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An adaptive perceptron with multilinear couplings is introduced. %'hile an adaptive perceptron ex-
hibits severe shortcomings if it is applied to complex tasks, this is not so for the adaptive multilinear per-
ceptron.

PACS number(s): 87.10.+e, 89.80.+h, 89.70.+c

INTRODUCTION
DEFINITION OF A TASK

The perceptron is a traditional and important neural
network model [1,2]. In its simplest version it has an in-
put layer and an output layer. However, it cannot per-
form any desired task with these two layers. In more ad-
vanced versions it can perform any desired task. Howev-
er, there is no learning algorithm known that converges
for each desired task to a configuration of couplings so
that the perceptron can perform the desired task. Thus
in any case the perceptron exhibits essential shortcom-
ings [2]. Here these shortcomings are completely over-
come by a multilinear [3] perceptron, which is a percept-
ron that has couplings connecting pairs of neurons, tri-
ples of neurons, quadruples of neurons, and so forth.

A task is an input-output mapping. That is, to each
configuration [P;] of states of input neurons one
configuration [P] of output neutrons is desired. Because
there are 2 configurations of input neurons, the index p
takes the values p = 1, . . . , 2 . It is convenient to denote
the mapping from one input configuration [P] to one
output configuration [P] as an elementary task; a task
consists of 2 elementary tasks. By convention, the net-
work performs a task when it performs correctly all 2
elementary tasks.

MULTILINEAR
PERCEPTRON EXISl ENCE THEOREM

DEFINITION
OF THE MULTILINEAR PERCEPTRON

The multilinear perceptron consists of N input neurons
$; =+1, i =1, ,%, and X output neurons
s, =+1, i =1, , ¹ In addition, the network has one
neuron so that takes the value 1 at any time in any case.
It has bilinear couplings J;., trilinear couplings J;jk, and
so forth. A11 couplings act from the input layer to the
output layer. Because the network has only an input lay-
er and an output layer, the neuronal dynamics can be ex-
pressed as an input-output mapping as follows. The state
of an output neuron s; is determined by the states of the
input neurons s; and of the couplings

N E
s; =sgn J;so+ g Jjsj+ g Jjksjsk

j=l j &k=1

Jtjkl SjSk Sl
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Here sgn denotes the signum function.

For each task there exists a multilinear perceptron that
performs it. Proof: A desired state P is a function of the
input states

This function can be expanded in terms of a Taylor series.
A state is +1 or —1, thus (P) =1. Consequently, the
expansion contains a finite number of terms, is exact, and
looks as follows:

+o NPN+ '12P1Ã2+ '+ i12. . .NP1Ã2' ' 'PN

The following couplings are constructed:

Jik. .. I aik. ..1 (4)

DEFINITION OF THE LEARNING ALGORITHM

By inserting Eq. (4) into Eq. (1) and P for s, , one obtains

' ='g"('o o+' if'+ +o;i2 NPiP~ . Pw) .

The expansion is exact, thus the argument for the above
signum function is g'", [see Eq. (3)]. Consequently, s, =P.
Thus the network performs the task.
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Next the usual [1,4] perceptron learning algorithm is
genera1ized. In order to express the learning algorithm in
a coherent and simple manner, one may use a vector no-
tation as follows:
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i&"=(So,P„g,g, . . . , P~,Pg, Pg, . . . , PP~, PP~g, Pgg, . . . , PP2, PN } .

An analogous vector J; is formed for each i:

i ( i&~il& i2& ' & ilN& i12& i13»~ilN»Ji12. . .N ) ~ (7)

J ~J +8(—s;P')g~P . (9)

This prescription is made precisely in terms of a learning
algorithm. The multilinear perceptron learning algorithm
is deSned as follows: One may start with any coupling
state (J„J2,. . . , JN}, with the squared norm (J;lJ;)=—,

'

for all i=1, . . . , ¹ Next, one may normalize I,'. and
2P, i.e., (J,'lJ,'. )=1, and (Pl@)=—,'. That is, ap-
propriate prefactors are assumed in Eqs. (4), (6), and (7):
Sweep for p:=1 to 2; do update if P(J, lP) &0, then
J;:=J;+P'P; if (J„.. . , JN) has been changed during
sweep, goto sweep; stop.

The scalar product may be denoted by ( .
l ), it is

the sum over products of corresponding components.
For instance, for the nth elementary task the input neu-
rons take the states that occur in P, and s, is obtained
from Eq. (1) as follows:

s,.=sgn((J, . lP)) .

Roughly speaking, the couplings are updated if the net-
work did not process an elementary task as desired. This
is done in a manner that is reminiscent of a generalized
[3] HopSeld rule and of multilinear spin glasses [5]:

a generalization of a proof [4] of the perceptron conver-
gence theorem. Proof: One considers any task. For the
couplings constructed for the task in, Eq. (4) one obtains

—,
' ~g";&J,'IP»5~0

for each i =1, . . . , N and some 5 . (10}

Because the network with the couplings performs the
task, so s,.=g~ for the nth elementary task, thus Eq. (8)
implies Eq. (10). Let J';"' denote the vector J; after n up-

dates have been performed. So n times we had
(J; l PP ) & 0 (for all i = 1, . . . , 1V) for some P and added

P, so that J;-+J;+PP'. By the Cauchy-Schwartz in-

equality,

& J'lJ'"'&
~1 for all i=1, . . . , N,J(nj

l

because J,' is renormalized. Equation (11) leads to an

upper bound for n. To slow this, we estimate the
numerator and the denominator in Eq. (11) separately.
For the numerator, since (J,

'ling')

)5, we have

&J'IJ'"'&=(J'l(J'" "+PP')&

MULTILINEAR
PERCEPTRON CONVERGENCE THEOREM

For each task, the multilinear perceptron learning al-
gorithm stops after a Snite number of steps. The proof is

I

& & J;IJ'"-")+5
&" &&J;IJ,'"&+n5=o+n5,

where —
—,
' & a ~

—,'. The denominator is estimated by

(12)

= &(J',"-"+PP}l(JI" "+PC') &

= lJ1." 1l +2(J(" 1lPg')+ lyly'l & J1."
l

+1& ~ ~ ~ &n +1 . (13)

Because (J';" "ling&) &0; otherwise PP' would not
have been added. By inserting Eqs. (12) and (13) into Eq.
(11),one obtains

(Je J{»))
&1 (14)~n+1-

Thus a and 5 are the relevant parameters for the conver-
gence of the process; due to the normalizations one ob-
tains 5& —,

' and lol &1/2 [see Eqs. (10) and (12)]. Thus
the above inequality has solutions for n, and the process
has at most n iterations with

n ~ 1 —2a51

25

++(1—2a5) +45 (1—a ):5

POSSiBLE APPLICATIONS

The typical property of the network is not to compress
information, because one uses a network with 2 weights,
each one of which has a solution of N bits, to encode 2
bits of information. In contrast, the typical property of
the network is "precision" and "the ability to adapt to
novel situations. " This is illustrated with an example. If
one starts with an incomplete set of elementary tasks and
trains these, then the network performs these correctly.
Later, novel elementary tasks may be introduced and
trained while the network is processing. Thereby the
current coupling state plays the role of the initial cou-
pling state in the convergence theorem, so the theorem
can be applied; thus the network adapts precisely to the
new extended set of elementary tasks.
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For the Seld of biology, the network can be interpreted
as a model for neuropils (sets of multiply connected neu-
rons in the brain}, because the presynaptic neurons can
act in any functional manner on a postsynaptic neuron
[6].

Finally, there are many situations in extrapolation,
learning, memory, and perception that cannot be ex-
pressed in terms of tasks and elementary tasks, due to
ambiguous, incomplete, or preliminary information [6,7].
While bilinear networks do not even converge in situa-
tions with complete information, multilinear networks
do, and are therefore good candidates for adaptation and
performance with incomplete information.

CONCI. USIGN

The perceptron has been generalized to the multilinear
perceptron. The perceptron learing algorithm has been
generalized to the multihnear perceptron learning algo-
rithm. It has been proven that the latter converges for
any task. That is, the restrictions to the applicability of
the perceptron to relatively simple tasks have been com-
pletely resolved. This result applies also to feedback net-
works [8].
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