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A numerical profile is presented of the SU(2) Yang-Mills system in 2+ 1 dimensions. A particular set
of smooth analytic initial conditions leads in a finite time to approximate fractalization of the potentials,
fields, and energy density, plotted as functions of position. The system is chosen to be uniform in one of
the spatial directions. The central result is a granulation (in one dimension) of the energy into a sprin-
kling of particlelike peaks with, so far, some background energy left over. The wave-number spectrum is
found to spread very slowly in time. A simple algorithm is proposed for monitoring its progress.

PACS number(s): 05.45.+b, 11.15.—q

I. INTRODUCTION

Evidence for approximate fractals in a classical Yang-
Mills system was published by this author some time ago
[1]. The present article is a report on subsequent pro-
gress in this area, which addresses the evolution of frac-
tals in space, starting from smooth analytic field
configurations. More computing time has allowed the
solutions to develop further; also, while Ref. [1] dealt ex-
clusively with one potential, selected for its likely fractal
nature, here we examine all three nontrivial potentials, as
well as the fields and, most importantly, the gauge-
invariant positive-definite energy density. The solution’s
spatial Fourier spectrum is analyzed as a function of time
for clues as to the rate of approach to fractals.
Throughout, we are dealing with a pure Yang-Mills sys-
tem, i.e., one without Higgs, quark, or other extraneous
fields.

Two considerations make the existence of Yang-Mills
fractals plausible. First, a chaotic Yang-Mills regime (as
a function of time) was announced in 1981 by Matinyan
and collaborators [2-6]. The system originally chosen by
these authors was the classical SU(2) field in 3+ 1 space-
time dimensions, in the temporal gauge, with the cou-
plings appropriate to that dimensionality, but without
spatial dependence. The fields are then governed by ordi-
nary differential equations rather than partial ones, and
give rise to what was aptly named “Yang-Mills mechan-
ics.” Because the basic Lagrangian density is Lorentz in-
variant, it seems reasonable that a spatial counterpart to
temporal chaos might exist if the uniformity conditions
were relaxed.

A second hint of possible fractality is the lack of a pre-
ferred distance scale for the classical Yang-Mills field
equations. (This is true regardless of the space-time
dimensionality, in contrast to the quantized theory,
where 3+1 dimensions are necessary for scale invari-
ance.) It is only a hint because scale invariance, even
where combined with nonlinearity, does not guarantee
the appearance of fractals. As far as this author is aware,
no spatial fractals have been reported in the context of
other Lorentz invariant models. Indications of a devel-
oping spatial complexity have, however, been obtained by
Furusawa [7] in the SU(2), 3+1 Yang-Mills system from
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initial potentials with a linear spatial dependence.

The notation will be as follows. In SU(n), let the po-
tentials A* be a set of traceless Hermitian matrices,
where u=0,1, . . . is the space-time index. The fields are

FrV=3t 4" —3" A+ —je[ A*, A"] ()

for a coupling constant e, and the Lagrangian density is

L=—=3tre(F*F,,) . (2)
The field equations are

D, F*=0, (3)
where

Dﬂ=au—ie[A# , o] 4)

is the covariant derivative.

II. A CLASS OF REDUCED SOLUTIONS

Compared to a smooth solution, a fractal-like one puts
far steeper demands on computing power; one reason lies
in the huge number of lattice points required to reach
even a moderate accuracy. Hence our first candidate for
investigation should be a model that poses, computation-
ally speaking, a (1+1)-dimensional problem. But a pure
(1+1)-dimensional Yang-Mills system does not fill the
bill, its solution being essentially trivial. (In the appropri-
ate gauges it has a constant field in space-time.) There-
fore we focus on a (2+ 1)-dimensional system made com-
putationally 1+ 1 by requiring all potentials to depend on
only one space dimension; this is enforced through the in-
itial conditions. Because of an adequate number of com-
ponents for potentials and fields, the system remains non-
trivial.

From now on we assume the group SU(2), giving the
potentials

AF=10,4F (p=0,1,2, a=1,2,3). (5)

The o, are the Pauli matrices and the A/ are nine real

functions of space time.
Our initial conditions will always include
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3,4#=0, 98,3,4*=0 (n=0,1,2, x°=0). (6

The uniformity in x? is then propagated in time, so that
the A* and F** depend on x° and x ! only.
We choose the temporal gauge

A2=0 (a=1,2,3), @)

which reduces the number of potentials to six. Further-
more, as indicated in Ref. [1], the system possesses a class
of reduced solutions expressible in terms of three real po-
tentials only,

Ai=u, Al=v, Ai=w, (8)

with all other A# set equal to zero. This is a nontrivially
self-consistent extension of the two-potential ansatz of
Matinyan [5], and of an analogous two-potential ansatz
that has found some use in the static case [8]. In what
follows, all results are based on Eq. (8).

With the notation x°=t, x!'=x, x?=y, the field equa-
tions, (3), now reduce to

(3>—3%)u+e(209, w+wd,v)+e?w?u=0, 9)
(3*—3*)w—e (200, u+ud,v)+ew*w=0, (10)
v +e(udw—wdu)+eu+w =0, (11
9,0,v+e(ud,w—wo,u)=0, (12)

where Gauss’s law, (12), results from v=0 in (3). We
note that the three equations (9), (10), and (11) are
sufficient to propagate u, v, w from Cauchy initial data,
and that therefore (12) is a constraint. The latter must be
enforced by hand on the initial conditions, but maintains
itself automatically thereafter, as can be verified from the
time derivative of (12), with use of the remaining field
equations.

III. SPACE-TIME SCALING
AND INITIAL CONDITIONS

In terms of some constant &, the field equations
(9)-(12) are invariant under the substitutions

u=EU, u=¢EV, w=EwW, (13)
t=T/E, x=X/E, (14)

with a fixed coupling constant e. Therefore the model
has no preferred scale in space-time.

Alternatively, we can replace the amplitude scaling by
a scaling of e,

e=¢Ee [instead of (13)] . (15)

Another alternative is to scale the amplitudes as well as
the coupling constant; in this way we can, without loss of
generality, standardize the field equations to unit cou-
pling, e —1. In this paper, however, we prefer to regard
e as adjustable.

We observe that, while the model is scale invariant, the
initial conditions, and therefore the solutions, in general
are not. In particular, consider two families of initial
conditions which break the scale invariance of x and also

allow a simple enforcement of Gauss’s law (12). With
real parameters a, b, we have type I (u,v,w symmetric in
time):

u=a, d,u=0,
v=0, 9,v=0, (16)

w=bsinx , d,w=0,
and type II (u symmetric in time; v, w antisymmetric in
time):

u=a, o,u=0,
v=0, 9d,v=abe cosx , (17)
w=0, d,w=bsinx .

In the above we have taken, without loss of generality, a
wavelength 27 for the spatial nonuniformity.

Thus, for a fixed coupling, the initial conditions break
the scale invariance through the wavelength of the initial
modes and/or through the chosen amplitudes of these
modes. Why then should we expect the existence of frac-
tals? The answer is that the system will forget its initial
conditions, at least locally, if its behavior becomes
sufficiently stochastic. We shall present what indications
we have that such a scenario really takes place.

Globally some memory must remain, because total en-
ergy and momentum are conserved; some spatial periodi-
city and parity properties must persist as well. In addi-
tion to the periodicity under x —x +2m, we have the fol-
lowing, valid for both types I and II solutions at all times:

u(x)=u(—x), v(x)=v(—x), wkx)=—w(—x),

u(x)=ulr—x), vix)=—v(r—x), (18)
wx)=w(r—x) .
Since these reflection symmetries are about x =0 and

x=m/2, we only need to calculate solutions within the
interval 0 <x <7 /2. Furthermore, Egs. (18) imply

v(m/2)=w(0)=0,

(19)
9, u(0)=0,u(w/2)=3,v(0)=0,w(m/2)=0
at all times.
IV. FIELDS, ENERGY, AND MOMENTUM
The fields
E,=F°, E,=F*, B=—F" (20)

amount in the temporal-gauge reduced solution to only
five nonzero SU(2) components,

E,d:—a,v ) E

y2=—a,w 5 Ey3:_a,u s

2n
B,=3,w+euwv , B;=0,u—eww ,

with symmetries corresponding to (18), namely,
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Eq(x)=E,(—x), E,(x)=—E,(—x),
E,y(x)=E,(—x),
B,(x)=B,(—x), B;(x)=—B;(—x),

(22)
E (x)=—E(mr—x), E,x)=E,(r—x),
Ey3(x)=Ey3(7T_x) N
B,(x)=—B,(m—x), Bij(x)=—B (r—x),

valid at all times.
Using the gauge-invariant energy-momentum tensor

TH'=—FMF}, + g™ F*F,, (23)
we have the energy density
T®=1[(E ) +(E,,*+(E,;)*+(B,)*+(B;)*] (24)
and the two components of momentum density,
T"Y=E,,B,+EB; ,
(25)

T*=0.

The total energy in the interval 0 <x < /2, and per
unit y interval, obeys the continuity equation
T/2

d 7T/zToodx =—-T70

4 =0.
dt Yo 0

(26)

The vanishing is due to (22) taken at 0 and 7 /2.
The following alternative expression is obtained with
the help of the field equations:

TOOZ_;_[(atU)Z_{,_(alu)z——uafu +(a,lU)2

—wd*w—+3, (ud,u+wd,w], 27

leading to the computationally useful

m/2
= TOO
& fo ! dx

=17 3.v)%2+(3 24,82

Zfo [(8,v)°+(3,u)"—udsu
+(3,w)* —wdtwldx . (28)

[The boundary terms vanish by (19)].
The initial fields and energy are, for type I solutions,

ExleyZ:Ey3=0 ’

B,=bcosx , B;=0, (29)
E=mb?/8 .

For type II solutions
E, =—abecosx , E,=—bsinx , E,;=0,
B,=B;=0, (30)

E=(mwb?/8)a%e?+1) .

Turning to the momentum, we note that it is not con-
served in the interval (0,7 /2), owing to transfers across
the end points. However, over (0,7), we have

fO‘T1°dx=fO (E,,B,+E,3B;)dx =0 . (31)
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It can be verified that the transfers across O and 7 cancel.
In short, the total x momentum vanishes in 0 <x <, and
the y-momentum density vanishes identically; both
momentum components are trivially conserved.

The remainder of this study is devoted to a single set of
initial conditions, namely, type II, Eq. (17), with

a=b=1, e=64. (32)

These numbers are not the result of a search; the large e
is a first reasonable trial, leading also to a large 3,v in
(17); the behavior that emerges therefore seems to be in
some sense typical of the systems’s nonlinearity.

While an exploration of the initial parameter space
would be of interest, the substantial amount of computing
has so far made it advisable to concentrate on one solu-
tion; but even in this restricted context, larger values of
the time variable may well bring to light new aspects of
the system.

V. REPRESENTATIVE PLOTS

The numerical plots have been recorded over the spa-
tial interval (0,7 /2). On the same scale (¢ =1), time has
been allowed to run over 0= =8. As discussed further
on, the computer’s processing time rises ever faster with
increasing ¢ and thus imposes on it a rather strict, if pro-
visional, upper bound.
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FIG. 1. (a) The potential u(x) at t=8. The appearance of
w(x) (not shown) is quite similar. (b) Box-dimension plot for
(a). The dimension is D (u)=1.65.
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Figures 1-4 display in parts (a) the results at 1=38§; a
light signal sent at £ =0 could have crossed the width of
the frame about five times. The functions illustrated are
the potentials u, v, and the field components E,;, E,;.
The x axis is labeled in degrees.

The early results [1] indicated a smooth time depen-
dence of the potentials. This is no longer the case for
6<t<8, at least when compared with the spatial
behavior on the same scale. Figures 5 and 6 illustrate
that observation at x =45°.

In searching for a more fundamental characterization
of the system’s behavior we examine the positive-definite,
gauge-invariant energy density 7%, Eq. (24), and thus ob-
tain what is perhaps the central result of this work. At
times ¢t =6 and 8 we find the plots shown in Figs. 7 and
8(a). The initially smooth and analytic distribution has
turned into almost a sprinkling of particles. The change
that occurs between ¢t =6 and 8 demonstrates that bulk
transfers of energy are present as well.

V1. TOWARDS SELF-AFFINE FRACTALS

The most obvious feature of the present results is the
generation of an irregular spatial dependence, starting
from the smooth analytic conditions described above; the
degree of irregularity, which appears to increase with
time, is amenable to fractal analysis.

1sor 10g2 N . 1

120} ]
1.0 4
100} 1
9.0 . p
8.0} 1
7.0}
6.0} ]
5.0}
40}
30Ff .

20} logy n
1.0}

L s L L L .

00 20 40 5.0 8.0

FIG. 2. (a) The potential v (x) at z=8. (b) Box-dimension plot
for (a). We find D (v)=1.5.

What kind of fractal should we be looking for? A self-
similar fractal set yields subsets that can be isotropically
magnified by a scale factor £ so as to be indistinguishable
from the original whole set; the self-similarity can be ex-
act or statistical.

The sets of interest to us here are single-valued func-
tions f(x), plotted in a two-dimensional space f versus x.
Such sets, for example in the theory of noise, have been
well studied in terms of their fractal properties, and are
known to be generally self-affine rather than self-similar
[9]. This means that a subset can be isolated (in practice
the portion of curve enclosed between two chosen values
of x), and magnified by different scale factors £ and ¢ in
the x and f directions, such that the magnified segment is
then statistically indistinguishable from the whole curve.

An actual plotted curve, or one obtained by a continu-
ous deformation from a smooth shape, cannot be a true
fractal. The reason is that successive magnifications
eventually reveal details of the set which are themselves
smooth, or perhaps consist of detached points, and thus
no longer resemble the original curve. We can, however,
speak of approximate fractals. Here self-affinity means
that we consider a plot P, from which we select a piece Q.
We then magnify Q anisotropically by appropriate scale
factors, thus obtaining a plot Q’, which necessarily con-
tains less information than P. However, Q' should be sta-
tistically indistinguishable from a lower-resolution replot-

(a)
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FIG. 3. (a) The field E, (x) at t=8. (b) Box-dimension plot
for (a). We find D(E,,)=1.6.
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FIG. 4. (a) The field E,3(x) at t =8; the fields E,, B,, B3 (not
shown) have a similar appearance. (b) Box-dimension plot for
(a). We find D (E,;)=1.66.

ting, R, of P. Starting with Fig. 4(a), this process is
demonstrated qualitatively in Figs. 9(a) and 9(b).

The fractal dimension of the above-mentioned plots
has been determined by the box-counting method, in
which each axis of the frame is subdivided into n equal
intervals. Of the resulting n? boxes, a number N are oc-
cupied by portions of the curve. The box-counting di-
mension is then defined as

log, N
D=lim —2
n—w logyn

1.20

0.90 |

0.60 |

0.30

0.00

-0.30

-0.60+

-0.90

-1.20

FIG. 5. The potential u (¢) at x =45°. A similar appearance
is found for w (¢) (not shown).

log,N against log,n. The initial box (n=1) is chosen as
the minimal one that will contain the whole range of the
curve in the domain 0<x <x/2. Each log-log plot is
shown next to the approximate fractal from which it is
obtained. The approximate dimensions are listed in
Table I.

The general conclusions are as follows.

(1) Except for the potential v, we consider six or seven
log-log points to be well enough aligned, indicating inci-
pient fractal behavior. For v we have fewer points (four
or five), to the extent that its fractal behavior must be
considered less certain.

(2) Although the complexity of the solutions increases
substantially with time, the number of relevant points in
the log-log plots hardly increases at all in the time range
exhibited. This phenomenon is presumably related to the
extremely slow spreading of the solution’s spectrum in
wave-number space as discussed in Sec. VIIL

(3) The estimated fractal dimension shows little change

TABLE 1. Box-counting dimensions D. The results are based
on a scale range of 2".

t=6 t=38

Function D n D n
u 1.62 6 1.65 7
v 1.5 5 1.5 5
w 1.63 6 1.64 7
E,, 1.5 5 1.6 5
E,, 1.70 7 1.69 7
E,; 1.73 7 1.66 7
B, 1.69 7 1.74 7
B, 1.74 7 1.72 7
T% 1.68 7 1.69 8
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FIG. 7. The positive-definite gauge-invariant energy density
T®(x) at t =6, compared with its plot at # =0 (smooth curve).
P

over time.

(4) At t =38, the following pairs of functions are charac-
terized by rather close fractal dimensions: u and w; E,
and E,;; B, and B;. On the other hand, v has a substan-
tially smaller dimension than the other two potentials,
and E,,, which derives from v, has a smaller dimension
than the other fields; refer to Eqgs. (21). The fields tend to
have somewhat larger dimensions than the potentials.

(5) The best fractal candidate turns out to be the ener-
gy density. It provides us with seven or eight well-
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FIG. 8. (a) The energy density T%(x) at t=8. (b) Box-
dimension plot for (a). We find D (T%)=1.69.

0.
8 Ey 3
60r b

40r

20

-2a

-4

-6G
_ad x (deg)

10 30 O 76

x (deg)

300 400 5.0 500 700

FIG. 9. (a) A lower-resolution replotting of Fig. 4(a); the
framed subset is to be scaled up. (b) The scaled-up subset of (a);
the resolution, however, is the original one of Fig. 4(a).

aligned log-log points, showing a box-counting dimension
of 1.69.

VII. SPREADING OF THE MODES

The spatial spectra of the potentials are defined by
u(x,t)= 3, u;(t)coskx ,
k=0
vix,t)=3 v(t)coslx , (34)
1=1

o0
wix, )= 3 w,(t)sinmx ,
m=1

where the symmetries imply that the only nontrivial
modes are for k even, / odd, and m odd. The initial spec-
tra, including time derivatives, consist of two modes only:
k=0, and /=m =1. Their appearance at ¢t =8 is shown
in Figs. 10(a) and 10(b).

The spreading in wave-number space is of interest for a
number of reasons.

(1) Historically, the best-known study of wave-number
spreading in a field theory is that of Fermi, Pasta, and
Ulam [10). Their model, a discrete chain of nonlinearly
coupled oscillators, unexpectedly showed negligible
spreading of modes and near recurrences to initial condi-
tions. Such phenomena are not seen in the present work.
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FIG. 10. (a) The main portion of the wave-number spectrum
for u at t =8. The computational cutoff is at k =1440. (b) The
spectrum of v at 1 =8.

(2) The shape of the wave-number spectrum might be
expected to approach (statistically) a power law, as found
in the frequency spectra of noise. In the present case,
however, the large wave-number tail of the spectrum
gradually advances as additional modes are excited, and
thus this part of the spectrum is badly distorted com-
pared to its hypothetical ultimate appearance. As a
consequence, no simple interpretation can yet be offered
here for the overall spectral shape.

(3) We are solving a set of coupled ordinary differential
equations for the amplitudes u,, v;,, w,, as functions of
time. The computational wave-number cutoff K .
should be larger than the natural cutoff of the spectral
tail. Since the latter is advancing with time, we must ei-
ther take a fixed K, large enough to accommodate the
whole spectrum up to the largest value of ¢, or, more
economically, an advancing K ,, that maintains a safe
distance from the spectral tail. The latter course has
been taken, and requires monitoring of the spectrum.

(4) A fractal curve has an infinite amount of small-scale
structure, and hence its spectrum extends to infinite wave
numbers. Correspondingly, in the box-counting pro-
cedure, information is gathered from arbitrarily small
boxes, and the approach of the actual curves to fractal
shapes is reflected in the increasing number of aligned
points in the dimensional log-log plots. Therefore the
number of good points is related to the high end of the
spectrum. A heuristic way to estimate one from the oth-

1400}
1300}
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11001
10001
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800
700
600
500}
400}F
300
200}
100}

FIG. 11. The mode fronts for u (left points of doublets) and w
(right points) as functions of time. The amplitudes are chosen
to be a factor 10 apart. The steplike line indicates the calcula-
tional cutoff.

er is presented below.

Figure 11 gives an overview of the spectral develop-
ment after ¢ =0.15, a time which marks the beginning of
the spectrum’s slow-spreading regime. The points in that
plot represent the location in wave-number space of
spreading sections of the spectral tail. Just as a wave in
space can have identifiable wave fronts whose motion
characterizes its propagation, its spectrum in wave-
number space can be considered, at least in its tail end, to
have “mode fronts” that characterize the rate of spread-
ing in that space. The mode fronts are conveniently
tagged by their amplitude; the following method is simple
and well adapted to an irregular spectrum whose outer
edge one wishes to track.

Consider for definiteness the spectrum
u, (k=0,1,2,...). To select a mode front, we choose a
numerical amplitude U >0, and define the location K of
the mode front as being the largest value of k such that
u; = U. In other words, we have K =K (U) such that

u,<U (all k>K), ug2U. (35)

The progress of K as a function of time indicates the rate
of spreading of the spectrum. Two remarks are in order
at this stage.

(a) It is found that the low wave-number portions of
the spectra for ¥ and w do not change their typical ampli-
tudes, which remain of order 0.1 during all observed
times. Thus the spectral shift towards larger wave num-
bers does not have an overall rise or fall of the amplitudes
as a contributing cause.

(b) The moments of the “power spectra” uj, etc.,
which might be expected to indicate their extent in
wave-number space, are in fact unreliable clues to the
spread of their extreme tails. For example, the mean
square wave number is found to rise and fall in a manner
unrelated to that spread.

Figure 11 plots the wave-number location of the mode
fronts for u and w. The points are alternately hollow and
solid in order to keep the mode fronts apart visually. The
fronts’ amplitudes are 1071, 1072, 1073, ... as labeled.
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FIG. 12. A schematic version of Fig. 11 with amplitudes a
factor 2 apart. The number of good points on the box-
dimension plots for u is denoted by n. To obtain that many
good points, the corresponding shaded edge is expected to give
a lower bound on ¢.
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Each doublet has one point for u (left) and one for w
(right), slightly offset to the left and right of their actual
common time coordinate. The time scale is logarithmic
in t—0.15, attesting to the exceedingly slow progress of
the mode fronts. The steplike solid line represents the
computational cutoff; see the Appendix.

In addition to helping with managing the cutoff, the
mode-front plot is useful in assessing the expectation for
additional aligned points in the dimensional log-log plots.
A plausibility argument can be made on the basis of Fig.
12, an idealization of Fig. 11 with factors of 2, rather
than 10, between the amplitude steps.

We consider one high mode, say with amplitude u,,
and ask under what conditions it contributes significantly
to the nth point in the log-log plot. We assume for the
sake of discussion that mode k is an isolated one, in the
sense that it is visible as a ripple on an otherwise smooth-
er function u (x). There are 2" divisions along the x axis,
and the mode, when sampled by that many horizontal
bins, should no longer appear smooth. Conversely, in or-
der to see the horizontal bin structure, the mode should
have a maximum wavelength 27/k =(7/2)/2", which
gives

kz2"t?, (36)

Next, the amplitude Iukl itself must exceed the height
of about one box in order to be recognized as a ripple.
Since the complete frame has approximately unit height,
we need

|uk|22_" . (37)

Thus, according to (36) and (37), the modes contributing
to the nth log-log point are located, on Fig. 12, above the
horizontal line k =2"*2 and below the amplitude locus
U=2"". These regions (with shaded tip) begin at points
4, B, C. The minimum times rise steeply with n. They
are 0.27 for n=5, 0.30 for n =6, 2.0 for n =7, and extra-
polate to far beyond 10 for » =8 and higher. Those re-

sults point to the need for substantially more computing
time or power if additional points are to be sought on the
dimensional log-log plots; see also the Appendix.

VIII. SUMMARY AND DISCUSSION

Within the present model, and based on considerably
more data than Ref. [1], we have demonstrated the evolu-
tion of spatial structure on an increasingly fine scale,
starting from a smooth analytic field configuration; it is
likely that the process continues indefinitely. The ap-
proximately fractal nature of the space dependence is do-
cumented for two of the three nontrivial potentials (u
and w), and the data are at least consistent with a fractal
evolution for the third potential (v) as well. Spatial scal-
ing extends at best over a factor of 26 or 27 for the poten-
tials and fields, while for the energy density the factor is
27 or 2. An improvement in these figures would require
more extensive computing. We note that the longest time
of evolution investigated here is 8.0, compared to a spa-
tial extent of 7/2. We see therefore that longer times are
needed before a permanent trend can be reliably forecast.
We note, also, the exceedingly slow spreading of the spec-
trum in wave-number space, a circumstance related to
the slow acquisition of good points in the dimensional
log-log plots.

Our main result is a granulation (in one dimension)
into what appears to be a sprinkling of many particles of
assorted energies, with some background energy density
left over. Toy models of galaxy distribution [11] might
well be attempted on this basis, as was already remarked
in Ref. [1] on more tentative grounds.

The formation of fractals is related to the fact that the
solution forgets its initial conditions except for some glo-
bal conservation laws (energy, momentum, and spatial
symmetries including periodicity). The strongest
confirmation of this phenomenon is found in the emerg-
ing statistical indistinguishability between the potentials
u and w. The one-parameter global gauge transformation

AP SUA*UTT,

U=explixo,/2) o
induces the rotation

u —u cosy +w siny ,

w— —u siny +w cosy , (39)

vV,

under which the set of reduced solutions (8) is mapped
into itself. Since the field equations (9)-(12) are invariant
under (39), any distinction between u# and w must arise
from their (very different) initial conditions. But at
sufficiently late times (¢ R 6) we can hardly distinguish
statistically between their plots, or between other plots
that are similarly gauge related [see conclusion (4) of Sec.
VIJ; initial conditions have been forgotten.

It is interesting that the solution also “tries to forget”
initial conditions that are actually unforgettable, namely,
the boundary conditions (19) at x =0, 7 /2. These condi-
tions are no longer visible in the above-mentioned figures
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except under magnification. The situation is somewhat
reminiscent of a Fourier expansion under inappropriate
boundary conditions—a feasible procedure of which the
price is the Gibbs phenomenon. There is so far no evi-
dence for anything like a Gibbs phenomenon in our case,
however.

A fractal Yang-Mills behavior may have implications
in the path-integral formulation of particle theory. The
integrand contains the factor exp(iS /#), where S is the
classical action. In evaluating S, solutions as well as non-
solutions of the classical field equations must be con-
sidered; but in a steepest-descent evaluation, the solutions
are generally expected to dominate the path integral. If
the fractal solutions have to be included, the usually
moderate number of lattice points seem inadequate.
Therefore the validation of lattice results needs to include
an argument to the effect that the fractal cases are of
negligible weight. Alternatively, it would have to be
demonstrated that the presence of a mass input, which
selects a scale, prevents the development of fractals in the
limit of much finer scales. Similar concerns have already
been expressed [12] in relation to chaotic behavior. (It
must be noted that path-integral calculations are apt to
be done in the Euclidean version of the theory. One
might hope that fractal-related difficulties would thereby
be avoided, but, again, this would need to be demonstrat-
ed.)
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APPENDIX: COMPUTATIONAL REMARKS

The field equations have been solved in terms of the
amplitudes u;,v;,w,, in (34). Cutting off the spectrum, at
the latest times, to 720 nontrivial modes, we have a set of
(3)(720)=2160 coupled ordinary differential equations.
The calculations were done in 64 bit precision on a Cray
YMP C90 machine. The accuracy was checked as fol-
lows.

Up to t=0.4, the propagation was driven by Egs.
(9)-(11); Gauss’s law, Eq. (12), was used for quality con-
trol. This represents a set of as many conditions as we
have modes, and tests the overall consistency, as well as
the code and its accuracy. Starting from

9,9,v=—e(ud,w—wd,u), (A1)

TABLE II. Lattice density and conservation of energy. d is
lattice density in points/unit time; 8 is fractional deviation from
initial energy, measured at end of run.

t d )
0-0.05 10° 1.6 X107
0.05-3.00 10° 3.9X107°
3.00-6.00 5% 10* 1.1X107*
6.00-8.00 7.5%10* 1.2X107*

and Fourier analyzing both sides, we have the generic
form

L(k,D=R(k,t) (k=0,2,4,...,kp.,) . (A2)

Its breakdown was measured by (L —R)/(|L|+]|R}).
For k=0 this number was kept below 10”7 through
t=0.4. With 540 nontrivial modes a 1% breakdown was
reached at the 388th nontrivial mode; here the ampli-
tudes are already a factor of 107> below their values at
small k. The lattice density for integration was 10°
points/(unit time).

Over long times, Gauss’s law necessarily deteriorates
owing to the residual numerical errors. Accordingly, the
present results were obtained with an enforcement of
Gauss’s law at every step, as a substitute for the 3%v equa-
tion (11). The loss of Gauss’s law as a diagnostic was
partly made up by repeating all previous calculations,
with unchanged results, and by monitoring the conserva-
tion of total energy.

Two approximation parameters must be considered:
the wave-number cutoff k,,,, and the lattice density d in
the time direction. The jagged appearance of the cutoff
in Fig. 11 reflects in small part considerable experimenta-
tion with k. : the spectrum, including its tail almost up
to the cutoff, is insensitive to it. The conservation of en-
ergy, as well, is independent of k_,, in the range con-
sidered. The computer’s CPU time increases approxi-
mately as (k,,, )*

On the other hand, the conservation of energy is quite
sensitive to the lattice density, at least up to the highest
densities used. Conservation becomes consistently better
with larger d, demonstrating the stability of the algo-
rithm. Let the fractional energy nonconservation be

where & is the energy computed at any time from Eq.
(28), and & is the initial energy, &,=1608.8881 from Eq.
(30). Table II shows the value of d in successive time in-
tervals, with § at the end of each interval. The CPU time
increases approximately linearly with d.
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