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Localized structures and front propagation in the Lengyel-Epstein model
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Pattern selection, localized structure formation, and front propagation are analyzed within the frame-
work of a model for the chlorine dioxide —iodine —malonic acid reaction that represents a key to under-
standing recently obtained Turing structures. This model is distinguished from previously studied, sim-

ple reaction-difFusion models by producing a strongly subcritical transition to stripes. The wave number
for the modes of maximum linear gain is calculated and compared with the dominant wave number for
the Snally selected, stationary structures grown from the homogeneous steady state or developed behind
a traveling front. The speed of propagation for a front between the homogeneous steady state and a
one-dimensional (1D) Turing structure is obtained. This velocity shows a characteristic change in

behavior at the crossover between the subcritical and supercritical regimes for the Turing bifurcation.
In the subcritical regime there is an interval where the front velocity vanishes as a result of a pinning of
the front to the underlying structure. In 2D, two difFerent nucleation mechanisms for hexagonal struc-
tures are illustrated on the Lengyel-Epstein and the Brusselator model. Finally, the observation of 1D
and 2D spirals with Turing-induced cores is reported.

PACS number(s): 64.60.Ht, 05.70.Ln

I. INTRODUCTION

In his classic paper on "The Chemical Basis of Mor-
phogenesis, " Turing [1] suggested that chemical
reaction-difFusion systems under certain conditions could
become unstable and yield to the formation of stationary,
periodic concentration patterns. During the subsequent
period of more than 40 years many aspects of Turing's
theory have been worked out in detail [2—5], and a
variety of different applications to biological pattern and
form formation processes have been proposed [6-8].

Like other self-organizing structures [2,9—12], Turing
patterns emerge spontaneously from a uniform back-
ground without any specific interference from the out-
side. They distinguish themselves by the active role that
diffusion plays in destabilizing the chemical reaction. In
contrast to patterns formed by many hydrodynamical in-
stabilities, they are characterized by having an intrinsic
wavelength, determined by the parameters of the
reaction-diffusion process rather than by the size of the
reactor. As opposed to Liesegang rings [13],only a single
phase is involved, and no precipitation takes place.

Turing's suggestion stands as one of the most
influential ideas in theoretical biology. Until recently,
however, it has not been possible to obtain standing
diffusion generated patterns for any reaction under labo-
ratory conditions. To avoid disturbances associated with
the supply of reactants, most previous work has been
based on reactor designs representing chemical pool con-
ditions, and the observed spirals and waves [4,14] have
neither been stationary in space nor generated by the
Turing mechanism.

During the past few years a number of new reactor
designs have been developed [15,16] in which the reaction
takes place in a thin layer of a transparent, chemically in-

ert gel. This allows open system conditions to be main-
tained without the disturbing influence of convective
flows. The gel is fed on either side from reservoirs where
the chemical composition is controlled through continu-
ous stirring and supply of fresh solutions. In the absence
of any instability in the gel, the concentrations of reac-
tants in the planes perpendicular to the feeding gradients
will be uniform. However, when the reaction-diffusion
instability arises, this symmetry is broken, and spatial
patterns develop.

The unambiguous observation of Turing structures un-
der laboratory conditions was first made by Castets et al.
[17]. Experimenting with the chlorite-iodide —malonic
acid (or so-called CIMA) reaction, they discovered the
formation of standing three-dimensional (3D) structures
with characteristic wavelengths of 0.2 mm. The struc-
tures were confined to the central region of the reactor by
the gradients in feed concentrations, and they could be
maintained for 20 h or more, i.e., as long as the gel
remained structurally stable. Subsequent studies by
Ouyang and Swinney [18] using a somewhat difFerent
reactor geometry showed extended quasi-two-
dimensional patterns in the form of hexagons and stripes
and also lead to the first experimental determination of
the bifurcation diagram for the Turing instability.

As pointed out by Lengyel and Epstein [19], Turing
structures could arise in these experiments because starch
was used as a color indicator for the process. Starch
forms a reversible complex with iodine, and the fact that
this complex is practically immobile in the gel causes a
signi6cant reduction in the effective diffusion constant for
iodide, hence creating the conditions of short range ac-
tivation and long range inhibition required for the Turing
mechanism to become active [20]. If the concentration of
starch is sufBciently reduced, the stationary structures are
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found to disappear to give way to oscillations and waves

[21]. In the transition region, a wealth of complex spa-

tiotemporal behaviors show up, apparently as a result of
an interaction between Turing and Hopf modes [22].

By using spectroscopic techniques, Lengyel, Rabai, and
Epstein [23,24] have been able to follow the concentra-
tions of various intermediates and products of the CIMA
reaction and to determine the corresponding rate con-
stants. According to these measurements, the oscillations
are related with a set of subsidiary reactions involving (i)
the iodination of malonic acid, (ii) the oxidation of iodide
ions by free chlorine dioxide radicals, and (iii) a reaction
between chlorite and iodide ions to regenerate iodine.

In principle, the rate equations for this so-called CDI-
MA reaction involve five difference species. However,
while the concentrations of chlorite and iodide ions ex-
perimentally are found to vary over several orders of
magnitude during an oscillation, the concentrations of
malonic acid, chlorine dioxide, and iodine show little
wave-periodic variation. To a first approach, these con-
centrations may therefore be treated as constants, and,
after proper rescaling, the dynamics of the system may be
approximated by the following two-variable model [19]:

and

Bu

dt
=a —u— 4QV

1+u

Bv =5 b u— QV +cV v
2

Br 1+u
(2)

Here, u denotes the concentration of iodide ions and v the
concentration of chorite ions. a and b are parameters
that are related to the feed concentrations and to experi-
mentally determined rate constants. A shift towards
higher values of a represents an increase in the supply of
malonic acid relative to the supply of chlorine dioxide,
and increasing b corresponds to a higher supply of iodine.
In a practical experiment, these concentrations are typi-
cally of the order of 3 X 10 3—3 X 10 mol/1. c is the ra-
tio of the difFusion constant of chlorite to that of uncom-
plexed iodide, and 5 is a rescaling parameter that depends
upon the concentration of starch. The higher this con-
centration is, the larger 5 will be. The nonlinear term
uv/(1+u ) represents the self-inhibitory effect of I on
the chlorite-iodide reaction [19].

The observation of Turing structures in the CIMA re-
action has sparked a significant interest into the search
for other pattern forming reactions [25]. Much experi-
mental efFort is also devoted to exposing in more detail
the role played by the complexing agent and the gel ma-
trix. In parallel with this there is a need to extend the
theoretical analysis of the relation between kinetics and
the kinds of patterns produced. We need to better under-
stand the significance of multistability, localized struc-
tures, and front propagation, and we also need a better
description of the dynamics of defects 'and the generation
of chemical turbulence.

For systems with Brusselator-type kinetics, some of
these problems have been dealt with in recent contribu-

tions by De Wit et al. [26], Borckmans, De Wit, and
Dewel [27], Verdasca et al. [28], and Du6et and Bois-
sonade [29,30]. In particular, De Wit et al. [26] have
considered the full three-dimensional pattern selection
problem corresponding to the experimental conditions
realized by Castets et al. [17]. For systems with
Lengyel-Epstein kinetics, preliminary results on structure
formation and front propagation have been reported by
Jensen et al. [31]and by Pannbacker et al. [32]. Numer-
ically calculated bifurcation diagrams for this model
show that the Turing bifurcation to stripes is strongly
subcritical. This makes the model qualitatively different
from other simple reaction-diffusion models capable of
producing Turing structures, and a number of charac-
teristic difFerences with previous results can thus be ex-
pected.

The present paper examines some of these phenomena
in more detail. The gain curve, which relates the rate of
linear growth for space-periodic structures to their wave
number, is calculated from a linear stability analysis. A
comparison of the wave number for the modes of max-
imum linear gain with those of the finally selected, sta-
tionary structures shows good agreement, provided that
the pattern has developed from the homogeneous steady
state. A pattern formed behind a traveling front, on the
other hand, has a significantly longer wavelength. The
speed of propagation for a front connecting the Turing
pattern to the homogeneous steady state is calculated and
compared to numerical results. Due to the linearization
involved, the analytical results are valid only well into the
supercritical regime. A comparison with numerical re-
sults shows a characteristic deviation as the bifurcation
point is approached. In the subcritical regime there is a
band of parameter values for which the front velocity
vanishes as a result of pinning between the propagating
front and the underlying structure. Within this band, a
variety of difFerent stationary and localized structures can
arise. A similar phenomenon cannot be observed in the
case of a supercritical bifurcation to stripes. Characteris-
tic differences also arise in two-dimensional problems
when considering the growth of a localized hexagonal
structure into the surrounding homogeneous steady state.
Finally, we present results on the observation in numeri-
cal simulations of 1D and 2D spirals with Turing-induced
cores.

H. PA'rl KRN SELECTION

Reaction-diffusion systems with autocatalytic or cross-
catalytic processes are inherently nonlinear, and one can
expect several stationary solutions to exist. Pattern selec-
tion is then to be viewed as an outcome of the interaction
and competition processes among the various spatial
modes that start to grow as the threshold for instability is
crossed. This outcome clearly depends on the parameters
that control the growth rates of the modes, on the initial
and boundary conditions, and on the relative stability of
the various stationary solutions. Just beyond the thresh-
old of instability all modes with the critical wave number
are equally amplified, independent on their orientation.
This follows from the rotational invariance for large iso-
tropic systems as those characterizing the recent experi-
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[5 + 13a —4a +10(5 +a )]cb &bT=
Sa

(3)

bT is independent of 5. On the other hand, bH varies in-
versely with 5, and for sufBciently high concentration of

ments with the CIMA reaction. Because of this infinite
degeneracy, the pattern that finally emerges cannot be
determined solely by a linear stability analysis of the
reference state. Further above the threshold, modes cov-
ering a relatively broad spectrum of different wave num-
bers become linearly unstable, and we are faced with the
problem of wavelength selection. This is a very complex
problem which to our knowledge has not yet found a gen-
eral solution. A main line of approach is to consider the
restrictions on the band of possible Turing modes
brought on by so-called sideband instabilities (e.g., Eck-
haus and zigzag instabilities for stripes). In 2D one also
has to take patterns of hexagonal symmetry into account,
and in 3D body centered cubic structures may appear.

Nonequilibrium systems often exhibit the
phenomenon of multistability, i.e., the existence of more
than one stable state for a given set of parameter values.
The state that is selected in a speciSc experiment then de-
pends on the history of the system preparation. In can-
trast to equilibrium phase transitions, no organizing prin-
ciple exists that predicts a unique stationary solution.
This allows for structures to arise and be stable that have
no counterpart in equilibrium systems. It is also well es-
tablished that fluctuations generally play a minor role in
chemical instabilities. The transitions between the
difFerent states then take place at the marginal stability
points via the decay of an unstable mode contrary to
most equilibrium phase transitions.

Self-organizing processes exhibit universal features that
depend solely on the symmetry properties of the system.
It is nevertheless important to keep in mind that the pa-
rameters of the speciSc problem determine how the possi-
ble structures compete and interact with one another and
hence the rate at which one structure invades another.
Moreover, the universality is soon lost as the process
proceeds through secondary and tertiary bifurcations,
and one is led to consider scenarios leading eventually to
the complicated spatiotemporal patterns that can arise in
large aspect-ratio systems.

To start the analysis let us first consider the results of a
linear approach. As described by the Lengyel-Epstein
model Eqs. (1) and (2}, the CDIMA reaction is of
activator-inhibitor type with u as the activator and U the
inhibitor. Moreover, the efFective difFusion constant 5c
for the inhibitor is much larger than the difFusion con-
stant for the activator as required for Turing structures
to arise [2]. The model exhibits a unique steady state at
(uo, vo)=(a/5, 1+a /25). This state is independent of
b, and it is therefore practical to use b as the bifurcation
parameter in the following calculations. If diffusion is
neglected, the homogeneous steady state is stable as long
as b )b&=(3a 5)/Sa5 w—here a Hopf bifurcation
occurs. When difFusion is taken into account, a new
linear stability analysis shows that the system becomes
unstable towards standing perturbations of finite wave
number for [32]

starch, bT &bII. Hence, an interval exists in which the
homogeneous steady state is stable towards uniform oscil-
lations, but unstable with respect to the growth of stand-
ing patterns of finite wavelength. In one dimension, the
finally selected stationary patterns are stripes. In two di-
mensions they may be stripes or hexagons, while in three
dimensions the first structure to appear has body cen-
tered cubic symmetry [26]. A calculation of the gain
characteristic, i.e., the relation between the growth rate
of the pattern and its wave number in the small signal ap-
proximation, gives

A, (k)= —'Re[ —m(k )++m (k )—4h(k )]

with

(4)

m (k ) =k (1+5c ) —tr A (5)

and

h(k2)=5ck (5cf„—+g„)k+
~

A
~

.

Here, A,,(k ) is the real part of the eigenvalue.

and

4uuf(u, u)=a —u-
1+u

g(u, u)=5b u—
1+9

are the right-hand sides of the rate equations (1) and (2)
without diffusion. A is the corresponding Jacobian ma-
trix evaluated at the equilibrium point, and

~
A

~
is its

determinant. The subscripts u and u in the expression for
h(k }denote differentiation with respect to each of these
variables, respectively.

By evaluating (4} for a =30, b =1.6, c =1.5, and 5=8
we obtain the gain curve shown in Fig. 1. As illustrated
by this figure, there is a spectrum of modes with wave
numbers between k& and k2 for which the gain factor is
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FIG. 1. Dispersion relation for the Lengyel-Epstein model
showing the real part of the eigenvalue as a function of the
(squared) wave number for standing, spatially periodic small sig-
nal perturbations. %lith the assumed parameters, only Turing
modes with wave numbers k 1 )k )k2 are unstable.
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positive. There is another maximum of the gain curve
around k =0. This maximum arises from the Hopf insta-
bility. However, with the assumed parameters, the Hopf
modes have Re{A,j &0, and the system is stable against
homogeneous oscillations. A decrease in b will shift the
gain curve upwards, and the range of wave numbers for
which amplification takes place will increase. The
highest overall growth rate is obtained for k =k where
A,„(k) has a maximum. It is possible to obtain an analyti-
cal expression for k in terms of the parameters of the
model. We shall not reproduce this expression here. In-
stead, in Fig. 2 we have plotted (fully drawn smooth
curve) the variation of k with b for a =30, c =1.5, and
5=8. The wave number for the modes of maximum
linear gain is seen to increase slowly with b throughout
the supercritical regime. The highest value of b in the
figure corresponds approximately to the Turing bifurca-
tion point bz. If absolute values are inserted for the vari-
ous parameters, the range of wave numbers for which
amplification can occur is found to agree well with the
experimentally observed wavelengths around 0.2 mm
f171.

Figure 3 shows the bifurcation diagram for the
Lengyel-Epstein model with a single space dimension
[31]. Starting with a value of b in the interval for Turing
instabilities (b~ &b &bz ), this diagram was obtained by
seeding the homogeneous steady state with noise and in-
tegrating the dynamical equations to obtain the final, sta-
tionary pattern. Hereafter, this pattern was used as ini-
tial conditions when restarting the integration with a
slightly different value of b. With this adiabatic approach
we could follow the stationary structure (and determine
its amplitude and wave number) as a function of b into
the subcritical region (b )bz ) where it cannot grow out
of the noise seeded homogeneous steady state. The nu-
merical calculations were performed by means of a semi-
implicit Crank-Nicolson method with no-Sux boundary
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FIG. 2. Wave number selection in the Lengyel-Epstein mod-
el. The fully drawn curve shows the wave number for the
modes of maximum linear gain. The dotted curve reproduces
analytical results for the wave number selected behind a travel-
ing front (see below). Diamonds and crosses are numerically
determined results for the Snal stationary patterns developed
from the homogeneous steady state and behind a traveling
front, respectively.
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FIG. 3. Numerically calculated bifurcation diagram for a
one-dimensional Lengyel-Epstein model with a =30. c and 5 at-
tain their standard values of 1.5 and 8, respectively. Note the

regions of subcriticality for the two bifurcations and the region
of bistability between Turing structures and Hopf oscillations.
HSS denotes the homogeneous steady state.

conditions. In each simulation, the stability of the ob-
tained structure was tested by applying a small noise sig-
nal. A similar approach was applied to determine the bi-
furcation curve for the Hopf oscillations. In the region
0.8 & b (1.0, where the Turing stripes have a lower am-
plitude than the Hopf oscillations, the linear stability
analysis still shows that the Turing modes have the
highest gain factors. When starting from a noise seeded
homogeneous steady state one may then observe that the
stripe pattern starts to develop and almost saturates. At
this stage small regions of the structure start to oscillate,
and after some time the system ends up in a uniformly os-
cillatory state with no spatial inhomogeneities.

With the assumed parameters ( a =30, c = 1.5, and
5=8), the Hopf bifurcation is weakly inverted whereas
the Turing bifurcation is highly subcritical. There is also
a range where Hopf oscillations coexist with stationary
stripes. The overlapping stability regions allow for a
variety of different inhomogeneous solutions to arise. We
shall return to this problem in the following section.
First, however, let us try to compare the wave number
for the numerically computed stationary pattern with the
wave number k for the modes of maximum linear gain.
Such a comparison is provided in Fig. 2, where the dia-
monds with error bars represent the wave numbers of the
stationary stripe structure obtained when starting each
simulation from the homogeneous steady state. Note
that in general this procedure will not give the same
wavelength for the finally selected structures as the adia-
batic approach used to construct the bifurcation diagram
in Fig. 3. The agreement with the analytical results (fully
drawn curve) is clearly quite good, indicating that the
modes of maximum linear gain remain dominant also in
the nonlinear region. The final structure is not
sinusoidal, however, but contains a spectrum of higher
harmonics not shown in the figure.

In two dimensions, the picture is even more complicat-
ed. Here, we have the possibility of both hexagons and



O. JENSEN et al.

14

12-

10-
a 8-
O
E 6-

4-
CC

Hopf i
I

b
H

b
T

hexagons

HSS

capable of showing this type of instability. This subcriti-
cality provides the possibility of a variety of inhomogene-
ous solutions, some of which may be stable [31]. For cer-
tain parameters, for instance, we may find a stable stripe
structure surrounded by regions of homogeneous steady
state, or we may find an islet of homogeneous steady state
in a sea of Turing stripes. The simplest inhomogeneous
solution consists of a front {or kink) separating a region
with stripes from the homogeneous steady state. This sit-
uation is illustrated in Fig. 5(a), which shows a stripe
structure that invades the homogeneous steady state.
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I
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FIG. 4. Numerically calculated bifurcation diagram for the
two-dimensional Lengyel-Epstein model. Note the region of
tristability between hexagons, stripes, and the homogeneous
steady state.

stripes, and both types of structures have been experi-
mentally observed [18].

Moreover, for hexagons the phase is important, since
the activator, for instance, can show either concentration
maxima or minima in the centers of the hexagons. Ac-
cordingly, we talk about 0- and m-hexagons. An addi-
tional problem of a more numerical character is that the
applied boundary conditions tend to impose specific
orientations on the obtained structures. Stripes, for in-
stance, may tend to arrange themselves so that they are
perpendicular to the boundaries [30]. In two dimensions,
our calculations have been performed either with an al-
ternating directions implicit method with no-fiux bound-
ary conditions or with an odd-even hopscotch method
and periodic boundary conditions. Only the periodic
boundary conditions are neutral regarding the orientation
of the patterns.

With these modifications, the procedures for obtaining
the two-dimensional bifurcation diagram depicted in Fig.
4 were similar to those described above for the one-
dimensional case. Several features of Fig. 4 are worth
noticing. In particular, we see that the Turing bifurca-
tions leading to stripes and hexagons are both subcritical.
We also see that there is a significant region of overlap of
the stability intervals for the two types of structures.
When b becomes large enough for the stripes to become
unstable, a transition to hexagons may occur. By follow-
ing this transition in time, one can see how the stripes
break up and transform into hexagons. At the lower end
of the stability interval for hexagons, on the other hand,
one can observe a transition in which hexagons join hexa-
gons to produce stripes.

e E

Space

Space

III. FRONT PROPAGATION IN 1D

The strongly subcriticaI nature of the Turing bifurca-
tion to stripes distinguishes the Lengyel-Epstein model
from previously studied, simple reaction-dieusion models

FIG. 5. Numerically computed solutions to the I engyel-
Epstein model with one space dimension: {a) a stripe structure
invades the homogeneous steady state for a=30 and b=3.0,
and (1) the homogeneous steady state invades a region with
stripe structure for a =30 and b =3.6.
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This will occur in an interval below and immediately
above the bifurcation point (b &p), in Fig. 3}. The op-
posite situation in which the homogeneous steady state
invades a region with stripes is shown in Fig. 5(b}. This
will occur close to the upper end of the subcritical region

(pb;s), &b). Between these two regions there is a band

(p),„&b &p),;sb ) in which the front velocity vanishes, and
the two states can coexist in a stable manner.

To analyze the propagation of fronts in more detail, let
us assume that we are well into the supercritical regime
(b & br ), where only the Turing structure is stable. Par-
ticular initial conditions may have produced a situation
in which a front exists between a region with stationary
stripes and the unstable homogeneous steady state. Fig-
ure 6 illustrates a typical front profile.

Calculation of the front velocity may now proceed as
follows [33-35). The leading edge of the front, where
small signal conditions apply, is assumed to be described
as the product of an exponentially rising function P,„„

(the envelope) and a standing sinusoidal variation P, .
As previously indicated, the solutions to the linearized
system can be expressed as

y( r )
eikx+k(k)t

where

co=k, vf+A. ;(k) . (13)

Hence, as long as the number of nodes is conserved as
they pass through the front, the wave number of the pat-
tern behind the front must be

k;(k)
k = =k„+

Uf vf
(14)

These expressions alone cannot give us vf and k, since
we do not know k„and k;. However, if we impose the
additional requirements that the front velocity vf be real
and that the front itself be stable against any ( real or
imaginary} small change in k, we obtain the additional
conditions (stationary phase).

(15)

and

In a coordinate system following the fron, the standing
stripe pattern will appear as a temporal oscillation, and
one oscillation in time mill correspond to one period in
space. The angular frequency evaluated in the moving
frame is

A(k)= —,'[—m(k )++m (k ) —4h(k )) (10)
(16)

Here, we identify the nonoscillatory part as the envelope.
If this envelope is to propagate with uniform velocity vf
and unchanged shape, we must have (marginal stability
hypothesis)

A,„(k}
vf =

k;
(12)
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FIG. 6. Profile of a front between a region with stationary
Turing stripes and the homogeneous steady state. The front
propagates to the right as the Turing structure invades the un-
stable homogeneous steady state.

with m(k } and h(k ) as given by Eqs. (5) and (6). By
separating real and imaginary parts [k =k„+ik,,
A(k)=I)l, „(k)+iA.;(k)],Eq. (9) may be rewritten as

—k,.x+8,„(k)t i[k„x+k,(k)t]

Together with the dispersion relation (10) these expres-
sions sufBce to determine the velocity of the front vf and
the wave number k~ of the modes selected behind the
front. In practice, these calculations are fairly complicat-
ed and can best be performed by means of approximate
methods. We have solved the problem by expanding k
around the value k, obtained for k at the Turing bifur-
cation point where k; and A, ,(k) vanish. The expansion
was performed by means of symbolic manipulation
(MATHEMATtcA), and by choosing the order of expansion
high enough we can obtain the results with the desired
precision.

As calculated from the above analysis, k may clearly
diS'er from k . A comparison between the two wave
numbers is provided in Fig. 2, where the dotted curve
shows the variation of k~ through the supercritical re-
gime. At the bifurcation point b=-2. 8, the two wave
numbers coincide, k~ and k both being equal to

k, =+(5cf„+g„)I25c.However, as we move into the
supercritical regime, k decreases faster than k, imply-
ing that a structure developed behind a traveling front
will have a longer wavelength than a structure that has
grown from the homogeneous steady state. The points
with error bars around the dotted curve represent numer-
ical results obtained for the fully developed stripe struc-
ture existing behind the front. Again it appears that the
simple marginal stability theory is capable of predicting
the characteristics of the stationary structure.

Figure 7 shows the variation of the front velocity with
b. Here, the fully drawn curve represents the velocity vf
as calculated from the above analytical approach, and the
points with error bars represent numerically determined
values for the front velocity obtained by integrating the
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FIG. 7. Variation of the front velocity with the bifurcation
parameter b for a front separating Turing stripes from the
homogeneous steady state. The fully drawn line represents the
analytical results and the diamonds with error bars represent
numerically obtained results.

FIG. 8. Wave number selection for the Brusselator model.
The fully drawn curve shows the wave number for the modes of
maximum linear gain as a function of 8. The dotted curve
represents the analytical results for the wave number selected
behind a traveling front. Diamonds and crosses are numerically
determined results for the final stationary patterns developed
from the homogeneous steady state and behind a traveling
front, respectively.

one-dimensional Lengyel-Epstein model with initial con-
ditions that produce a front. %ell into the supercntical
regime, the two calculations give similar results. Howev-
er, as we approach the bifurcation point, the results start
to difFer. While the analytical results for vf approaches
zero at b=bT, the simulations show a characteristic
crossover to a different curve which approaches zero at
b=p1,„.An analogous result has been found by van
Saarloos and Hohenberg [36] in a study of front propaga-
tion in the complex Ginzburg-Landau equation, although
in this case pinning efFects are absent. In the crossover
region the velocity of the front is not uniform [32]. Rath-
er, the front jumps one wavelength at a time, and the in-
terval between subsequent jumps increases as the pinning
band is approached. Such interactions between a front
and an underlying structure are frequent in solid state
physics, where they are known to influence the dynamics
of dislocations, charge density waves, and magnetic
domain walls. We have performed a similar analysis for
the classical Brusselator model [2],

x
f

=A —Bx+x y —x+D V x,x

By =Bx—x y+D V y,y

(17)

(18)

for which the Turing bifurcation to stripes is supercritical
[27,28]. Figure 8 shows the results for the wave number
selection as a function of B for A =30, D„=1.5, and
D~=S. Again, the fully drawn curve represents the
analytical results for the modes of maximum linear gain,
and the dotted curve represents the modes selected
behind a propagating front according to the above
analysis. The points with error bars represent numerica1-

ly obtained wave numbers for the final stationary solu-
tions emerging from the homogeneous steady state and
developing behind a front, respectively. Again we ob-

serve (i) that the finally selected large signal wave num-
bers generally agree with those predicted by the small sig-
nal theory, (ii) that the two types of selection processes
lead to similar wave numbers close to the bifurcation
point, and (iii) that far from the bifurcation point larger-
wavelength structures are produced behind a traveling
front than from the homogeneous steady state. For large
B values there is a tendency for the stationary wave num-
bers developed from the homogeneous steady state to fall
below the wave numbers of maximum linear gain and to
approach those developed behind a front. This far from
the bifurcation point the growth rates of the unstable
modes are so high that it is dificult to stabilize a homo-
geneously growing structure. Instead, patches will devel-

op, and as they spread into neighboring regions of space,
patterns with smaller wave numbers wi11 be produced.

Figure 9 shows the variation of the front velocity with
B for the one-dimensional Brusselator model. The fully
drawn curve represents the results of the above analytical
approach, and the points with error bars show the nu-

merically obtained results for the fully developed struc-
ture. In this case, the Turing bifurcation is supercritical,
and the front velocity goes to zero in the bifurcation
point (B -=6.7).

We may conclude this discussion by noticing that in a
region just above the bifurcation point br & b &p&, , the
Turing structure is stronger than the homogeneous
steady state. Hence, if a system is prepared such that
both states are present, the Turing structure will gradual-
ly spread across the entire system. In ihe interval

p&, & b &ph; h, however, the two states can coexist in a
stable manner in different regions of the system. As de-
scribed in more detail by Jensen et al. [31], this pinning
phenomenon allows one to obtain an infinite variety of
stable heterogeneous structures in which, for instance, an
islet of Turing stripes exists in a sea of homogeneous
steady state.
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FIG. 9. Variation of the front velocity for a one-dimensional
Brusselator model. The fully drawn curve represents the analyt-
ical results, and the diamonds with error bars represent numeri-

cally obtained results. The corresponding bifurcation diagram
shows that the Turing bifurcation in this case is supercritical.

IV. NUCLEATION AND GROWTH OF 2D
HEXAGONAL STRUCTURES

In 2D the first structure to appear subcritically has
hexagonal symmetry where the concentration maxima for
the activator form a triangular lattice. This is followed
on decreasing b and also subcritically by stripes. In a cer-
tain parameter range the system may thus exhibit trista-
bility between hexagons, stripes and the homogeneous
steady state. At still lower values for b (and somewhat
higher values for 5), a branch of inverted hexagons exists
for which the activator concentration is minimum in the
hexagonal lattice points [40]. Pinning may occur when-
ever the boundary of the structure is perpendicular (or
nearly perpendicular) to the wave vectors characterizing

The possibility that an islet of one phase can be stably
embedded in a sea of another arises from the fact that we
are dealing with a nonequilibrium phase transition. In
this case there is no general principle that predicts the ex-
istence of a single stable phase. If one phase involves a
modulation in space, a finite amount of disequilibrium be-
tween the two phases is needed to make the interface
move [37,38], and pinning of the interface to the struc-
ture can occur in parameter regions where only a small
disequilibrium exists. A more detailed analysis of this
phenomenon has been given by Bensimon, Shraiman, and
Croquette [39]. They consider a model that describes a
subcritical bifurcation between conductive and convec-
tive states in a 1D hydrodynamic system and show how
the front can be pinned by the roll structure of the con-
vective state. There are important differences between
the two models, however, which among other things lead
to the fact that where the front propagation in our system
occurs in jumps of one wavelength of the underlying
structure, the analysis of the hydrodynamic system leads
to jumps of a half-wavelength.

the pattern [41]. As a result, a large variety of localized
2D structures are possible. Outside the pinning band, lo-
calized structures may either shrink or expand, depend-
ing on the relative strength of the surrounding state.
However, the way this process takes place is still
influenced by pinning phenomena and is qualitatively
different from the growth of localized hexagonal struc-
tures in models, for instance, with Brusselator-type kinet-
ics. As an example, Fig. 10 shows the growth of a hexag-
onal pattern embedded in a sea of homogeneous steady
state. To produce this Sgure, we have initiated the sys-
tem with seven spots of a perfect hexagonal pattern.
With a bifurcation parameter b =2.5 we are well above
the pinning band, and the Turing structure grows with
time as illustrated by the sequence in Fig. 10. It is in-
teresting to see how this growth occurs through the addi-
tion of new hexagonal points in a systematic manner.

A hexagonal pattern can be considered as the superpo-
sition of three stripe patterns with wave vectors 120'
apart. As illustrated in Fig. 11, the pinning directions,
i.e., the directions in which expansion of the structure
meets with the highest resistance, are parallel to these
wave vectors. Whether a new spot will start to form also
depends on the number of surrounding spots that are al-
ready developed. Many developed spots in the neighbor-
ing lattice points will provoke growth. Since pinning is
strongest in directions A, new hexagonal spots will first
develop along the 8 directions (see Fig. 11). Hereafter,
pinning can no longer hold back nucleation of new spots
in the A directions because of the high number of
developed spots on the neighboring lattice sites. Hence,
the overall hexagonal form of the structure is reesta-
blished, and growth again occurs in the B directions, etc.

In this way it appears that pinning efFects related to the
interacting stripe patterns influence the growth of the
hexagonal structure. When the bifurcation to stripes is
supercritical, there is no pinning of the patterns, and the
hexagonal structure expands in a qualitatively different
manner. This is illustrated in Fig. 12 for the Brusselator
model. Here we see how stripes are formed along each of
the hexagonal sides of the structure, and how these
stripes subsequently break up into hexagonal spots. This
type of "crystalization" has also been observed in experi-
ments with convection cells in gaseous CO2 [42]. The bi-
furcation diagram for this system (Fig. 3 of Ref. [39])
shows that just above the bifurcation point a branch of
metastable stripes coexists with a branch of stable hexa-
gons. This provides a likely explanation for the observed
formation of transient stripe patterns. It may be noted
that around the Turing point, the bifurcation diagram for
the Brusselator model [28] is qualitatively similar to that
of the convection problem.

The Lengyel-Epstein model also allows for the ex-
istence of stable, localized 2D structures: hexagonal pat-
terns in a sea of homogeneous steady state, hexagonal
patterns surrounded by a state of stripes mixed with hex-
agons, and —under very particular circumstances —a re-
gion with self-sustained oscillations surrounded by a ring
structure of stripes. As an example, Fig. 13 shows a
stable, localized hexagonal structure obtained for b =3.6.
To check the stability of this structure, noise has been
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FIG. 10. Expanding hexagonal pattern in the Lengyel-Epstein model with b =2.5. Note how new hexagonal points are added in

directions where pinning can be overcome.
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FIG. 11. The three waves vectors characterizing a hexagonal structure. A is the pinning direction.

added during the simulation, and the simulation has been
continued for an extended period of time. If b is further
increased, the homogeneous steady state becomes
stronger than the hexagonal structure, and the Turing
structure will shrink. We have also seen examples of nu-
merical simulations in which the Turing pattern starts to
decay into the homogeneous steady state at points inside
the structure.

V. 1D AND 2D SPIRALS. TURBULENCE

In the region of parameter space where Turing stripes
and Hopf oscillations are both stable (and where the
mixed Turing-Hopf mode is unstable), fronts connecting
these two global solutions exist [32]. Close to the Hopf
bifurcation, the Turing state is dominant and tends to in-
vade the territory of the Hopf oscillations. Near the
lower end of the coexistence range, the opposite occurs.
In these processes, the front velocity exhibits characteris-
tic jumps as previously discussed for a front between Tur-
ing stripes and the homogeneous steady state. Only in
this case, one wavelength is usually added to (or subtract-
ed from) the Turing domain during an integer periods of
the Hopf oscillation. Hence, we have a phenomenon
analogous to the well-known frequency locking between
coupled nonlinear oscillators. It is likely that quasi-
periodic and perhaps chaotic motions of the front also
can occur. These problems are presently being investi-
gated in more detail.

Because of pinning effects, stationary fronts between a
Turing and a Hopf domain can arise in certain parameter
regions. Such fronts may again serve as building blocks
for stable localized structures such as, for instance, a Tur-
ing structure embedded in a sea of Hopf oscillations. An
example is shown in Fig. 14, where a 1D stripe structure
truncated to a few wavelengths is surrounded on both
sides by Hopf oscillations. The amplitude of the oscilla-
tions goes to zero in the core of the structure where the
Turing amplitude is maximum. The Turing fronts serve
as sources of waves that travel to either side. For a nar-

row Turing structure consisting of one or a few half-
wavelengths, the waves are released with opposite phases
(corresponding to a phase jump of n). In the case of a
broader Turing structure, the interaction between the
confining fronts is less significant, and the phase
difference between the initiated waves may differ from m.

Due to a subtle compensation between the spatial and
nonlinear dispersion effects, the wave number for these
waves is very small, and the phase velocity correspond-
ingly high. Similar asynchronous wave sources (sowalled
chemical flip-flops) have been observed in experiments
with the CIMA reaction [21]. The phenomenon has also
been found in numerical simulations of the Brusselator
model [22]. Only in this case, the phase velocity of the
emitted waves is more moderate.

To obtain the results of Fig. 14 we have initiated the
right half-plane and the left half-plane in stable Hopf os-
cillations with a phase difference of n between the two
sides. Hereafter, we have simulated the Lengyel-Epstein
model until a11 transient behaviors have died out.

In 2D, a 2~ phase singularity can be imposed onto the
system by starting each quadrant of the plane in a stable
Hopf oscillation with a phase difference of n /2 from qua-
drant to quadrant around the clock. For conditions simi-
lar to those of Fig. 14 this produces a stable 2D spiral
with a Turing induced core as illustrated in Fig. 15. The
arms of the spiral are rather straight, expressing the
aforementioned high phase velocity of the emitted waves.
This type of 2D Turing-Hopf spiral has recently been ob-
served by De Kepper et al. [43].

By virtue of the built-in Turing core, the spirals of
Pigs. 14 and 15 are quite different from the weH-known
chemical spirals observed, for instance, in the Belousov-
Zhabotinsky reaction [4,5]. However, in the absence of
starch (i.e., for 5=1), one can flnd 2D spirals without
Turing cores in the Lengyel-Epstein model as well. We
have only just initiated work in this direction. It is clear,
however, that for certain parameter values, the spirals are
destabilized and for large systems, defect mediated tur-
bulence may arise. This phenomenon is characterized by
the continuous creation and annihilation of phase singu-
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FIG. 15. 2D spiral with a Turing-induced core. Parameters
are the same as Fig. 14. The rotation of the spiral is clockwise.
For symmetry reasons, a similar spiral rotating in the opposite
direction must also exist.

propagation in this model. In particular, the relatively
pronounced character of the subcriticality allows for the
existence of a pinning band in which a wide variety of
stable inhomogeneous structures can arise.

In the present paper we have derived simple analytical
results for the velocity of a front between Turing stripes
and the homogeneous steady state as well as for the wave
number selected behind the front. Due to the linearizass

tion involved, these results apply only in the supercritical
region well away from the bifurcation point. Numerical-
ly results are presented to complement the analytical re-
sults outside this range.

In the two-dimensional case we have studied the
growth of droplets of hexagonal structure into the sur-
rounding homogeneous steady state. These results dier
from those observed for other simple reaction-diffusion
models by the absence of stripes in front of the growing
hexagonal structure. Similar investigations in the region
where competition exists between Turing structures and
Hopf oscillations provide evidence of pinning e8ects both
in one and in two dimensions [32].

Using appropriate initial conditions, we have found
that one- and two-dimensional spirals can develop in the
oscillatory domain. These spirals have a Turing-induced
core where the amplitude of the oscillations vanishes. In
one dimension, the oscillations have opposite phases on
either side of the core similar to the quasi-one-
dimensional spirals observed in the experiments with the
CIMA reaction [21]. With the right set of parameters,
starting in the homogeneous steady state the system can
end up in a frozen state with a finite number of fixed
phase singularities. In the inverted region of the Hopf bi-
furcation we have also found turbulent states. Work is
presently underway to investigate these phenomena in
greater detail.
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