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Generating functional approach to space- and time-dependent colored noise
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A stochastic model for time- and space-dependent colored noise is suggested based on the following

assumptions: (1) the noise field is generated by a random number of point events corresponding to a
correlated point process; (2) the contributions of the different events to the noise field are additive, each

contribution being a random function selected from the same probability density functional. An analyti-

cal treatment of the noise field described by these assumptions is possible; the generating functional of
the noise field as well as the corresponding cumulants can be computed exactly. All cumulants are ex-

plicitly evaluated when the contribution of an event is given by a diffusion equation. A detailed analysis

of the asymptotic behavior is made for time-homogeneous and translationally invariant processes. A

Gaussian random field colored in space and time emerges for very frequent independent events of very

small intensities, provided that the central moments of the contribution of an event to the noise field are

finite and fast decreasing in space. The correlations among events lead to corrections of the Gauss limit

law; however, the cumulants of the random fields are also finite. If the central moments of an event are

slowly decreasing in space a different type of asymptotic behavior occurs; the cumulants of the noise field

become infinite and the resulting field is described by a non-Gaussian stable law of the Levy type. The

theory may be applied to the study of stochastic gravitational fluctuations in galactic systems, to the

analysis of concentration fluctuations for diffusion processes in disordered systems and for the analysis of
the influence of environmental fluctuations in continuum mechanics and electrodynamics.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCI ION

Colored noise has been studied in the literature starting
in the early 1960s [1,2] but quite recently a more general
interest has appeared, with new approaches of potentially
wider interest being proposed. Recent strong motivation
to study the colored noise has arisen mostly in connection
with the analysis of systems under the in6uence of exter-
nal noise [3,4]. For these systems the statistical proper-
ties of the noise are unrelated to the intrinsic dynamics
and as a consequence the usual justification of white noise
based on the separation of time scales cannot be invoked.
External colored noise is commonly used for describing a
broad class of natural phenomena ranging from optics
and radiophysics to population dynamics [5—12].

Traditionally the term "colored noise" is used for noise
sources with a frequency-dependent spectrum. Recently
this notion has been extended to space-dependent pro-
cesses [13,14]; in this case the noise spectrum depends
both on frequency and on the wave vector. In [13,14] a
space-dependent analog of the Ornstein-Uhlenbeck pro-
cess has been suggested. This generalized process has
been introduced in a formal way, by relating it to an auxi-
liary random process which is white both in space and
time. Although commonly used in stochastic dynamics
this type of approach has disadvantages: it is derived
from a set of "ad hoc" assumptions without clear physi-
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cal significance and it does not say anything about the
mechanism of noise generation. In contrast the early at-
tempts at studying noise [15—18] were based on the as-

sumption that the noise is due to a very large number of
random events of very small intensity. Such an approach
was used for the study of Brownian motion [15] and of
shot noise [16—18]. The corresponding models are not
very detailed; their analysis generated the notion of white
noise. In the last 50 years the study of noise has followed
two difFerent complementary directions: (a) a microscop-
ic approach aiming to give different detailed descriptions
for di8'erent processes and (b) a mesoscopic approach
which ignores the details of a given process and uses the
noise sources or the master or stochastic differential
equations as formal tools. Although it is usually assumed
that the initial idea that the noise is due to a large num-

ber of random events of very small intensity is included in
the mesoscopic description, most authors do not use it
explicitly.

The purpose of this paper is to resume the above men-
tioned initial assumption on which the early research of
noise was based and to use it for deriving a general
description of multivariable space- and time-dependent
colored noise. Such an approach has many advantages: it
is still mesoscopic and encompasses a large class of natu-
ral phenomena; on the other hand, it is based on a physi-
cal mechanism which allows one to understand the origin
of colored noise and to investigate the different types of
asymptotic behavior. The structure of the paper is as fol-
lows. In Sec. II we rephrase the model of space-
independent colored noise in a form which is suitable for
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generalization to space-dependent processes. In Secs. III
and IV the stochastic equations for space and time-
dependent colored noise are formulated based on the
theory of random point processes. In Sec. V a scaling
condition is introduced which is used in Sec. VI to inves-
tigate the asymptotic behavior of random noise fields gen-
erated by uncorrelated as well as correlated events. Sec-
tion VII presents an application of the theory by assum-
ing that the contribution of a source is described by a
diffusion equation. Section VIII deals with another ex-
ample leading to a stable noise field of the Levy type. Fi-
nally in Sec. IX the possible applications of our ap-
proach are discussed.

II. SPACE-INDEPENDENT COLORED NOISE

We consider the temporal Quctuations of a scalar ran-
dom variable X(t} which obeys a stochastic functional
evolution equation:

dXIdh =0'& [X(r)]+0 2[X(r)]F,
where %,[X(t}]and %2[X(t)] are deterministic function-
als of X(t) which generally depend on all values of the
function X(t') for all previous times t'=t„tz, . . . and F
is a random noise source. Our purpose is to study the
stochastic properties of the noise source F by assuming
that they are due to a random succession of random
events of small intensities; we do not discuss in this paper
the stochastic properties of the random variable X(t}.

By combining the approaches of Rice [17], Bartlett
[20], and Van Kampen [21] we assume that the efFect at
time t of a random event occurring at a previous moment
t' is given by

pcy(t t'), —

where c is a random intensity selected from a probability
I

law with finite moments

p(c)dc with fp(c)dc =1, (3)

p is a scaling factor used to control the intensity of an
event [21], and y(t t—') is an attenuation function which
depends only on the time difference t —t', the principle of
causality requires that

q(t t—')=0 for r'&r . (4)

For a given number 1V of events occurring at times
t„.. . , tN with the intensities c&, . . . , cN the value of the
random force F(t}at time t is equal to

F(t)=[cia)(t t, )—+ +c~q)(t t~)—]p . (7)

In order to characterize the stochastic properties of the
random force F(t) we introduce the generating functional

9[K(t)j=(exp i J Ftt)K(t'tdt
0

where K(t) is a suitable test function and the average ( )
is computed over the values of the random intensities
c&, . . . , cN, over all possible times t„.. . , tN and over
the number of events N. We get

By considering a large time interval T we suppose that
the random events are homogeneously distributed with
an average frequency co,' the number N of events corre-
sponding to the time interval T is a random variable
obeying Poisson statistics

P(N)=[v(T)] (N!) 'exp[ —v(T)],
where the average number of events v( T) is a linear func-
tion of T,

v(T)=a)T .

9[K(t}]=g, e
x=o N!

+dt~ 7 dtN ' 7.

Texp ~ c~qt —
tN « t pc~ pcN . (9)

By examining Eq. (9}we note that it is the expansion of an exponential:

T T8[K(t)]=exp coT+cof—dt' fp(c)dc exp icp f gr(t t')K(t )dt—
0 t'

(10)

By expanding in Eq. (10) the term exp[icp f q&(t —t')K(t)dt ] in a Taylor series and using the identity [22]

f dr'f dr, f drNf(r', r„.. . , t~)=f dt, f drNf dt'f(t', t„.. . , r~),

where f is a function of t', t &, . . . , tz and

tg =min(t(, . . . , iN }, (12}

we can express the generating functional 8[K(t)] in the standard form of a cumulant expansion,

(13)
(ip)» m8[K(t)]=exp co g, f dt& f dt (c )K(t, ) . K(t )f dt'y(t& t') q&(r t')— —

m=1 0 0
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where

(c ) =fc p(c)dc (14)

((F(t, ) F(t. ) )& =(-t )-
x(,) 0

are the moments of the intensity of an individual event.
From Eq. (13) we can compute the cumulants of the
noise source F(t) by evaluating the functional derivatives

tion function is 5 shaped (Q~ ~ ), that is, if the effect of
an event is local in time we come to the case of Gaussian
and white noise.

The results presented in this section are not new. Al-
though not identical to our approach, similar formalisms
have been developed by Rice [17] and Van Kampen [21].
Our approach has the advantage that it can be easily ex-
tended for the study of space- and time-dependent
colored noise.

We obtain
(15)

III. SPACE- AND TIME-DEPENDENT
COLORED NOISE

We consider a set of random variables

xqr(t t'}dt—', (16)
X=(Xi,Xq, . . .), (26)

(c)=0,
p~O, to~ oo with p co=co=const%0 .

In this case we have

(F(t)&=0,

((F(t$ )F(t2) » = (F(t$ )F(t2) )

=co(c )f q&(ti —t')y(t2 —t')dt'

(17)

(19)

(20)

((F(t&)F(t2) F(t )))=0 for m ) 2 . (21)

In this case the stochastic properties of the noise source
F(t) are completely determined by the second moment
((F(t& )F(t2) ». The corresponding stochastic process is
generally nonhomogeneous in time; the time homogeneity
emerges as T~~. In terms of ((F(t, )F(tz))) the limit
T~ 00 is equivalent to

where the double brackets denote the cumulant average.
Equations (15) are a generalization of Campbell's
theorem [16,17]. In general all cumulants of the noise
source are different from zero and the corresponding sto-
chastic process is colored and non-Gaussian. However, a
Gaussian behavior may emerge for very large time inter-
vals (T~ 00 } if the average frequency of events is very
large (co~ oo } and their effect is very small (p~0). By
assuming that in Eqs. (13) and (16) the integrals over t'
exist and are finite the Gaussian limit corresponds to

depending on time t and on the position vector

F(z)=(F,(z),Fz(z), . . . ) (30)

is the vector of noise sources and %,[X(z)], %'&[X(z)] are
deterministic functionals of X(z). We assume that the
stochastic behavior of the noise sources is described by
the following assumptions.

{1)The noise is generated by certain (punctual} events
occurring in the space-time continuum. For the Browni-
an motion the events are random collisions. The effect of
an event occurring at a position (r, t ) is not locahzed in
space and time but rather distributed. The contribution
to the vector F(r, t ) of an event occurring at a position
(r', t') is given by

Pf(r —r', t t'), — (31)

where p is a scaling factor similar to the one used in Sec.
II and f(br, b t )= f(hz) is a random vector selected from
a constant probability density functional

in a d, -dimensional Euclidean space (d, =1,2, . . . ).
denote by

z=(r, t} (28)

the position vector in space-time continuum. X(z)
=X(r, t ) obeys a stochastic functional equation simila«o
Eq. (1}:

d X/dt ='0, [X(z)]+4,[X(z)].F, (29)

where

t ~, t2 ~~ with t
&

—tz =const

and Eq. (20) becomes

(22)

q&(t —t') =Q exp[ —Q(t —t')], (24)

«F(t )F(t )»=&c'&re f "q(~t, t, t+e)q(e)de. (23)—
0

In particular, if the attenuation function y is an exponen-
tial with a characteristic frequency 0:

B[f(bz)]D[f(bz}]
with gB[f(b, )]zD[f(bz)]=1, (32)

where D[ f(bz)] is an integration measure defined ov«
the space of functions f(hz) and g stands for the func-
tional integral. All functions f(b,z) should obey the
causality principle

in the limit {22}we recover the Ornstein-Uhlenbeck pro-
cess for which

(25)((F(t) }F(t2)))=—,'m(c2)Q exp[ Q~t, —t, ~], —
and all other cumulants are equal to zero. If the attenua-

f(gr, ht}=0 for ht &0 . (33)

(2} The random punctual events occurring in the
space-time continuum are generally correlated; their sto-
chastic properties may be described by using the formal-
isrn of random point processes [21,23]. The number of
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random events as well as their position in space-time con-
tinuum are described by a set of Janossy densities [21,23]: $[F(z)]D[F(z)] with gl $[F(z)]D[F{z)]=1 (37)

ys —{*i . . zs) . (35)

Qs(zi, . . . , zs)dzi dzs is the probability that there
are S events and that the Srst event occurs at a position
between z, and zi+dz„. . . , and that the Sth event
occurs at a position between zs and zs+dzs. We follow
the usual convention according to which there are no re-
strictions concerning the relative positions of the events
in the space-time continuum and thus a 1/S! Gibbs fac-
tor should be introduced in the normalization condition
of the Janossy densities,

00

Qo+ g» fQs{ys)dys=l .
s=1 ! (36}

al
Our aim is to evaluate the probability density function-

Qo Qs(zi . . . , zs}dz, dzs=Qs{ys)dys (34)

where

of the vector of noise sources or the corresponding gen-
erating functional

&[K(z)]=+exp i fK(z) F(z)dz

X$[F(z)]D[F(z)] . (38)

5[F(z)—pf i(z —zi) — —pfN(z —zN )]D[F(z)],
(39)

corresponding to the superposition of the contributions
of N events over all possible functions
f,(z—z, ), . . . , fN(z —zN ), all positions z„.. . , zN of the
events and over all possible number of events N:

The probability density functional $[F(z)]D[F(z)] is an
average of a Dirac 5 functional symbol

00

$[F(z)]D[F(z)]=g g g fQN(yN)8[f, (z —z, }]D[f,(z —z, }] B[fN(z —zN}D[fN(z —zN}]
x=o N.

X5[F(z}—pf, (z —z, }— pfN{z —zN )]D[—F(z)]dyN, (40)

where the average is computed in terms of the Janossy
densities (34). Equation (40) looks very complicated;
however, it can be used to study all stochastic properties
of the vector of noise sources. By making use of the for-
malism of random point processes [21,23] Eq. (40) leads
to a closed expression for the generating functional of the
noise sources which is a generalization of Eq. (10) derived
in Sec. II.

I

ber of events are given by [21]

= (N(N 1) ~ ~ (N ——m+1)) =f riN(yN)dyN . (43)

riNdyN are joint densities of events rather than probabili-
ty densities and thus they do not obey a normalization
condition similar to Eq. (36).

In terms of Qs and riN we can define two difFerent

types of generating functionals: for the Janossy densities

IV. A GENERATING FUNCI IONAL APPROACH
TO NOISE SOURCES

We introduce the joint densities [21,23]
00

/N(yN)dyN g S fQN+$(yN ys )dys dyN
s=0 !

go=1 . (41)

00

A[W(z)]= $ f f W(zi} W(zs)
S=1 S'

XQs{ys)dys+Qo (44)

and for the joint densities

=-[W'(z)]=1+ g ', f f W(z, )" W(z„)
N=1

Like the Janossy functions Qs, the joint densities describe
completely the stochastic properties of the point process;
they allow us to evaluate the Janossy densities by means
of the relationship [21,23]:

1)N
Qs{ys}dys= g N, ~$+N{ys yN}dyN dys .

N=0

X~N(yN)dyN {45}

respectively, where W(z) is a suitable test function. It is
easy to check that these two generating functionals are
related to each other through the relationship [21]

(42) A[W{z}]=:"[W(z)—1] . (46}

The main advantage of the joint densities is that they al-
low us to evaluate the moments of the number of events
in a simple way. In particular, given a region X in the
space-time continuum, the factorial moments of the num-

By performing a cumulant expansion of:-[W(z)] we can
introduce the correlation functions gN{yN) of the point
process [21,23]:
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1:-[8'(z)]=exp g f . . f W(z, ) . 8'(z )
m.f

(4»

relationships between qN and gN.

r/N(yN) — & gN, (z,„
partitions of N

XgN(z-, . . . , z )
I

(48)

By combining Eqs. (45)—(47) we can derive the following and

gN(yN)
partitions of N

1

(
—1)' '

[r/N (z, , z )] .
p S=1 p(S) Jp(S)1 Jp(S)Np(S)

(49)

In Eq. (48) the sum over partitions of N means a division of the integer N into / ordered subsets
(j», . . . , j,N ), . . . , (j„,. . . , jIN ) of sizes N„. . . , N&, for a given set of numbers N, , . . . , NI the total number of parti-

tions is given by the well known combinatorial formula

N'f

g [(/'!) 'N, !]
with g/'N& =N .

Similarly in Eq. (49) the partition of N is the same as in Eq. (48), j» =1, and p is a permutation of the integers
2, 3, . . . , / and p(1)=1; for a given / the total number of permutations is equal to (/ —1)!

Now we insert Eq. (40) into the definition (38) of the generating functional of the noise field F(z) and express the
averages over B[ f(z —z, ) ]D [ f(z —zr ) ] by simple brackets

g 8[f(z—z, )]D[f(z—z, )]=( . ) . (51)

We obtain

[ *]=+X,f. fdz ,
. dzzgz(z''„. . . , zz)ii exp iI)fK(z)I(z —&)dz z).

N=1 1=i L

(52)

By comparing Eqs. (44) and (52) for the generating functionals A and 2 we note that if we choose the functions W(z)
and K(z) so that they obey the relation

IV(z')=(exp i( fK(z) f(z —z')dz

then the functionals 2, A, and:- are related to each other through the relationship

9[K(z)]=A exp iPfK(z).f(z —z')dz

exp i K z .f z —z' dz —1

=exp g, f f dz', dz' g (z'„. . . , z' )

m=& m.

m

Xg exp iPf K(z) f(z —zI)dz —1
1=1

(54)

By introducing the generating functional of the contribution of an individual event to the noise Seld

L[K(dz)]=@exp i fK(hz). f(/))z)diaz 8[f(bz)]D[f(hz)], (55)

we can write Eq. (54) in a simpler form,

9[K( )z]
= [AL [PK( ' zb+z) ]]=:"

I L [PK( ' zb+z) ]—1]

1
m

=exp g, f . f dz', dz' g (z'„. . . , z' )g L[PK( zI+bz)]
m! 1=1

Eq~atio~s (54) and (56) are the main results of this paper; they express all stochastic properties of the resulting noise
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field F(z) in terms of the stochastic properties of the point process describing the behavior of the ensemble of events

and in terms of the stochastic properties of the contribution f(hz} of an individual event to the noise source. In partic-

ular, for

and

K(z) =Ki5(z —z, )+ . +K&5(z—zi) (57)

K(hz}=Ki5(hz —uzi)+ +K&5(bz —hzI ), (58)

the generating functionals 8[K(z)] and L[K(bz)) become the Fourier transforms in the F space of the 1-point joint
probability densities of the individual and total fields f and F:

Pt(F, ,z„;F1,zi), f fPIdF, dFI =1, (59}

and

RI(f»uzi,', fi, bzt) J fRIdf, d fI =1 .

We have

Pr(Ki zi;;K, ,z, )=I . Jexp(iK, F,+. +iKt.FI)PtdF, dF&

=9[K(z)=K,5(z—z, )+ +KI5(z —z, )]

and

Ri(K„hz,;;KI,t5zl)= f ' ' ' f exp(iKi fi+ +iKI fi}Ridf, dfi

=L [K(bz) =K,5(hz —b z, }+ +K&(hz hz& —)],

(60)

(61}

(62)

where the overbar denotes the Fourier transformation. It follows that the I-point joint probability density of the result-

ing field can be evaluated as an inverse Fourier transform of 9:

P&(Fi,zi,', F&,z&}=(2m}™I Jexp( —iKi Fi — iKI —FI)

XQ[K(z) =Ki5(z —zi)+ +Ki5(z —zi )]1Ki d KI . (63)

Here M is the dimension of the vector of noise sources.
The central moments and the cumulants of the result.

ing noise field, if they exist and are finite, can also be eval-
uated from the expressions of the generating functional Q.

By evaluating the functional derivatives

&F. (z, ) F. (z, ))

=(—1)', (64)
5K (z, } 5K (zi)

and

((F,(*,) . .F,(* ) 8

(
. )I 5'ln9[K(z)]

(6 )
5K (z, ) 5K (zi )

V. SCALING CONDITIONS
FOR POINT PROCESSES

In order to investigate the asymptotic behavior of the
noise sources further information is necessary concerning
the distribution of random events in the space-time con-
tinuum. The simplest approach corresponds to a general-
ization of the space-independent model discussed in Sec.
II: we assume that all random events are independent
and homogeneously randomly distributed in the space-
time continuum. Denoting by p the average space densi-

ty and by co the average frequency of events, the space-
time density c of events is simply equal to

(66)

By considering a space volume V and a time interval T
the corresponding average number of events is equal to

v(Y, T}=pcoYT=eV, (67)

we can compute, at least in principle, all central moments
(F (z, ) F (zl ) ) and the cumulants

((F (z&) F~ (zt))) of the resulting noise field. The

actual calculations are rather complicated, the complexi-
ty increasing with the order of cumulants. In Appendix
A and in Secs. VI and VII we show how Eqs. (64) and
(65) can be used for computing the moments.

where

(68)

is a space-time hypervolume. As we assume a random
homogeneous distribution the average number of events
corresponding to a position vector between z=(r, t) and
z+dz=(r+dr, t+dt) is independent of position and
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dV=dV dT=dz=drdt; (69)

time and depends only on the differential element of hy-
per volume

first density function. The most convenient way of
defining such a correlated point process is to use a set of
correlation functions

we have g, (z) dz=g, ( z)dz= E dz, g (y )dy, m ~ 2 . (79)

gi(z)d z= ed z =pro d r dt . (70)

Due to statistical independence all other joint densities
are products of g&..

9N(y~ )dy!v = li(*i )d*i (71)

g, (z)dz=rt, (z)dz, g (z)dz=0, m ~2

A[ W(z ) ]=exp —sV+e f IV(z)dz

:"[W(z)]=exp sf JV(z)dz

(73)

(74)

Due to statistical independence all correlation functions
g with m ~2 are equal to zero. The probability P(N)
that N events occur in the space-time hypervolume V re-
sults by integrating the expression (72) of the Janossy
densities:

The Janossy densities, the correlation functions, and the
generating functionals A and:- can be easily evaluated
from Eqs. (42), (44), (45), (49), and (71). We obtain

Qs(ys )d ys =exp( sV) s—d ys

where

g (Fi, ti', ' ' '', F,t ) (81)

are dimensionless correlation functions depending only
on the dimensionless times t„.. . , t and dimensionless
position vectors F&, . . . , T

Due to the correlated behavior the functions g with
m ~ 2 are generally different from zero. The joint densi-
ties and the Janossy functions can be computed from the
correlation functions by applying Eqs. (48) and (42).

Our main assumption here is that the correlation func-
tions depend only on the position vectors z&, zz, . . . , on
the space density p, and on the time frequency co and are
independent of other dimensional parameters; they do
not depend on the space volume V or on the time interval
T. This assumption leads to the following scaling condi-
tion for the correlation functions, which results from di-
mensiona1 analysis

1/d, 1/d,
g (y )dy =e g (p 'r„tot, ;;p 'r, cot )d

(80)

f f QN(ytt)dyN
1

1/d,
F =p 'r, t~=cot, a=1, . . . , m . (82)

=[v(V)] [¹!]'exp[ —v(V)] . (76)
We note that this scaling condition is automatically
fulfilled by the flrst of Eqs. (79) which corresponds to

Here a Gibbs factor I //N! similar to the one used in the
normalization condition (36) has been introduced. As ex-
pected, due to statistical independence of the events P(N)
is a Poissonian with an average value v(V) given by Eq.
(67).

For the Poissonian distribution (76) all cumulants of
the number of events are proportional to the space-time
hyper volume

((N')) =v(V)=sV= independent of I .
g2%0, g =0, m&2.

In this case we have (see Appendix 13)

(84)

(83)

A simple expression for the probability P(N ) of the oc-
currence of X events is not available for arbitrary correla-
tion functions. An expression for P(N ) can, however, be
derived for the simplest correlated point process conceiv-
able which corresponds to

From Eqs. (77) it follows that the relative fluctuation of
the number of events decreases with the increase of the
hypervolume as V

( i!iN2 ) i /2/ ( N ) —((N2 )) 1/2/ ((N )) &
—i/2V —I /2 (78)

P(N) =exp[ —v(V)+ —,'p(V)]

X
[N/2] [ (V)+ (V)]tt —2k[ (V)]k

o 2"(N —2k )!k!
(85)

As V~ ao the relative fluctuation tends to zero, that is,
the Auctuations of the number of events do not have an
intermittent behavior; although possible, the large Buc-
tuations of N have very small probabilities of occurrence.

If the occurrence of events is described by a homogene-
ous random point process we can assume that the first
density function rii is also given by Eq. (70); the other
density functions, however, are no longer products of the

I

where v(V) is given by Eq. (67) and

p( V)= ef f f f g(F„t,;F,t )

Xd Fidt i d F2dt2 (86)

All cumulants of the number of events can be comput-
ed exactly for any correlation functions obeying the scal-
ing condition (80) (see Appendix 8):

I

((N'))= g s @& 'f f . . f f g (F„t„. . . ;F,t )df, dt, . dI' dt
pV coT pv ~T
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(88)
k!(m —k )!

are the Stirling numbers of the second kind. Unlike the case of uncorrelated processes the expressions of the cumulants
cannot be used to investigate the intermittent or nonintermittent nature of the fluctuations of the number of events.
This is due to the fact that in Eqs. (87) the volume and time dependence of the integrals over F&,t„;F,t are not
uniquely determined by the scaling condition (80). In Appendix C we show that by generalizing the Kubo extensivity
Ansatz [19] we can introduce additional restrictions for the correlation functions which lead to a nonintermittent
behavior for the fluctuations of the number of events.

The requirement that the random point process is homogeneous leads to another restriction for the correlation func-
tions: they should not depend on the vectors z„z2, . . . , z but rather on the differences z&

—zI, . . . , z —zI where zI is
an arbitrary position vector selected from the set z&, . . . , z

VI. ASYMPTOTIC BEHAVIOR

We begin with the study of independent point processes. In this case all correlation functions g of order bigger than
the unity m =2,3, . . . are equal to zero and from Eq. (54}we come to the following expression for the generating func-
tional of the resulting random field

P(K, (z)]=exp f x(,(z')dz' (exp i((f K(z) f(z—z')dz —(

from which, by expanding the exponential exp[iP fK(z} f(z —z )dz] in a Taylor series we obtain

9[K(z)]=exp. g P f f f g gri, (z'}K (z, ) SC, (z, }
l(i)'

~ Z 1 I a
1

a I

(89)

X(f (z, —z') f (z, —z'))dz'dz, dz, ' . (90}

If in Eq. (90) we change the order of integration of z', z„.. . , zI we can express the generating functional 9[K(z)] in
the standard form of a cumulant expansion. The time integrals should be handled with care because we should take the
principle of causality into account; for that we should use the integral identity (11). On the other hand, no restrictions
similar to those imposed by the principle of causality exist in real space so that we can change the order of integration
over r', r, , . . . , rI without problems. We obtain

(i )'
9[K(r,t)]=exp. g, f f g gl(:, (r„t, ) I(.' (rr, tl)((F, (r„t, ) F (r„t, )))

1=1 a1 al

Xdr, dt, dr&dtI ', (91)

where

I((F (r„t, ) F (r&, tl))) =P'f f g, (r', t')(f, (r, r', t, t') f—(—rI r', tI —t'))d—r'dt'
r' 0

(92)

are the cumulants of the resulting field and tI' is the
smallest number selected from the set (t &, . . . , t& ) [see Eq.
(12}].

We note that the cumulants of the resulting noise field
are averages of the central moments of the contribution
of an individual event. Equations (92) are space-time
analogs of the generalized Campbell relations derived in
Sec. II for space-independent systems [Eqs. (16)]. The
finiteness of the central moments of f corresponding to
an individual event does not necessarily imply the finite-
ness of the cumulants of the resulting noise field. The cu-
mulants are usually finite for finite V and T; as V, T~ 00

they are finite only if the central moments of f and the
density function g& are fast decreasing functions, for in-

and introduce a limit similar to Eq. (18) used in Sec. II,

P—pO, s—p ~, with P e=Z=constAO, (93')

stance, of the exponential type.
If the integrals in Eqs. (91) and (92) exist and are finite

then a Gaussian behavior may emerge if the space-time
density of events is very large (e~ oo ) and the contribu-
tion of an individual event is very small (P~O). In order
to investigate the Gaussian limit behavior we assume that
the density function g& is given by Eq. (70) and that the
average contribution of an individual event is equal to
zero,

(93)
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where Z is an average scaled density of events in space-
time continuum. In this limit if the integrals in Eqs. (91)
and (92) exist and are finite and all cumulants of the re-
sulting Geld excepting the second one are equal to zero.

We have

((F))=O, ((F.F.
1 2

and

(94)

min{ t1, t2 )

((F (r, , t, )F (rz, t2)))=If f dr'dt'(f (r, —r', t, t')f—(rz —r', t2 t—')) .

The expression for the generating functional 9[K(z)] becomes

2[K(z)]=exp. ,'—f—fg gK (z, )I(.
' (z2)((F (z, )F (z2)))dz)dz,

a1 a2

(96)

(Fi,r„t,;;F„r
= [detC]' (2m )

' exp[ —
—,'YC 'Y ],

where

Y=(F;);

C=(~((F (r, , t,. )F(rj., t, ))))~.. (98)

By using Eqs. (61) and (96) we can compute the expres-
sion of the I-point joint probability density of the result-
ing field. After some algebra we get an M/-dimensional
Gaussian distribution

interval T, although possibly large, have been assumed to
be finite. The finiteness of V and T generate boundary
conditions which destroy the time homogeneity and the
translational invariance. By making a comparison with
the space-independent model studied in Sec. II we expect
that the translational invariance and the time homogenei-
ty emerge in the limit V, T~ 00. This problem will be in-
vestigated in the following section.

The asymptotic behavior for correlated systems can be
discussed in a similar way. The main idea is to evaluate
the nonvanishing terms which "survive" in the limit (93}
in the expression (54} for the generating functional of the
resulting Geld. We expand the terms

and the double bars stand for a matrix. In studying the
asymptotic Gaussian behavior we have assumed that the
point process which describes the random behavior of in-
dividual events is homogeneous; however, the limit
Gaussian law given by Eqs. (95)—(98) is generally neither
translationally invariant nor time homogeneous. This is
due to the fact that the total volume V and the total time

(99)

in power series in P and change the order of integrals by
using Eq. (11}.The next step is to insert these expansions
and the scaling conditions (80) into Eq. (54) and to order
the different terms containing difFerent powers of P.
After some algebra we get an expression of the type

QO ] (X)

@[K(z)]=exp g s g (iP) + g ~ ~ g f ~ ~ f g (y +()It (zi) ~ It (z +()dy
m =1 ' /=0

1 tn+I

(100)

where A( ". . . (y +&) are complicated integral expressions depending on the correlation functions g and on the
a1 ' ' am+I m+I

central moments of f. A few values of A '„".. . are given by
1 m+I

A {1&)

A {22)
1

1 1+I

(y)+&)= f f dr'dt'( f (r, r', t, t') f— (r, +—, r', t, +, —t—') ),(+ I ! r'

mi (tnt&() i (m(3 n14)

(y4)= —,
' f f f f dr', dtIdrzdtzg2(p *r(,cotI;p *rz, cot& }

r1 0 r2 0

X (f (r, r'„t, t', )f (r2 —r',—, t2 —t',))—
X(f (r3 —rz, t3 tz)f (r4 —r'z, t4 tz)) . — —

(101)

(101')

In general we have

(y +, )= g (p r'„~t'„.;p 'r, ~t )

XJ'™),. (y +&,r), tI; . ;r', t' )dr', dt', . . . dr' dt'
1 m+I

where J' ". . . are complicated expressions depending on the central moments of the contribution of a source.
a1 . . am+I

(102)
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By examining Eq. (100) we note that for correlated processes the limit (93) should be supplemented by the additional
restrictions

A' ~' =0, l'=O, . . . , m —1, m=12, . . . .
I m+l'

(103)

(f (z, ) f (z. )) =0, j=1,3, 5, . . . ;

we have checked that this is indeed the case for the first values of m (m = 1,2, 3); however, we have failed to give a gen-
eral proof of this conjecture.

If the restrictions (103) are fulfilled then in the limit (93}the generating functional of the resulting field becomes

{104)

9[K(z)]=exp, g (ei ) g g A' . .'. {z„.. . , z2 )
1 (mm)

a& a&

These restrictions play a similar role to Eq. (93) in the case of uncorrelated processes; they should be introduced in or-
der to ensure that in the limit (93) all terms of the expansion in Eq. (100) are finite. On physical grounds we expect that
Eqs. (103) are satisfied when all odd moments of the contribution f of a source are equal to zero,

XE~ (z|) K (z2 )dz, dz2~
' . (105)

and

(106)

X A™., (zi, . . . , z~ ),
1 2m

j =2m, m =1,2, . . . . (107)

We observe that all even cumulants are generally
diFerent from zero and thus the limit behavior of the
noise sources is generally non-Gaussian. It is interesting
that the cumulants of the second order are given exactly
by the same expression as in the case of noncorrelated
processes. To prove that we insert Eq. (101) into Eq.
(107) for 1=1 and j =2; after some calculations we re-
cover Eq. (95).

The departure from the Gaussian behavior depends on
the values of the correlation functions attached to the
point process; the stochastic properties of the contribu-
tion f of an individual event are less important. In Eqs.
(102) applied for 1=m the functions J' . '. . contain
combinations of the products of the even moments of f
which are always positive and thus the only possibility to
have A' . '. . =0 is g =0. If the point process is

strongly correlated the correlation functions g are
different from zero and the asymptotic behavior is very
different from the Gaussian one. If the point process is
weakly correlated the correlation functions g2,g3, . . . are
close to zero and the asymptotic behavior is close to the
Gaussian one; the correlation functions gz, g3, . . . intro-
duce only small corrections to the Cxauss limit law (97).
For example, for the point processes corresponding to
Eq. {84) in Eq. (105} only the functions A'"' and

1 2A' .'. .~ are different from zero and only the cumulants
I 4

Equation {105}has the standard form of a cumulant ex-
pansion; the corresponding cumulants are equal to

((F (z, ) F (zj)))=0, j=2m+1, m =0, 1,2, . . .

VII. APPLICATIONS
OF INDEPENDENT PROCESSES

The general results of the theory presented in the
preceding sections are rather abstract. For concrete ap-
plications we need to specify the stochastic properties of
the contribution f of an individual event and of the point
process.

In this section we consider homogeneous independent
processes described by Eqs. (70) and (71}. To avoid the
complications generated by the boundary conditions we
discuss only the limit

P~oo, g —+oo . (108}

By following the approach used in Sec. II we assume
that the components of the vector f of the contribution
of an event are given by

f~(r, t)=c y (r, t), (109)

where c are random intensities with zero average values

(c ) =0, a=i, . . . , M,
selected from a probability law with finite moments

p(c)dc,
with

p(c)dc= 1, c=(cj}j 1 M

(110)

(112)

of the fourth order, given by Eqs. (101) and (107) give a
correction to the Gauss law.

Both the Gaussian and the non-Gaussian limit laws
considered here belong to the same type: for them the
cumulants of the resulting field are finite. If the central
moments of f and the correlation functions of the ran-
dom point process are slowly decreasing the cumulants of
the resulting noise Beld become infinite, ' in this case a sta-
tistical fractal stable law of the Levy type may emerge.
This kind of asymptotic behavior is investigated in Sec.
VIII.
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y (r, t&0)=0. (113)

From these assumptions it follows that the probability
density functional 8 [f(hz)]D[f(hz)] and the generating
functional L [K(bz) ] are equal to

8[f(bz)]D[f(&z)]=fg5[f c—y («,&&)]

XD [ f(«, ht }]p(c)dc (114}

and y are deterministic attenuation functions which
obey the causality principle

variant space-dependent integral operators, performing a
functional Taylor expansion, requiring that gr (r, t) are
symmetric functions of r = ~r~ and keeping the first non-
vanishing terms in the expansion.

We are searching for a set of functions g (r, t ) obeying
Eqs. (119)and which fulfills a set of normalization condi-
tions similar to Eqs. (118}:

f fp (r, t)drdt=l . (120)

The simplest approach is to look for separable solutions
of Eqs. (119)of the type

and y (r, r ) =q"'(t)q"'(rlt), (121)

L[K(bz)]= fp(c)dc

Xexp i g fc,IC (bz)y (bz)dz

(115)

In order to derive a set of expressions for the attenua-
tion functions y we start out from the homogeneous
case discussed in Sec. II. By generalizing Eq. (24) for
multivariable homogeneous systems we have

where p'~'(t) are normalized space-independent solutions
of the type (116}:

y~ '(t)=Q~exp( —Q~t) (122)

fp',"(r~t) dr=1 . (123)

By inserting Eqs. (121) into Eqs. (119) and using Eqs.
(122}it follows that q&'" obey the difi'usion equations

and the functions p'"(r~t ) obey the space normalization
conditions

y ( t) =Q exp( Q t ), — (116} By'"(r~t)/Bt=Q A, V q&"'(r~t) . (124)

dy (r)/dr = —Q y (t), (117}

where 0 is a characteristic frequency attached to the lth
component of the noise source. Equations (116}are the
normalized solutions of the linear difFerential equations

As V~ ~ the solutions of Eqs. (124) which fulfill the
normalization conditions (123} are given by the Green
function of the diffusion equation for an infinite medium

with

f y (t)dh =1 .
0

(118)

q&"'(r~t)=(4nAQt) '
, exp[ —r /(4Q At)] . , (125)

Bp (r, r)/Br = —Q,(1—
A, 'V')y (r, r), (119)

where A, is a wavelength attached to the ath component
of the noise sources. Equations (119}may be obtained by
replacing in Eqs. (117) Q by a set of translationally in-

I

The simplest possible generalization of Eqs. (117) for
space-dependent systems is of the form (see also [13,14])

Now we can evaluate the cumulants of the noise
source; for independent events they are given by Eqs.
(92). In these equations as V~ ~ the spatial integration
variables run from —ao to + ~. The integration over
the time variable is more complicated; due to the causali-

ty principle we should first evaluate the integral between
the limits prescribed by Eqs. (92) and then pass to the
limit T~ 00.

Equations (92) become

((F~ (r„t().. . F (r(, t(}))=eP'(c~ . . c )Q Q

X dr'q'0'(r t'}.. . ~'o—'(r —r')
al 1 ai I

($) (1)X dr'y' '(r, —r'~t, t') . . y' '(r& r—'~t& t') . — — (126)

In these equations the space integrals can be evaluated exactly. By inserting the expressions (122) and (125) for y+' and
y" ' after tedious algebra we come to (see Appendix D}

((F (r t ) . . F (r& tr))) =eP'(c . . c )Q . . Q

1

X

J

' —d /2S
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Xexp. —g 0~ (tj t'—) —g z

1

, 4A,
' 0. (t, —t')

J J

(r„—r„)
Xgg, .dt' .

160 0 (A, I, )'(t„t')—(t„—t') (127)

As expected the expressions (127) depend only on the differences r„—r„and not on the vectors r„.. . , rt, that is, they
are translationally invariant; however, they are not time homogeneous.

For simplicity, we evaluate the time integral in Eq. (127} only for the cumulants of second order; for independent
events these are the only cumulants which "survive" in the limit (93) of very dense events with very small intensities.
For 1 =2 Eqs. (127) become

min(t&, t2)
«F (r„t, )F (r„tz)»=Z&c c & J

exp[ —0 (t, —t') —0 (t, —t')]

[4~A,' 0 (t, -t')+4nA, ' 0,(t, -t')] '

(r, —r, )'

4Az, 0 (t, —t')+4k, ' 0,(t, —t ') (128)

The translational invariance of Eqs. (128) allows us to introduce the Fourier transforms

«F (t, )F (tz) »(k)= Jexp[ik. (r, —rz)]«F (r„t, )F (rz, tz) »d(r, —rz)

min(t &, t2 )
='E&c c &0 0 I exp[ —0 (I+A, ~k~ )(t, t') 0(—1+A—, ~k~ )(tz t')]dt' .—

(129)

Now the time integral can be easily evaluated, resulting in

Z&c c, &0 0
«F (ti)F (tz)»(k)= 0 (I+X' ~k~')+0 (I+a' ~k~')

X(exp[ —0 (1+A, )k( )[ti —min(ti, tz}]—Q (1+A, (k( }[tz—min(ti, tz)]]
—exP[ —0 (I+A, (k)z)t, —0 (1+hz (k( )tz]) . (130)

We evaluate the behavior of Eqs. (130) in the limit (22) introduced in Sec. II which for the cumulants of the second or-
der is equivalent to T~ 00. Equations (130}become

Z&c. c. &0.0.
«F F »(t, —tz, k)= Ih(t, tz)exp[ —~t—, tz~0 (—1+A, ~k( )]0 (I+A, k }+0~(1+iL~ k )

+h(tz —t, )exp[ —~t, —tz~Q, (I+A,' ~k~')]j, (131)

where h(b} is the usual Heaviside function. Equations
(131) are new; in the Gaussian limit they represent the
multivariable space-time analog of the Ornstein-
Uhlenbeck colored noise. We notice that for these equa-
tions the condition of microscopic reversibility

«F F »(k, ti tz) =«F F »(k, tz t—
i ) (132)—

For a single noise source (M = 1) Eqs. (131)reduce to

E c 0«FF »(t, —t„k)=
2(1+hz(k(z)

Xexp[ —)t, tz [0(1+—~zlklz)] .

(134)

0 =Q (133)

is generally not fulfilled; it is valid only if the characteris-
tic frequencies 0 and Q and the characteristic wave-

1 2
lengths A, and A, are equal to each other,

Equation (134) is identical (up to a constant proportional-
ity factor) with the equation derived by Lam and
Bagayoko [14] by describing the properties of colored
noise in terms of an auxiliary random process which is
white both in space and time.
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VIII. NONANALYTIC BEHAVIOR

The computations presented in Secs. VI and VII are
based on the assumption that the central moments of the
contribution of an individual event to the noise source are
finite and fast decreasing and thus all cumulants of the re-
sulting field are finite. %e have seen that a set of fast de-
creasing central moments of the exponential type may be
generated by using the assumption of analyticity. The
evolution equations (119) which are responsible for the
fast decrease of tp (r, t ) have been derived by means of a
functional Taylor expansion which is possible only for an
analytic description. The aim of this section is to investi-
gate the stochastic properties of the noise sources gen-
erated by nonanalytic and slowly decreasing attenuation
functions.

To save space we discuss the case of a single noise
source (M=1) and assume that only the spatial part
y'"(r~t) of the attenuation function is slowly decreasing
and nonanalytic. We suppose that y'"(r~t) is given by a
symmetrical statistical fractal law [24]

y"'(r~t)=Allr =independent of t, r=~r~, (135)

tp' '(t)=Qexp( —Qt) . (136)

The total attenuation function g(r, t) is the product of

where At is a positive proportionality constant and cr is a
positive fractal exponent. The temporal part q&' '(t) of
the attenuation function is supposed to be an analytic and
fast decreasing exponential function of the type (122)

(p(r, t ) =Atl Qr exp( —Qt ) . (137)

The probability density p(c)dc of the intensity of an indi-
vidual event is assumed to be symmetrical,

p(c)=p( —c), (138)

which implies that all odd moments of c are equal to
zero,

&c' +'&=(), m=0, 1,2, . . . . (139)

We also consider that the moment of order d, /o. of the
absolute value of intensity exists and is finite,

& Ic I

'
&
=f ~c ~

* p(c)dc =finite . (140)

Concerning the individual events we assume that they
are independent and uniformly randomly distributed in
the space-time continuum with an average density e. =pcs.

%e discuss only the evaluation of the one-point proba-
bility density P, (F,r„ti )dF of the noise source at a given

position in space-time continuum in the limit V, T~ ~.
The generating functional 9[K(r, t ) ] of the noise field can
be computed from Eq. (89}where i), =e and the average
over the values of the contribution f of an individual
event is evaluated in terms of the probability density
functional 8[f(hz)]D[f(hz)] given by Eq. (114) applied
for M = 1. %e obtain

2[K(r, t)]=exp'sf f f "p(c) exp iPc f fK(r', t')g~ '(t' t)—
Xp"'(r' —r)dr'dt' —1 dr dt dc ' . (141)

The Fourier transform of the probability P, (F;r, t ),

Pi (K; r, t ) =f exp(iKF )P, (F;r, t )dF, (142)

can be computed from Eqs. (61) and {141).As we analyze the stochastic properties of the noise source F at a single po-
sition in space-time continuum the principle of causality does not lead to restrictions for the time variable and thus we
can consider the limit V, T~ Oo without problems. %'e get

Pi(K)=exp ~ Ef "dt—f dr f dc p(c)[1—exp[iKy' '(t)r c13]] (143)

As expected in the limit V, T~ 00, P, (K) is independent of ri, ti and the stochastic properties of the noise source are
the same anywhere in the space-time continuum.

Due to the symmetry ofp(c) [Eq. (138)] the average value of a function I(c) of c can be evaluated as

&I(c) &
= f I(c)p(c)dc= f [I(c)+I(—c)]p(c}dc . (144)

By using Eq. (144) the expression {143)of P, (K) becomes

P, (K)=exp ~ 2Ef "dt—f dr f dc[1 —cos[~K~y' '(t)Attr Pc]]p(c) . . (145)

As the integrand in Eq. (145) depends only on the absolute value r =
~
r~ of the position vector we can express the posi-

tion vector in polar coordinates in d, -dimensional space and integrate over the angular variables. %'e obtain
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(146)

where I (a)= Jo e 't' 'dt is the complete gamma function. By using Eq. (146) we can reduce the integral over the po-
sition vector r to an integral over its absolute value r; in terms of r we can introduce a new integration variable

x =Pc(p( '(t)~K)JKr (147)

dt f c * p(c)dc
0

By means of the substitution (147) the Fourier transform P, (K ) of the one-point probability density of the noise source
can be expressed in terms of three independent integrals:

d /2
2Eds d& Qt

P((K)=exp — (QA1P) ' f exp(rl 1+d, 2 0 0

X f [1—cos(tK ~x )]x ' dx
0

=exp[ (b[K~—) ], (148)

where

H=d, /o

is a positive dimensionless parameter and

(o/dg)+(crl2) ) (o'Id, )
—s, ~d, lu) +Id,

[2I (1+d, /2)I'(1+d, /o )sin(nd, /2o )]

(149}

(150}

is another positive parameter having the physical dimen-
sion of the random force F.

By evaluating from Eqs. (63} and (148}the probability
density P)(F) of the noise source we observe that it can
be expressed in terms of a symmetric Levy stable law
[25-27] with a scaling parameter H:

P, (F}=(2n) ' f exp[ iKF (b~K—
~ } ]dK-

=b 'XH(F/b ), (151)

I

that is, for 1 & H & 0 the asymptotic behavior of P, (F ) is
described by a statistical fractal law with a scaling ex-
ponent H=d, /o.

In order to understand the physical mechanism of gen-
eration of the long tails of the inverse power law type of
P, (F), we compute the probability density g(F)dF of the
random force which is generated by the closest random
event to a given point of observation in space-time con-
tinuum. This probability density can be expressed in
terms of the probability density

8(r, t)dr dt with f f 8(r, t)dr dt= 1, (155)
0 0

of the distance r from the nearest event to the point of
observation, and of the time t that elapsed from the oc-
currence of this event. For given values of the intensity
of an event c, of the distance r, and of the time t the value
of the random force is

F=Pc(p(r, t }=Pc(p( )(t)JKr (156)where XH(x) is the Levy symmetrical law of order H
[25-27]:

XH(x)=(2n) ' f exp[ iKx —~—E
~ ]dK

=(m )
' f cos(Kx )exp( K)dK . —(152)

0

The Levy stable laws can be expressed in terms of the
Fox functions [27]; the corresponding expressions are
complicated and not very useful. More appropriate is the
use of the series expansion [26]

1
"

( —1)'+' I (1+Hi)XH(x)= —g, , ( sin( —,'Him), (153)
7T I ] o x

which for 1&H &0 converges for any real values of x
difFerent from zero. By using this expansion it follows
that P, (F) has the following asymptotic behavior as

P, (F)-n 'b sin( —,'Hm }~F~ ' +"I (1+H)

21 (1+d, /2}IF I

It follows that g(F) can be expressed as an average of a 5
function corresponding to Eq. (156):

5(F)=f"f"f "8(r,t)p(c)5(F Pcp( )(t)Air— )

X h (F)dr dt dc

+ rtpc F—cy''t r

Xh( F)dr dt dc, —(157)

where h(F) is the Heaviside function. As p(c)=p( —c)
[Eq. (138)] this relationship can be rewritten in a simpler
form:

5(F)=f f f 8(r, t)p(c)

X5(~F~ Pc(p( )(t)Air )d—r dt dc .

(158)

The position in which the random force is evaluated is
(154} surrounded by a hypersphere of radius r in which no
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events occur. The corresponding volume is equal to 6(V+ hV) =@(V}(1—cb V), (162)
d, /2 d,r

I (1+d, /2)
(159)

V(r, t)=tV(r) . (160)

[see also Eq. (146)]. In the space-time continuum we can
also define a space-time hypervolume V(r, t) which is

empty, that is, in which no events occur. V(r, t) is sim-

ply equal to

which, for AV~O, leads to a differentia equation in
6 ( V). By integrating this equation with the initial condi-
tion 6(0)=1 we get

8(V)=exp( —cV) .

By combining Eqs. (159)—(161) and (163}we get the fol-

lowing equation for the probability density d"(r, t ):

The probability 8(r, t )dr dt can be expressed as

P(r, t)dr dt =6[V(r, t)]c, dr dt,8 V(r)
Br

(161)

d /2
VT Ed

8{r,t)dr dt = exp

d —1Xr ' drdt .

I (1+d, /2)

(164)
where 8(V) is the probability that the space-time hyper-
volume V(r, t ) is empty. e(V) obeys the balance equa-
tion

By inserting Eq. (164) into Eq. (158) and integrating
over r we can get rid of the 5 function, resulting in

cd, n*(.PPIQ) ,
*

P(F)=
&1(1+d,/2) IF I

d, /2 d, /0
~ d, t~ dsflt cn'(prK. Q} ' c

0 O g I (1+d, /2) iFi

d, Qt
exp — ddt .

In Eq. (165) the integrals over c and t cannot be expressed
in a closed form. The asymptotic behavior of g(F), how-
ever, can be evaluated analytically. As iFi~co the F
dependent term in the exponential tends to zero and thus
can be neglected; by computing the integrals over c and t
we come to

noise source are equal to zero,

(F +') =0, m =0, 1,2, . . . , 1&H &0 . (168)

The behavior of the moments of the absolute value of the
noise force is independent of the symmetry of the Levy
function XH(x) and for 1 & H & 0 all positive and integer
moments are infinite,

g(F)-
2I (1+d, /2) iF i

m=1, 2, . . . , 1&H&0. {169)

(F )=oo, m=1, 2, . . . , 1&H&0. (167)

Due to the symmetry of XH(x) all odd moments of the

as iFi~oo . (166)

By comparing Eqs. (154) and (166) we note that as

i
F

i
~ oo the behavior of the probability densities P

&
(F )

and g(F) is exactly the same. The physical explanation
of this result is simple: the very large random forces are
generated by events which are very close (in space and
time) to the point at which the noise is evaluated. For
the closest event the attenuation efFect expressed by the
function y is very small and its contribution outweighs
the contributions of remote events. For not very large
values of F, however, all events contribute to the noise
source and the probability density g(F}is a poor approxi-
mation of the probability density P, (F) of the noise
source. This interpretation is similar to the one ascribed
to the Holstmark theorem from spectroscopy [28] and as-
trophysics [29]. From Eqs. (151) and (153) it follows that
for 1)H) 0 all even moments of the noise source are
infinite,

The fractional moments of the absolute value of the ran-
dom force

( lF l') =2b' J XH(x)x'dx, a & 0
0

(170)

»H&0, a&H

(iFi') =2m 'b'I (a)1 [1—(a/H)]sin( —,'an ),
1&H&0, a &H . (172)

The computations presented in this section are based
on the assumption that the individual events are indepen-
dent and homogeneously randomly distributed in space-
time continuum with a constant average density c.. The
results of our computation can be easily extended for the
case when the space distribution of events is random and
uniform not in a d, -dimensional Euclidean space but in a

where a is a positive number, not necessarily an integer,
have a different behavior. From Eqs. (153) we note that
the integral in Eqs. (170) is divergent as x —+ oo only for
a ~H. In Appendix E we show that for a &H the frac-
tional moments exist and are finite. %e have



50 GENERATING FUNCTIONAL APPROACH TO SPACE- AND. . . 813

df -dimensional fractal structure embedded in it (df ~ 1,}.
Such a fractal model is of interest in astrophysics [30].
By following a commonly used heuristic approach [31,32]
we assume that the fractal hypervolume V (r) of a hyper-
sphere of radius r can be computed by Eq. (159) where
the Euclidean dimension d, is replaced by the fractal di-
mension df ..

df /2 df
7T r

I'(1+df /2)
(173)

The numerical factor in Eq. (173}has no deep theoretical
significance; it has the advantage that for d, =df the frac-
tal hypervolume V'(r) is identical with the Euclidean
volume V(r). In terms of V'(r) we can introduce a
space-time fractal hypervolume

V*(r, t )= tV'(r ),
and the fractal space-time density of events

s' =Bv/BV',

(174)

(175)

where v is the average number of events enclosed in the
fractal space-time hypervolume V'. In Appendix F we
show that if the fractal space-time density of events c is
constant then all relations derived in this section for the
probability densities P&(F ) and g(F) remain valid provid-
ed that we make the substitutions

dg ~df, (176}

IX. DISCUSSION

Now we summarize the main results presented in this
paper. We have suggested a generating functional ap-
proach for multivariable time- and space-dependent
colored noise. The model is based on the assumption that
the noise field is generated by the additive contributions
of a random number of correlated point events occurring
in space-time continuum; the contribution of each event
to the noise field is a random function selected from the
same probability density functional. By using the formal-
ism of random point processes we have derived a closed
equation for the generating functional X[K(r, t }]of the
random noise field; this equation expresses X[K(r,t)] in
terms of the generating functionals of the point process
which describes the relationships among the different
events and the generating functional attached to an indi-
vidual event. The generating functional X[K(r, t ) ] of the
noise field plays a role similar to the partition functions in
equilibrium statistical mechanics: by evaluating its func-
tional derivatives we can compute all curnulants of the
noise field.

We have discussed the asymptotic behavior of random
noise 6elds in the limit of very frequent events of very
small intensities. For independent events a Gaussian ran-
dom field colored in space and time emerges if the central
moments attached to an event are finite and fast decreas-
ing. The correlations among events lead to deviations
from the Gaussian behavior; however, the limit law is not
far from a Gaussian if the central moments of an event

are finite and fast decreasing. If the central moments of
an event are slowly decaying then the asymptotic
behavior is different: it corresponds to a Levy stable law
with infinite moments. For a Levy distribution the prob-
ability density of the noise source at a given point in
space-time continuum has a long tail of the inverse power
law type. We have shown that this long tail is generated
by the closest event to the position at which the noise
source is evaluated.

Concerning the validity limits of our approach, the as-
sumption that the process takes place in an infinite
volume in space-time continuum is not compulsory. The
limit V~ ao is not necessary for the occurrence of the
Gaussian behavior; it has mainly a practical importance:
it removes the boundary conditions leading to a
simplified version of the model. On the other hand, al-
though the Levy random fields have been analyzed for a
random uniform distribution of events in Euclidean space
the results can be easily extended for random uniform
distributions of events in fractal structures embedded in
Euclidean space.

The general theory has been used to derive a multivari-
able generalization of the Ornstein-Uhlenbeck process
colored in space and time. This generalized Ornstein-
Uhlenbeck process is based on the assumption that the
events are independent and the contribution of an event
to the noise field is the product between a set of random
intensity factors selected from a constant probability law
with a set of deterministic attenuation functions which
obey a set of diffusion equations. For one-variable sys-
tems our model reduces to the model of Lam and
Bagayoko [14] which describes the properties of colored
noise in terms of an auxiliary random process which is
white both in space and time.

In comparison to other approaches to external noise
presented in the literature our method has many advan-
tages. It shares some features with the microscopic
description by assuming that the noise is due to a large
number of events of very small intensity; the mechanism,
however, is not very detailed: no specific assumptions are
made concerning the physical nature of the individual
events. This is, however, an advantage rather than a
disadvantage: by making suitable assumptions about the
dynamics of individual events the method can be applied
to different problems.

Another advantage of the theory is that it gives a
unified description of both analytical and nonanalytical
regimes of colored noise. The traditional approaches to
colored noise [1—10, 13,14,21] usually deal with the mo-
ments of the noise source which are implicitly assumed to
be finite and thus they cannot be applied to the
nonanalytical regime.

Recently an alternative type of fractal stochastic pro-
cesses has been introduced by Koyama and Hara [12] in
seismology and by Vlad [33,34] in connection with the
theory of line shape. For these processes the statistical
fractal features are displayed by the moments of random
variable which have long tails and not by the probability
density. The probability distribution is Gaussian or close
to a Gaussian and has a short tail. In contrast, for our
approach the statistical fractal features may be displayed
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only by the probability density of the noise source and
not by the moments.

Concerning the relationships of our approach with oth-
er generating functional methods presented in the litera-
ture we outline some analogies with two papers written
by one of the authors dealing with the stochastic gravita-
tional fluctuations [30] and with random spiral shapes
[22]. In [30] the stochastic gravitational fluctuations in
galactic systems are investigated by assuming that the
galaxies are uniformly randomly distributed in a fractal
structure embedded in tridimensional space; such a mod-
el is supported by observational evidence [35]. The gravi-
tational Geld is random because the mass as well as the
position of a galaxy are random variables. For these sto-
chastic gravitational fluctuations a Gaussian limit
behavior does not exist; due to the fact that the gravita-
tional force decreases slowly with the distance the sto-
chastic gravitational fluctuations are described by a Levy
stable law with in6nite moments. The main difference be-
tween the noise theory presented in Sec. VIII and the sto-
chastic gravitational fluctuations is that the mean lifetime
of a galaxy is much larger than the time scale of gravita-
tional fluctuations and thus the time variable is not taken
explicitly into account by the theory. In contrast, in Sec.
VIII we have assumed that the efFect of an event on the
value of the noise source decreases in time: the temporal
component of the attenuation function is given by an ex-
ponential. The time dependence of the attenuation func-
tion generates some computational difBculties which are
missing in [30]. In paper [22] the random spiral shapes
are discussed in polar coordinates: the ray length is a
nondecreasing random function of the polar angle which
plays the role of an independent random variable. A gen-
erating functional for the ray length is introduced which
is analog to the generating functional of a one-
dimensional, one-variable noise 6eld. The theory of point
processes is not used: instead the random variations of
the ray length are described in terms of a Markovian pro-
cess or of a non-Markovian process of the continuous
time random walk (CTRW [36]) or of the age-dependent
master equation (ADME [37]} type. Although the
mathematical formalisms and the physical problems are
dNerent the description of spiral shapes may be re-
phrased in a way which corresponds to a particular case
of the present approach.

The possible relationships with the functional ap-
proaches used in random continuum mechanics are also
of interest. In this field [38—40] a generating functional
is introduced for describing systems characterized by
deterministic evolution equations but for which the initial
conditions are random. The relations between such a
description and our approach are not yet clarified.
Another open question is related to the relations with the
generating functional approaches in quantum field
theory, especially with the method of stochastic quantiza-
tion [41].

Our approach may be applied to a broad class of natu-
ral phenomena for which the external noise may occur,
for instance, the growth of a population in a random en-
vironment [42], the wave propagation in random media
[4,43], the propagation of excitations in a neural network

[44], or in antiseismic civil engineering [45]. Moreover,
the generating functional approach developed here paves
the way for deriving a generating functional description
of random fields due to intrinsic fluetuations, for in-

stance, for the study of the influence of thermal fluctua-
tions on reaction difFusion systems [46] or for the study of
non-Markovian chemical dynamics in condensed matter
systems [47]. The problem of intrinsic noise is more com-
plicated because there is a connection between the sto-
chastic properties of the noise sources and the intrinsic
dynamics of the process.

In this paper we have studied only the stochastic prop-
erties of the noise sources. Our ultimate goal is, however,
to evaluate the stochastic behavior of the random vari-
ables X=(X„X2,. . . , Xst) which obey the evolution
equations (29). We are investigating the particular case
of the influence of additive noise on a system of linear
nonlocal equations with distributed delays of the type

BX,(r, t)IBt =g f fX,, (r r', t—t')X—, (r', t')dr'dt'
J

+F (r, t), (177)

+F;(r, t) .

By assuming that the evolution equations (177) are com-
patible with a stable steady state we have derived a set of
fluctuation dissipation relations which relates the cumu-
lants of the noise sources I'; to the delay kernels

X;J(r—r', t t'). These fl—uctuation dissipation relations

may be used to make a connection with the thermo-
dynamic and stochastic theory of nonequilibrium pro-
cesses by Ross and co-workers [48—50]; work on this
problem is in progress and it is planned to be presented
elsewhere.

Note added in proof. After submitting this paper for
publication we have learned that J. E. Vitela and L. Zo-
gaib [Phys. Rev. E 47, 3900 (1993)] have used a one-time
characteristic functional for the study of one-dimensional
population fluctuations in electrical discharges. %e also
outline some formal analogies between our approach and
a recent paper by S. J. Fraser and R. Kaprai [Phys. Rev.
A 45, 3412 (1992)] dealing with the study of periodic
colored dichotomous noise. These last two authors, how-

ever, do not use generating functionals for the description
of fluctuations.
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where the noise sources FJ(r, t} are described by the
present model. Equations (177) include as a particular
case the reaction-diffusion equations with distributed de-

lays and additive noise

BX,(r, t)/a =ty fD, (t t')V X"J(r—, t')dt'
j
+g fp,,(t t')X, (r,—t')dt'
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We introduce the notations

A„[K(x}]=(exp ( fP}((z}f(x—z', }dz —},
m

[K{z)]=g A„[K(z)],

APPENDIX A

(A 1)

(A2)

and rewrite Eq. (54) in the following form:

00

X[K(z)]=exp g Jdy' g (y' )S [K(z)]
m!

I

(A3)

By combining Eqs. (65) and (A3) we can express the cumulants of the noise field in terms of the functional derivatives of
[K(z}],

59 [K(z)]
«F (z&) F (z&)»= g fg (y' )( i)' — dym .

m=1 K=O

In Eqs. (A4) the maximum value l of the summation label m is due to the fact that

A, [K(z):—0]=0, v=1,2, . . . .

It follows that the cumulants of the lth order depend only on the first I correlation functions g1, . . . , g&.

The functional derivatives ofA „[K(z)] can be easily evaluated from Eqs. (Al). We have

5"A „[K(z)] =('P)"&f (*,—*'„) f (*„—*'„)& .

(A4)

{A5}

(A6)

g A„.[K(z)]
1

a} *1 K —
p v =1 }}'Au

'

5A, [K(z)]
ml

K=O

[K(z)] m m

g A„.[K(z)]
5 A„[K(z)]

5J(: (zi)5K (z2) K=O

The functional derivatives of 2t [K(z)] can be expressed in terms of the functional derivatives ofA„[K{z}]by repeat-
ed functional differentiation of Eqs. (A2). We get

K(z) m m
'

5A„[K(z)]
K (z, )

U AU(, U2Ul UPPUl

+ g g g A, .[K(z)]
5A, [K(z)]

5J}., (z, )

5A „[K(z)]
5J}. (zq)

K=O

52A
i [K(z)]

5K (zi)5K (z2)
+

'

5A, [K(z)]
5E, (z, )

x

SA 2[K(z) ]+ M (z, )

KA2[K(z) ]

5E~ (z2)

5A, [K(z}]
M (z2)K=O

, etc. (AS)

By combining Eqs. (A4) —(AS} we obtain

«F. (*,)»=Pfg, (z', )dz', &f (z, —z', )&,

«F (z, )F (z~) && =P fg, (z', )dz', &f (z, —z', )f (z2 —z', ) &

(A9)

+—,'p J Jg ( 2&,zz)zd&dzz[z&f (z& —z&)&&f (zz —zz)&+&f (z& —zz)&&f (zz —z'&)&], etc.
(A10)

In these equations the integration limits for the time variables should be established by using the principle of causality
as it has been shown in Secs. II, VI, and VII.

The superior cumulants can be computed in a similar way, the complexity of computations increasing with the index
l. For independent processes we can derive a general formula for all cumulants of the noise sources. In this case
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gz, g3, . . .=0 and Eqs. (Al) —(A6) lead to

((P (z, ) . . P (z, )))=( —i)'fdz', g, (z', )
8'A, [K(z)]

5E (z, ) . M (zi)

=f dz'gi(z', )(f (z, —z', ) f (zi —z', )) . (A 1 1)

Equations (Al 1) are equivalent to Eqs. (92) used in Secs.
VI and VII. ((N'))= y ~", fg. (y )dy. ,

APPENDIX B

For correlated processes the probability P(N) that N
events occur in the space-time hypervolume V can be
evaluated by integrating the Janossy densities

P(N)= fQ (y )dyN .
1

(81)

Equation (Bl) is similar to the relationship (76) derived
for independent processes; in this case, however, Eqs. (72)
are no longer valid and the probability P(N} given by Eq.
(81 ) is generally non-Poissonian.

We introduce the characteristic function of P(N),

G(b) =QP(N)exp(iNb ), (82)

where the variable b plays a similar role to the test func-
tion W(z) introduced in Sec. IV. The cumulants ((N'))
of the number of events are defined in terms of a cumu-
lant expansion of G(b),

oo ~ I

G(b)= p y —', b'«N')) (83)
II

In order to compute the cumulants ((N')) of the number
of events we should express the characteristic function
G(b) in terms of the correlation functions g, ,g2. . . . .
By inserting Eq. (Bl) into Eq. (82) we get

00

G(b)= g exp(iNb), fQ&(y&)dy& .
%=0

(84)

X (ikb )'fg (y )dy . (86)

In Eq. (86) we reorder the diferent terms of the triple
sum with respect to the powers of b and compare the re-
sult with the cumulant expansion (83) of G(b). We come
to

By comparing Eqs. (84) and (44) we note that G(b) can
be expressed in terms of the generating functional
A[ 8"(z)] of the Janossy densities. We have

G(b)=A[W(z)=exp(ib)] .

Equations (46), (47), and (85) lead to

G(b ) =:-[JV(z) =exp(ib ) —1]
oo

=exp g (e' —1) fg (y )dy
m=1

oo m oo
( 1)m

—k

X XX, ,oi 0 1!k!(m—k)!

G(b) =exp[v(V)(e' 1)+——,'p(V)(e'" —1} ], (89)

where v(V) and p,(V) are given by Eqs. (67) and (86). By
expanding Eq. (89) in a power series in s =exp(ib) and
comparing the result with the definition (82) of G(b) we
get Eqs. (85).

APPENDIX C

We introduce the following limit:

V—+ao, N~ ~ with n =N/V=const .

This limit is a space-time analog of the thermodynamic
limit. Here n is a Quctuating space-time density of
events; its average value is equal to e:

(n)=e. (C2)

In the limit (Cl) the Poisson law (76) characteristic for
independent events has the following asymptotic
behavior:

P(N)-exp[ V[/(n—)+0(V ')]j,
w~ere

(C3)

P(n) =n ln(n /e) n+s—
is a stochastic potential which depends only on the Auc-
tuating and average densities of events but is independent
of the space-time hypervolume. P( n ) has an only
minimum for n =e, and its derivative is an increasing
function for any positive values of n:

ay(E) /an =0,
i} P(n)/Bn &0 .

(C5)

(C6)

The asymptotic behavior (C3} ensures that the large fiuc-
tuations are exponentially rare and thus the intermittent
behavior is missing.

Equation (C3) is a particular case of a scaling condition
for stochastic systems far from critical states introduced

where 6'I ' are the Stirling numbers of the second kind
defined by Eqs. (88). By inserting the scaling condition
(80}into Eqs. (87) we obtain Eqs. (87).

If all correlation functions of order bigger than 2 are
equal to zero [Eqs. (84)] the expression (86) for the
characteristic function G(b) becomes

G(b)=exp[(e'" —1)fg, (z, )dz,

+—,'(e' —1) fgz(y2)dye],

or, by using the scaling condition (80)
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by Kubo, Matsuo, and Kitahara [19]; for independent
systems it is a consequence of the Poissonian behavior.
In this appendix we introduce a particular class of corre-
lated processes which fu1511 a scaling condition of the
type (C3}. We assume that P(N), although generally
non-poissonian, obeys the scaling law (C3), where the po-
tential P(n) is generally not given by Eq. (C4) but still
fulfills the conditions (C5) and (C6). For simplicity,
without loss of generality, we assume that in Eq. (C3) the
preexponential normalization constant is chosen so that

P(s)=0 . (C7)

In this case Eq. (C3) is a postulate rather than a conse-
quence of a model; it is introduced in order that the Quc-
tuations of the number of events have a nonintermittent
behavior.

In the limit (Cl) the characteristic function G(b) is
given by

By expanding in Eq. (C10) the function f(ib ) in a Taylor
series, using Eq. (C12), and comparing the result with the
cumulant expansion (B3) it follows that

«N ))-VB'P(0)/Bx' as V~00 . (C12')
It turns out that all cumulants of the number of events N
are proportional to the space-time hypervolume; in par-
ticular the relative fiuctuation has the same type of
asymptotic behavior as in the Poissonian case, i.e., it de-
creases to zero as V 'i2 for V~ 00:

«N'&)'"/«N &)
—[a'y(0)/ax']'"[ay(0)/ax]-'V-'"

as V~00 . (C13)

By comparing Eqs. (C12') with Eqs. (B7) we note that
for correlated point processes obeying the scaling condi-
tion (C3} the correlation functions should fulfill the re-
strictions

G(b}-g expl V[ibn —P(n)] J, V~ 00 .
N

(C8) g (C14)

As V~ oo we can evaluate the sum over N by applying
the method of steepest descent. We obtain

G(b)-exp[V[g(ib)+O(V ')]], V-+Do

where

(C9)

and

P(ib ) =ibg(ib )—P(g(ib )),

yx) = [ay/an ]'-",
ay(g(»})/ay }=, x=ib

(Clo)

(Cl 1)

P(0)=0 . (C12}

is the inverse function of BP(n)/Bn. Due to the condition
(C6) g(x) is unique. As BP(s)/Bn =0 [Eq. (C5)] it follows
that g(0)=s and thus from Eqs. (C7) and (C10) we have

2/d
(C15)

where A, a„and a2 are dimensionless constants. By
considering a time interval T and a hypercube of volume

1/d,V and linear dimension V ' we have

for any values of m = 1,2, . . . .
In order to illustrate the situations in which the scaling

condition (C3) may be fulfilled for correlated systems we
consider a translationally invariant and time-
homogeneous point process for which only the first two
correlation functions g& and g2 are different from zero.
We consider that g, is simply equal to s [Eq. (70)] and
that g2 is a fast decreasing symmetrical function of
it, t2i a—nd ir, —r2i and which obeys the scaling condi-
tion (80); the simplest possible choice for g2 is

g2(y2}= Ac) p exp[ aicoit—i t2i—

(C16)

2A pea ~ ~ 1 —exP( a,coT)—1—
a2 ai Tco

2/1 s
1 —exp[ —az(p V) ']

X 1 —erfc[( Vp) '~a& ]-
Qnaz(pV }

(C17}

where

erfc(x)= f "exp( —x )dx (C18)

is the complementary error function. We note that g&
obeys the restrictions (C14) for any values of V and T.
For finite values of V and T g2 violates the restrictions
(C14); however, as V, T~ 00 in Eq. (C17) the expressions
in square brackets tend to unity and thus the restrictions
(C14) are fulfilled,

fg, (y, }dy,~syV» V, T~~, (C19)

where

ds/2

x=
a, a2

(C20)

X(1.
We obtain

«N'» =Vs(1—~+y2'-'} .

(C21)

(C22)

is a dimensionless constant.
As V~ ~ the cumulants of the number of events can

be evaluated from Eqs. (88), (B7), (C16), and (C17). We
restrict ourselves to the study of not very strongly corre-
lated systems for which
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=e(1 —y )(e ' —1 ) + —,
' ey(e ' —1 ) . (C24)

As the cumulants are proportional to the partial deriva-
tives of f [see Eqs. (C12)] we have

Bg(0)/Bx'=e(1 —y+g2' '),
and thus we get the following expression for g(ib ):

00

g(ib)= g (ib)'—[8'1b(0)/Bx']
I=0

p(V}=Vga, . (C25)

By inserting Eqs. (67}and (C25) into Eq. (C24) we recover
Eq. (B9). On the other hand, the asymptotic behavior of
P(N) as V~ a& can be analyzed from Eq. (85) by approx-
imating the factorials by Stirling formula and evaluating
the sum over k by means of the method of the steepest
descent. After lengthy calculations we come to a scaling
law of the type (C3) where the potential ({}(n)is given by

Equation (C24) is consistent with Eqs. (B9) and (85). By
computing the function p(V) from Eqs. (86) and (C19)
we get

P(n}=n ln(n/e) n+—e+P"'"(n),
where

(C26)

({}corr(n } X2 ll

e(I —y)'
4yn

E(1 —g)'

1/2 —2
(1—X)—n ln

2

1/2

1+ +14yn

e(1 —y)~

4gn
e(1 —y)'

BP(n)/dn =ln 212

s(1 —y)

and
—1/2

t}~P(n)/Bn = 1+ 1+2' e(1 —y)

is a contribution due to the correlated behavior. The first two derivatives of the potential P(n) are equal to
'1/2 —1

'

(C28)

(C29)

From these equations we note that P(n) has a single minimum for n =e., P(e)=0 and its second derivative is positive
definite for all positive values of n and thus Eqs. (C5), (C6) are fulfilled.

APPENDIX D

We insert Eqs. (121) and (125) into Eqs. (126); we get

((F, (r„t,}. F, (r, , t, )))=ep(c c )0 0

X exp — 0 t„—t'

where

y, =4k,' 0 (t, —t'),

4,

xg . J
"

dr,'(y. y. ) '"n '"exp
0 ~u

t I I {u) {u)r =(r, , . . . , rd ), r =(r&, . . . , r& ) .
S S

(D3)

In Eq. (Dl) the integral over r factorizes in d, independent Gaussian integrals which can be computed analytically. We
obtain

((F (r t ) F (r& t )))=ep'(c . . c )0 . . 0

1X exp — Q t„—t'
0 ~~u

—d, /2 —d {I—1)/2

—d, /2 J u I ugx(y . . y )
' exp

Ju I up

dt',
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where

(u|) (u2) (u|) 2
rj Pi PJ.

y. y.
1 2

(D5)

The triple sum over j, u &, and u2 can be rearranged in a form which displays translational invariance,

X X X'flu u =X X X (~j
u,

u+ rju, u()++ iruu
J ~i ~2 J

J
1 2

(r„—r„)
u] )u2

1 2

(D6}

APPENDIX E

In order to avoid the occurrence of divergent integrals
in the expression of the moments {iF i') we perform two
partial integrations in Eq. (152):

Xff(x ) =(n )
' f cos(Kx )exp( K~)dK—

=H(ff) 'x 2f [1 cos(Kx )]—
0

X[HK'H '—(H —1)KH ']
Xexp( K}dK . — (El)

By inserting Eq. (El) into Eq. (170}we come to

(iFi') =2b'H{ff) ' f f dKdx x' [1—cos(Kx)]
0 0

By inserting Eq. (D6) into Eqs. (D4) we get the expression
(127}.

and integrated over the angular variables
fa={to„.. . , cod, ). For independent events homogene-

S

ously randomly distributed in d, -dimensional Euclidean
space the density function g& is equal to the average den-

sity e and the integral in Eq. (Fl) can be evaluated by us-

ing the relationship (146); we have

d /2
e

81(r t)dr dt=
r(1+d, l2) d'r dr dt (F2}

p(r, t)drdt with f fp(r, t)drdt= 1 (F3)

that an event occurs at a position between r, t and
r+dr, t+dt. By considering a time interval T and a hy-
perspherical spatial domain of radius R we have

Now we compute the averaged density function
rt)(r, t)dr dt for a homogeneous random distribution of
events in a df-dimensional fractal structure embedded in

d, -dimensional Euclidean space. We introduce the prob-
ability

Now we introduce the integration variables

(E2)

(E3)

p(r, t)drdt= '

(F4)

(dr}f„,~)dtl[TV (R )] for t & T, r &R

0 for t&T, r&R,

By means of the substitution (E3) for H )a )0 we can
reduce Eq. (E2) to a product of two independent in-
tegrals which can be expressed in terms of the I function.
After some calculations we obtain Eq. (172).

where the fractal hypervolume V'(R ) is given by Eq.
(173}applied for r =R and (dr)f, „,is a fractal analog of
the infinitesimal Euclidean element of volume dr. For a
homogeneous fractal structure we have [30)

APPENDIX F (dr)f~u (,)ldr=dVu(r)ldV(r), {F5)

In Sec. VIII we have assumed that the space-dependent
component of the attenuation function depends on the
absolute value r of the position vector r. It follows that
for independent processes all necessary information con-
cerning the space-time distribution of events is contained
in the averaged density

where V'(r) and V{r) are given by Eqs. (173) and (159);
Eq. (F5) can be rewritten in the following form:

(df —
ds )/2

fguc(u) d + 1
I ( 1 +d, /2)df r 'dr

g)(r, t }dr dt=dr dt fg)(r, t)dm . (Fl) (F6)

In Eq. (Fl) we have expressed the position vector r in d, -
dimensional polar coordinates r =(r,co„.. . , a)d, )

S

If the fractal space-time density of events c' is constant
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the density function is given by

rl, (r, t )dr dt = TV*(R )s'p(r, t )dr dt . (F7)

Now we consider the limit R, T~00 and compute the
averaged density function rl, (r, t)dr dt by means of the
relationships (Fl), (F4), (F6), and (F7); we obtain

d /2
df —1

(F8)
f

which has exactly the same form as Eq. (F2) with the
difference that c and d, are replaced by c. and df, respec-
tively; it follows that all relations derived in Sec. VIII in
the Euclidean case can also be applied in the fractal case.
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