=t ' f(M),
with p(M) =f 0 d V 4(M, V).

(9b)

III. THE CAR SURVIVAL PROBABILITY

As a preliminary step in obtaining a full solution for
traSc clustering, consider the velocity distribution
P(u, t). For this quantity, we can ignore the masses of
each cluster and focus only on the survival probability of
a given car. Thus the evolution of the velocity distribu-
tion is governed by the "derived" coalescence process

~. +~. ~~mlnIu, . I
(10)

S(u, t) =exp t f du'(v —v')—Po(U')
0

(13)

and combining with Eq. (13}yields the velocity distribu-
tion

In the coalescence process, the density of particles with
velocity u is identical to P(u, t}, the velocity distribution
of clusters in the full traSc aggregation model defined by
Eq. (2).

Let S (U, r) be the survival probability of particles of ve-

locity v at time t. Here "survival" means a car does not
overtake any traSc, but an overtaken car is defined to
have survived. Then the velocity distribution function is

given by

P(u, t)=Pa(u)S(v, t) .

The survival probability S (u, t) can be found by consider-

ing the possible collisions of a particle with initial posi-
tion and velocity (x, U) with slower particles whose initial
positions are to the right of x. A collision between the in-

itial particle with coordinates (x, v} and a slower v' parti-
cle does not occur up to time t if the interval

[x,x+(v —v')t] does not include the slower particle.
For an initial velocity distribution Po(v} and a Poissonian

initial spatial distribution, the probability that there is no
particle with velocity between U' and U'+dv' in the inter-
val [x,x +(v —U')t] is

exp[ —du'Po(u ')( U
—v') t] . (12)

For a particle to survive to time t, this exclusion proba-
bility should be taken into account for every v'&u. To
verify this, let us assume otherwise and derive a contrad-
iction. Thus consider a particle with initial data (x, u)

that has maintained its original velocity to time t In ad-.
dition, assume that a slower v particle is initially present
in the above exclusion zone, i.e., b,x(0) &hv(0)t. Here
M (t} is the distance between the two particles and b, u (t)
the relative velocity at time t. Since the velocity v' can
only decrease over time due to collisions, one has
bu(t)~hu(0). Consequently, at time t, the separation
between the two particles bx (t) =bx (0)
—ftau(r')dr'&M(0) —b,u(0)i&0. Thus the U particle

does not survive, in contradiction with the original as-
sumption.

Hence the survival probability is simply a product of
the exponential factors of Eq. (12) for all v', with U' & v.

Evaluating this product gives the survival probability

P (u, t) =P 0( U)exp —t f dv'(u —u')Po(U'} (14)

f( V) =a V"exp [ bV"+—] . (16)

From this solution we see that the velocity distribution
maintains the original power-law form for small veloci-
ties. The exact solution also validates the scaling as-
sumption that the asymptotic decay as well as the shape
of the limiting distribution are determined solely by the
low-velocity tail of the initial distribution which, in turn,
is governed by the exponent p.

From Eq. (15},it is straightforward to compute the to-
tal concentration and the average cluster velocity,

c(t)= f "du P(u, t), (u(t)) = f "du UP(v, t) .
0 c(t) 0

This gives

c(t)=(@+1)bl(a}(bt)

and

(18)

(v(t)) = (&t)I' a
(19)

respectively, These expressions confirm the scaling laws

suggested in Eq. (6).
Interestingly, the exact solution of Eq. (14) satisfies the

following Boltzmann-like integro-differential equation,

P(u, t)f du'—(U —U')P(U', 0} .
Bt 0

(20)

This equation suggests that the loss of v particles due to
collisions with slower v' particles occurs at a rate propor-
tional to the relative velocity, (U —U'). Moreover, the
pair correlation function factorizes into a product of
single-particle velocity distributions, P ( U, U ', t)
=P(u, t)P(u', 0) but with diFerent time arguments for
the two factors. In contrast, in the conventional
Boltzmann equation, the decomposition would involve
the same argument for each velocity distribution. Thus
the exact Eq. (20) quantitatively indicates the degree of
approximation of the mean-field Boltzmann equation.

This is valid for an arbitrary initial velocity distribution
Po(U); the only source of stochasticity arises from the ini-

tial conditions. For discrete initial distributions it is seen
from Eq. (14) that the approach to the final concentration
is exponential in time. Thus we focus only on the more
interesting continuous initial velocity distributions.

For the power-law initial velocity distribution
Po(U) =au" for v «1, a direct calculation shows that the
long-time velocity distribution approaches a form that is
independent of the details of the large-velocity tail of the
initial distribution,

P ( v, t) =au "exp[ btv —"+ ],
with b =a /(p, +1)(p,+2). This expression can be written
in the scaling form (9a) with the scaling function
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IV. THE FULL PROBABILITY DISTRIBUTION 2V

We now solve for the joint mass-velocity distribution
function for the general traffic model. To obtain P (v, t},
the density of clusters of mass m and velocity v, it is use-
ful to introduce the cumulative distribution Q (v, t), the
distribution of clusters of velocity v and mass greater
than or equal to m. Once the latter distribution is
known, P (v, t) can be obtained by

P (v, t)=Q (u, t) Q—+,(u, t) . (21)

Notice that the density of clusters of mass greater than or
equal to one is equal to the total cluster density,

Q, (v, t) =P(v, t}.
Consider a cluster of velocity v which contains at least

m particles. Let us number the consecutive particles in a
cluster from right to left by the index i and denote the
rightmost particle as i =0. Denote the initial distance be-
tween the ith and (i —1)th particle as x;, as illustrated in
Fig. 2. We first solve for Q z{v(t}and then generalize
to any m. Since Q2(v, t) is the probability that a cluster
of velocity v has at least two particles at time t, it is equal
to the product of the probability that the particle &'=0

has survived up to time t, P (v, t},and the probability that
the cluster i= 1 {whose mass may be larger than unity}
collides with the particle i=0 prior to time t.

For this collision to occur, the collision partner from
the left (i= 1}must have a velocity larger than v and the
interval x, ((v, —v}t must be free of other clusters. The
probability for this composite event is simply the product

FIG. 2. Illustration of the initial con6guration of a possible
three car cluster.

X x&exp —
x& (22)

The fact that the v, particle cannot be slowed down by
any other particle before colliding with the v particle is
crucial in obtaining the solution.

To derive Q (u, t) for general m, the joint velocity dis-
tance distribution Po(u, }exp(—x;) is integrated over the
position and velocity of the ith particle for
i =1, . . . , m —1. To ensure a collision, all m —1 parti-
cles have to move faster than the lead particle and the
distance of the ith particle from the lead particle must
obey x, + +x; & (u; u)t. Imposin—g these constraints
on the integration over the velocity and distance of the
m —1 trailing particles yields the formal exact expression
for the cumulative mass-velocity distribution,

of each individual event. Since an interval of length x, is

empty with probability exp( —x, }, the collision probabili-

ty is

Qz(t)=P(v, t)f du, PO(u, )

m —1

Q (v, t)=P(v, t) g f dv;Po(u; }f, ,
dx;exp( —x;) . (23}

For the initial velocity distribution given by Eq. (4), we
find the following asymptotic behavior (see Appendix A}:

Q (v, t)=t~ aV"exp[ b(V+M)"+ —], (24}

Xexp[ —b ( V+M)"+2], (25)

which has been explicitly written in the asymptotic scal-
ing form of Eq. (7). This result provides a complete
description of the traSc aggregation process. It may be
considered as the ballistic counterpart of the well-known
result [17] for diffusion-controlled aggregation in one di-
mension.

For arbitrary p we are unable to evaluate the integral
over the velocity and obtain the explicit mass distribu-
tion. However, for the particular case of a uniform initial
velocity distribution, p=0, it is straightforward to show
that

in terms of the scaling variables M = m /t and V= ut~

In the long-time limit, the joint mass-velocity distribu-
tion, P (u, t)=Q (v, t) —Q +,(u, t}, can be approximat-
ed by P = —BQ /Bm. Performing the diff'erentiation

gives

P (v, t) =t~ ab (@+2)V"( V+M)~+'

P(M) =a exp( —aM2/2), p=O . (26)

V. CLUSTERING IN HETEROGENEOUS
TRAa a xC FLOW

The above approach can be generalized to the case of a
spatially heterogeneous initial velocity distribution,
Po(x, u). For simplicity, we ignore the masses of clusters
and limit ourselves to studying the velocity distribution.
This time and space dependent velocity distribution,
P {x,u, t}, may be found by a straightforward generaliza-
tion of the approach developed in Sec. III for the spatial-
ly homogeneous case. The resulting expression for
P(x, v, t) reads

Another feature of the joint distribution function
4(M, V} for p=O is the symmetry with respect to the
variables V and M. Thus the cluster mass distribution
P(M) and the cluster velocity distribution P( V) are iden-
tical Gaussian functions.

Generally, we are able to extract only asymptotic
behavior from Eq. (23). However, in the special case of
exponential distribution, Po(v) =e, one can perform all
the integrations and obtain an explicit solution as de-
tailed in Appendix B.
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P (x, u, t) =Po(x —ut, u)

Xexp —f 'du' f" "
dx'Po(x', u')

0 X —UE

(27)

As an illustrative example of the effects of a hetero-
geneous initial particle distribution, consider the one-
sided distribution in which particles are placed with a
fixed density to the left of the origin and there are no par-
ticles to the right. Thus Po(x, u)=B( —x)Po(u}, with B
the Heaviside step function. For this initial distribution,
Eq. (27) yields

P(x, u, t) =B(ut —x)PO(u)

VI. CLUSTERING IN TRA1 FLC FI-QW
%VITH INPUT

In this section, we investigate traffic clustering when
there is a spatially uniform input of cars. This generali-
zation is motivated by real traffic where cars may enter
and exit a roadway. For the specific case of a spatially
homogeneous input of cars we can determine the velocity
distribution using techniques similar to those employed
for the traffic coalescence model with no input.

Denote by R (u, t) the input rate of particles with veloc-
ity v at time t per unit length. The velocity distribution
function for this system, P(u, t), can be expressed as a
convolution of the flux and the probability that a particle
which was injected at time t' maintains its velocity v up
to time t in the presence of the input, Sz(u, t, t'),

Xexp t dv v v Pp v
x/f

P(u, t)= f dt'R(u, t')Sr(u, t, t'} .
0

(34)

—(ut x)f—du'Pu(u') (28)

In the long-time limit, the average velocity decays as
t ~ and hence the front propagates as x =ut t -Sinc. e
the velocity and the position of the front scale as power
laws in time, Eq. (28) can be expected to have a scaling
form. Indeed, by introducing the scaled variables
X=xlr and V=ut~, one can recast Eq. (28) into the
scaling form

P(x, u, t)=t~ +(X, V),

In writing this expression, we have assumed that the sys-
tem is initially empty. A particle which was injected at
time t' will survive until time t if it avoids collisions with
all slower particles which were present in the system at
time t, as well as avoids collisions with all particles
which are injected at later times t") t'. The probability
for this composite event is simply the product of the
probabilities of each event,

with the scaling function

%(X, V)=B( V —X)aV"exp[ b( V"+ —X—"+ )] . (30)
=exp —f du'(u —u') P(u', t')(r t')—

0

When X=O, this scaling function coincides with Eq.
(16), the velocity distribution for the homogeneous case,
%(0, V) =P( V). Notice also that the density of clusters at
scaled position X, c (X,t), equals

c(X t)=c(t)f dV +(X V) f dV&(V), (31)
X 0

with c (t) given by Eq. (18). In the large X limit, Eqs. (30)
and (31) yield

c(X,t)= r for X»1.@+1
X

(32)

Consider now the total number of clusters that
infiltrate the initial empty positive half line,
N(t)= t'f 0 c(X,—r}dX. The asymptotic behavior of this

quantity is actually determined by the finite upper cutoff
of the integral, which in turn is given by the position of
the rightmost particle. For such particles the velocity is
of order unity and hence X

pp
x /t vt/t

Therefore

(35)

Here the first factor, obtained from Eq. (13) by replacing
Po(u') with P(u', t'), yields the probability of avoiding
collisions with particles injected prior to time t'. The
second factor represents the product of exclusions of the

type off' Eq. (12) for times larger than t' and velocities
smaller than v'. This factor accounts for the probability
that there are no collisions with particles injected at times
t", t"& t'. Note that the kernel of the second factor in-

volves the input rate 8 at time t ",which plays the role of
the initial velocity distribution at this instant of time.
Substituting Eq. (34) into Eq. (35} gives a nonlinear in-
tegral equation that describes the kinetics of traffic clus-
tering in the presence of homogeneous particle input. In
the following, we will assume that the flux is constant
both in time and space, R (u, t)=Pa(u) with

f0 duPO(u }= 1, so that the governing integral equation is

&~ p+1N(t)= f dX=aln(t) .
X {33) P(u, t)

Thus the number of clusters entering the empty half line
grows only logarithmically with time for arbitrary initial
velocity distributions. The only dependence on Po(u) in
Eq. (33) is the prefactor a = (p, + 1 )j(p+ 2 ).

=Pa(u) f dt'exp — t' f du—'(u u')Pu(u)—
0 2 0

r' f du'(u —u')P(u—', r r')—
0
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In parallel with the case of no input, consider again an
initial velocity distribution with a power-law small-
velocity tail, Po(U)-v". Furthermore, let us assume that
the concentration and velocity continue to vary as
c-t and v-t ~, respectively, and that the velocity
distribution continues to have the scaling form of Eq. (9),
P(v, t)-t~ P( V). Substituting these into Eq. (36), one
can extract consistency conditions for the exponents a
and P. For example, the powers of time on both sides of
Eq. (36) should be equal —hence P—a= —Pp+1. Fur-
thermore, both terms in the exponential in the right-hand
side of Eq. (36) cannot depend on time explicitly —hence
P(@+2)=2 and a+P= 1, respectively. These conditions
yield a=@/(@+2) and P=2/(@+2). Notice, however,
that when p is positive the exponent a is also positive and
therefore the concentration, c-t, decays to zero. This
is in obvious contradiction with the nature of the prob-
lem: with a constant fiux the concentration may grow
indefinitely or a steady-state concentration may be
reached. Thus one can expect that the above description
holds only for @&0. For positive p, we anticipate that
the system reaches a steady state with a constant concen-
tration and a typical cluster mass m —t. At the transition
p=O, a logarithmic temporal dependence is anticipated
to occur.

While we cannot confirm the above picture rigorously,
we can provide heuristic justification. First assume that
the velocity distribution evolves towards a steady state
P„(v). Then as t~~ Eq. (36) becomes

P„(v)=PO(U) f dt'exp — t' f—dv'(v —U')Po(v)
0 2 0

t' f —du'(v —v')P„(v')
0

(37)

If Po(v)-U" as U —+0, Eq. (37) suggests a similar behavior
for the steady-state velocity distribution function,

concentration of clusters,

c„=v'2a/p, 0&p«1 . (39)

Since c„diverges as p~O this indicates that at the criti-
cal value p, p =0, the system is still evolving.

Assuming the scaling form, obtained by the power
counting analysis of Eq. (36), let us examine the asymp-
totic behavior of the velocity distribution and the typical
concentration. If we substitute the scaling assumptions

P(u, t) =t~ i'( V) with a=, P= 2

p+2 @+2
(40)

into Eq. (36), we arrive at the following equation for the
scaling function f( V):

1 1P(V)=aV"f d~exp br—V—"+
0 2

~(l ~)~—~f /[V'(1 —~)~](V—V')dV', (4l}
0

c ( t) = t f f( V)d V, (42)

and for p=0 the integral diverges at the upper limit. To
obtain the asymptotic behavior we consider Eq. (41) for
the case p=O,

where ~=t'/t and b =a/(p, +1)(@+2).
Although we are unable to solve this nonlinear integral

equation in general, we can obtain information regarding
the interesting borderline case of p=O. This case corre-
sponds to a=0, suggesting that the concentration grows
slower than algebraically in time. However, the concen-
tration of clusters is given by

P„(v}=Au', v «1 . (38) g(V)=a f dvexp — bHV—
0 2

Since the concentration of clusters tends to the steady-
state limit c„=fo"P„(v)du, the exponent v must satisfy
the inequality v& —1. If one substitutes the assumed
power-law behaviors for Po(v) and P„(U) into Eq. (37),
three possibilities arise in the limit v —+0 which depend
on the sign of v —p/2+ 1. In the case where v) p/2 —1,
the first exponential factor in Eq. (37) provides the dom-
inant contribution. However, a simple calculation of the
integral shows that v =p/2 —1. Similarly, for
v&p/2 —1, one again finds v=p/2 —1. Only the last
passibility, v=p/2 —1, appears to be self-consistent.
Since v& —1, we obtain p) 0. Therefore starting from
the assumption that the system reaches the steady state
we have obtained that the exponent p should be positive.
This provides evidence for our conclusion that p =0
demarcates the scaling and steady-state behaviors.

Notice also that for 0 &@«1, an asymptotic analysis
of Eq. (37) gives the numerical prefactor in Eq. (38),
A =v ap/2. This yields the estimate for the steady-state

~(1 ~)f i—t [ V'(1 —~)](V —V')d V'
0

(43}

If we temporarily ignore the second term in the exponent,
we find g(V)-V ' for V~~. If we then include the
second term in the exponent and apply the previous
asymptotic behavior of g( V) —V ', we find

g( V) —( V ln V) '. These estimates suggest the ansatz

f(V)=CV '(lnV)

for V»1. Upon substituting Eq. (44) into Eq. (43) one
obtains the constants A, =—,

' and C =1/~2. With these
values, the integral in the right-hand side of Eq. (42)
diverges as v'2 ln V, where V now denotes the inaximum
value of the scaled velocity. Since P= 1, this maximal ve-
lacity is proportional to t, which therefore suggests the
logarithmic time dependence
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c(t}=&21nt (45)

In the complementary case of p &0, we have confirmed
that the naive scaling ansatz is consistent with Eq. (42).

low a fast car to traverse a cluster car by car and ulti-
mately regain its intrinsic velocity once the cluster is
completely passed. It may prove interesting to examine
the steady-state properties for this case of models.

VII. CONCLUSION

We have introduced a simple ballistic aggregation pro-
cess that mimics the kinetics of clustering in a single lane
of traffic. Through direct probabilistic approaches, the
analytical forms of the cluster velocity distribution and
the joint mass-velocity distribution have been derived.
For an initial velocity distribution of the form P0(u)-v"
as v ~0, both the average velocity and the average clus-
ter mass have power-law time dependences with ex-
ponents that are rational functions of p. This qualitative
behavior is similar to that observed in the closely related
ballistic annihilation process. We are also able to deter-
mine the asymptotic form of the joint mass-velocity dis-
tribution.

Our model can also be analyzed in the cases of a spa-
tially heterogeneous particle distribution and continuous
input of particles. For the simple case of an initial one-
sided spatial distribution, the system evolves towards a
scaling distribution both in velocity and spatial variables.
We have thus found that the total number of clusters in
the initially empty half line grows logarithmically with
time for all initial velocity distributions. When there is a
steady input of particles in an initial empty system, we
have found that there is a transition between steady-state
behavior for p & 0 and transient behavior for p & 2 which
is similar to that found when there is no input. For the
borderline case of the uniform distribution, p=0, we
have found that the total concentration of clusters grow
as O'Int.

The irreversible traffic model introduced in this paper
leads to ever-growing clusters. To describe traffic flows
more realistically, several mechanisms to induce a steady
state can be envisioned. For example, the input model
can be generalized to incorporate a flux out of the system.
Another realistic direction is to allow a faster car to pass
a slower car at a rate which is some increasing function
of the velocity difference of the two cars. This would al-
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and the Donors of The Petroleum Research Fund, ad-
ministered by the American Chemical Society, for partial
support of this research.

APPENDIX A: DERIVATION OF EQ. (24)

Since the details of the initial distribution for large veloci-
ties do not change the form of the scaling solution, we
may treat the more general power-law case by choosing a
specific initial distribution of velocities whose form is
convenient for performing the integration over the veloci-
ty in the right-hand side of Eq. (Al). Since the velocity
distribution near U=O has a power-law tail, the most con-
venient initial distribution is

Pa(u) =au "exp[ —av"+'/(p+1)] . (A2)

For this initial distribution, the integration over the ve-
locity variables is immediate and one finds

In this appendix, we derive the asymptotic form of the
cumulative velocity-mass distribution which is valid for
an arbitrary initial velocity distribution with a power-law
small-velocity tail. The starting point for calculation of
Q (u, t) is the formal expression of Eq. (23). By inter-
changing the order of the velocity and spatial integra-
tions, the expression can be rewritten as

m —1

Q (u, t)=P(v, t) g f dx;exp( —x;)
i =1

fX du;PQ(u; ) .
v+(x&+ . +x,. )/f

(A 1)

m —1

Q (v, t)=P(v, t) g f dx;exp( —x;)exp[ —a [u+(x, + +x;)/t]"+'/(@+1)] .
i=1

(A3)

m —1

+[e(xi+. . . +x, )]f'(u)],

g f (u+ei)+O(e~),
i=1

(A4)

To evaluate the multiple spatial integral, we define

f (z) =exp[ —az"+'/(p+1}] and expand f (x) to first or-
der about the point z = v and then exploit a number of
simplifications associated with performing the integrals

X.
over the factors e '. This gives

m —1

Q (v, t)= + f dx;e 'f(v +e(x, + . +x;))
i=1

m —1=rI f d; '[f(}

where @=1/t. By substituting the explicit functional
form, f (z) =exp[ —az"+'/(p, + 1)], we have

Q (u, t)=P(u, t) ff exp[ —a(u+i/t)"+'/(p+1)] .

(A5)

Finally, the product of the exponential factors is

written as an exponent of a sum. In the limit of large

m, this sum is equivalent to the integral
a J0 'dy(u+y/t)"+'/(@+1). Evaluating this integral,

the asymptotic form of the cumulant mass-velocity densi-

ty is obtairled as
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Q (v, t)=av"exp[ b—(vt~+mt )"+ ] . (A6) Q (v, t}=P(v,t)e

In evaluating this asymptotic expression, the exponential
factor of P(v, t) cancels the factor that emerges from
lower limit of the integration over y. In Eq. (24), the
above expression is written as a scaling function.

X g f dx;exp —x, 1+

(Bl)

APPENDIX B: ANALYTIC SOLUTION
FOR THE EXPONENTIAL

INITIAL VELOCITY DISTRIBUTION

We outline here the explicit analytical solution for
Q (u, t) for the exponential initial velocity distribution
Po( v }=e " which corresponds to the special case p, =0
and a=1. For this exponential distribution, the integra-
tion of Po(v;) over the velocity variables u;, according to
Eq. (Al}, equals exp {

—[v+(x, + +x, )/t]j. Hence
we obtain

Upon integration over the space variables, the following
exact expression is found for Q (u, t):

Q ( ) P( )
—(m —1)v n —( ( +

m Ut = Ufe r(t+m) ' (B2)

where I (z) = fo"x' 'exp( —x) is the Euler gamma func-

tion and the velocity distribution obtained from Eq. (14)
is P(u, t)=exp[ —u t(e—'—1+v}].

The exact forms for the joint mass-velocity distribution
and for the mass distribution can be evaluated from Eq.
(B2) by taking the appropriate limits m ~~ and u ~0.
The resulting asymptotic expressions are identical with
the expressions of Eqs. (25}and (26), respectively.
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