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Practical considerations in the central of chaos
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Unstable periodic orbits in certain chaotic systems may be st
a control parameter. Stabilization using linear feedback has been
physical experiments. Not all chaotic systems can be controlled e
of proposed control algorithms depends strongly on mathematical
Practical considerations are discussed that affect the robustness
with emphasis on the range of feedback gains which can stabilize
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Many nonlinear dynamical systems exhibit chaotic os-
cillations. Recently, a general approach to controlling
chaos in physical systems has been proposed, based
on the existence of unstable periodic orbits within the
chaotic attractor. The original technique, due to Ott,
Grebogi, Yorke [1], relies on the local linearization of
a surface of section map near an unstable fixed point.
The Ott-Grebogi-Yorke (OGY) method consists of ap-
plying linear feedback control in the vicinity of such a
fixed point.

In principle, the OGY method is applicable to any
physical system, even without an accurate mathemat-
ical model, as long as iterates on a surface of section
can be obtained. In several experiments, OGY control
has been successful in stabilizing periodic motion. Ditto,
Rauseo, and Spano [2] stabilized period-1 and period-2
oscillations of a magneto-elastic ribbon. Hunt [3] used a
simplified analog version (simple proportional feedback)
to control high-period orbits in an electronic circuit: the
diode resonator. Experimental success was also reported
for control of chaos in cardiac tissue [4], in an electro-
chemical cell [5], in the Belousov-Zhabotinsky reaction
[6], and in diode and NMR lasers [7,8]. The concept has
been extended, with results from simulations, to control
transient chaos [9], to stabilize chaotic scattering [10],
and to synchronize identical but distinct chaotic systems
[11].

The success of these experiments and simulations
notwithstanding, local linear control is not practical for
every physical chaotic system. A number of impor-
tant properties, which can dictate whether OGY control
or similar methods will work well, are discussed below.
These properties include the degree of instability of un-
stable orbits, the strength of governing nonlinearities, the
dimension of the chaotic attractor, the sensitivity of the
unstable orbits to changes in accessible parameters, and
the sensitivity of the control scheme to the precise value
of the feedback gain.

OCY control. The OGY approach is explained in
their original paper [1] and also in Refs. [12] and [13]. A
short description is given here for convenience. Chaotic
trajectories approach arbitrarily close to many unsta-
ble saddle-type periodic orbits [14], corresponding to un-

abilized via small perturbations of
achieved in both simulations and

asily or well, and the efFectiveness
properties of the chaotic behavior.
of local linear control strategies,
the linearized map.

stable fixed points of the associated surface of section,
or Poincare, map: x„+i ——P(x„). Three-dimensional
continuous systems with two-dimensional (2D) Poincare
maps will be considered here, though the stabilization
algorithms may, in principle, be generalized to N dimen-
sions. In a 2D map, unstable saddle points are associ-
ated with one unstable eigenvalue (P„~) 1) and its corre-
sponding eigenvector e„, as well as one stable eigenvalue

(~A, ~

( 1) and its eigenvector e, . In Fig. 1 a caricature is
shown of an unstable fixed point in a 2D nonlinear map,
along with its unstable and stable manifolds and their
tangent approximations. The local linear approximation
is represented completely by these tangent eigenvectors
and the corresponding eigenvalues of the Jacobian matrix
A. The idea behind OGY control is to nudge iterates of
the map onto the stable eigenvector.

If the Poincare map P is made explicitly dependent on
a parameter p, the map can be written as

x„+i ——P(x„,p).

Linearizing about the fixed point xy, letting Ic = x —xy,
and also lettiug the nominal value of p be p = 0, we
obtain the local approximation

g„~, = A$„+ hhp,

where A is the Jacobian matrix, A;~ = BP;/Bfs, and h is
the correction resulting &om the small perturbation bp:
h = t9P/Bp. Equation (2) is valid in some neighborhood
of g = 0; the size of the neighborhood depends on the
strength of the nonlinearity in P.

The unstable contravariant eigeuvector f„ is defined by
the conditions e„.f„=1 and e, .f„=0. The component
of the linearized map along f„(the "unstable compo-
nent") obeys the relation

$„"+,= A„(„"+h„8p,

where A„ is the unstable eigenvalue of A. The stable
component can be similarly isolated.

In the OGY approach, if the nth iterate of the map
is suKciently near the fixed point, the control parameter
is perturbed in proportion to the unstable component:
h'p„=nc. This leads to new local dynamics
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FIG. 1. Schematic diagram of a fixed point (0,0) in a nonlinear map.
The stable and unstable manifolds of the fixed point are shown, along
with the eigenvectors of the linearised system. The dotted circle indi-
cates the region where the linear approximation may be useful.
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whose new eigenvalues are s1 ——A„+a h„and s2 ——A, .
Noting that the stable eigenvalue is not affected by the

control, the ~~&table component is examined. The value
of si is determined by the choice of a. OGY suggest
that a be chosen so that the unstable component is elim-
inated in one iteration, i.e., by setting s1 equal to zero.
This is accomplished by choosing a = —A„/h„. The nth
parameter perturbation 6p„ is then

(—A„—1)/h„& a & (—A„+1)/h„. (6)

These stability boundaries are plotted in Fig. 2. The
width of the stability boundary is a good measure of the
robustness of the control to errors in the estimates of
eigenvalues, eigenvectors, and sensitivity to control.

Conaecutiee digemnce controL The OGY method re-
lies on accurate knowledge of the location of the map's
unstable fixed point. If the system changes, the fixed
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6p„= (—A„/f„h) [f„(»„—»g)],

where the vector dot products are shown explicitly.
In fact stabilization is attained for many possible val-

ues of u. As pointed out by Romeiras et al. [12], the
choice of o is an example of "pole placement, " a classi-
cal technique in control systems theory. The necessary
condition for stabilization is that gi~ & 1. This coridition
sets bounds on the gain o as a function of the en~table
eigenvalue A„:

point will change and the control strategy will become
invalid. The OGY method also relies on the chaotic mo-
tion itself to bring the trajectory close to the unstable
periodic orbit. Bielawski, Derozier, and Glorieux [7] pro-
posed a closely xelated control scheme that does not rely
on knowledge of the location of the fixed point and hence
can be used if the system evolves. By using the dHFer-

ences between consecutive iterates of the map, instead of
the differences between each iterate and the fixed point,
their approach can locate and stabilize unstable periodic
orbits both within and outside chaotic regimes

Setting the control perturbation proportional to the
difFerence between the n"stable components of consecu-
tive points on the Poincare section, 6p = a(x"„—z"„i),
a modified dynamical system is obtained. Writing yn =
x i, the unstable dy™~~~ ~~~ I~~~~r ~~~ghborhood
of the fixed point become

+n+1 (A„+a h„) —a h„x"„ + C. (7)

~t4
2n+2
tC

y2n+2

A„(A„+a h„) —A„a h„
(A„+ah„) —ah„

~t4
+ c.

y2n

(9)
Now the eigenvalues of the controlled sy™~r~ Si ——0
and sz ——Az + (1 —A„)a h„. Paradoxically, the applica-
tion of control only every other cycle allows (in theory)
stabilization for any value of A„. The stability bounds
on the feedback gain o are

(A'„—1)/[(A„—1) h„] & a & (A„'+ 1)/[(A„—1) h„]. (10)

These stability boundaries are shown in Fig. 3. Clearly,
while it is always possible to find an o which will stabi-
lize the system, as Q„~ becomes large the stability of the
system becomes very sensitive to the choice of gain.

Recursive CD control. Another method of expanding
the theoretical range of consecutive diHerence control is
to make each control perturbation explicitly dependent
on the previous perturbation. Bielawski, Derozier, and
Glorieux mention this possibility, though they do not
implement it; it was proposed in a diferent context by
Dressier and Nitsche [13].

Letting 6p = a(x" —x i) + P6p i, the modified
dynamics become

The eigenvalues of the controlled system are s1, s2
(A„+a h„)/2 6 g(A„+ a h„)z —4a h„/2. Investigation
of these eigenvalues reveals that this algorithm identi-
fied here as consecutive difference (CD) control, cannot
stabilize fixed points with A„& 1 or A„& —3. Bielawski,
Derozier, and Glorieux recognized this shortcoming and
proposed a further modification.

A/ternating CD control. If the control is not applied
every cycle, but every second cycle, the parameter per-
turbation can be written

6pz~+i = o.

Again setting y„=z„1,the modified dynamics become

FIG. 2. Optimal gain value a for OGY control (solid line) and the
maximum and minimum gains (dashed line) for stabilisation, plotted
versus the unstable eigenvalue A~ (P~) & 1).

h„
a(A„—1) nh„+P +c (11)
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FIG. 3. Optimum values (solid lines) and stability boundaries
(dashed lines) for the control gain a as a function of A„ in the al-
ternating version of consecutive difference control.

with the new eigenvalues sq, s2 ——(A„+ o. h„+ p)/2 +
g(A„+ a h„+P) 2 —4o. h„—4PA„/2.
The stability conditions are

[(1+P)(1+ A„)]/—2h„& a & (1 —P A„)/h„(12)
and

The stability boundaries for a and P as a function of A„
are shown in Fig. 4.

It might be inferred from the range of physical systems
which have been stabilized that the methods described
above will work quite well for any chaotic system. On
the other hand, the successful experimental examples of
control of chaos have several important characteristics in
common. First, all are truly examples of lou-dimensional
chaos. That is not to say that the physical systems are
inherently low-order systems (several are infinite-degree-
of-freedom systems), but that their chaotic dynamics lie
in a two-to-three-dimensional subspace. In fact, each of
the well-known controlled examples are strongly dissi-
pative, so that their Poincare sections are "quasi-uni-
dimensional" [2,3,5,7]. This one dimensionality allows
control to be based on measurements of only one state
variable and allows easy identification of fixed points and
unstable eigenvalues [15]. Second, the fixed points to be
stabilized were only weakly unstable (IA„l & 2), at least
in the references which supplied the unstable eigenvalues
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FIG. 4. Optimum values {solid lines) and stability boundaries of the
feedback gain n (dashed boundaries) and the recursive gain P (dotted
boundaries) in the recursive version of consecutive difFerence control.

[2,5,7]. Finally, the maps appeared only weakly nonlin-
ear near the chosen unstable fixed points [2,5], enabling
the approximation of local linearity to hold quite well in
a relatively large region.

Several properties of the basic dynamics, as well as the
experimental implementation, of nonlinear systems are
discussed below. These characteristics aff'ect the ability
of unstable periodic orbits to be stabilized by local linear
methods.

Strongly nonlinear dynamics. The stronger the non-
linearity of the dynamics near the fixed point, the smaller
the region in which the local linearization holds true (see
Fig. 1). The radius of the "linear region" in state space is
proportional to 1/~c2, where c2 is the coefficient of the
largest second-order nonlinear term in the Taylor series
expansion of the map. %hen c2 is large, the region where
the control law is valid may be very small. Small linear
regimes will also increase the diKculty of estimating a
correct local linear approximation. The error in a linear
fit of nonlinear data increases with the strength of the
nonlinearity and with the radius of the cluster of points
used to obtain the linear approximation. The difFiculty
of estimating a good linear approximation and the inac-
curacy inherent even in a perfect linearization both tend
to increase the time to achieve control and to decrease
the robustness of the control algorithm.

Strongly unstable dynamics. The size of the required
control perturbation in all the methods discussed above
is directly proportional to the magnitude of A„[see, for
example, Eq. (5)]:

(14)

In addition, the more unstable the dynamics, the more
quickly the map departs from the linear neighborhood of
the 6xed point:

r ~1/»IA

where 7 denotes the number of iterations to leave the
linear region. Large magnitudes of A„also magnify the
e8'ect of errors in the linear approximation (see below and
in [16]).

Effectiveness of controL parameter. The control pa-
rameter p must be accessible. It must be perturbed
quickly in comparison to the system dynamics. Oth-
erwise, a perturbation chosen for its efFect on a given
surface of section will act on a shifted section with quite
diff'erent local dynamics. The parameter must also have
a strong effect h on local dynamics, particularly along
the unstable manifold. The size of the required pertur-
bation is inversely proportional to the quantity h„= f -h
[see Eq. (5), for example]. If the unstable dynamics
are relatively insensitive to the control parameter, large
perturbations will be required to accomplish small local
changes.

Estimation error. The quantities x.f, f„, and h in
Eq. (5) (for example) must all be estimated from exper-
imental data in order to compute the feedback gain o..
(An exception is in fast systems, where the gain may be
varied in real time to find a value which "locks on" to
an orbit, as, for example, in Ref. [3].) Uncertainties in
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estimation may lead to inaccurate and inefFective calcu-
lated gains, especially if the magnitude of the unstable
eigenvalue is large.

Petrov, Peng, and Showalter showed the effect of errors
on the stabilization of a 1D map [16]. Their discussion
can be generalized to the N-dimensional algorithms as
long as only one eigenvalue is unstable. For example, in
OGY control, an error e in the estimate of the fixed point
(x&

——xy —e) will lead to stabilization of the point

(16)

ass~~ing other quantities are valid and the original lin-
earization holds. Large ]A„~ will place x& outside the
linear region unless the error e is small [16].

The permissible error in the control gain u is shown
directly by the width of the stability regions shown in
Figs. 2—4. Errors in estimating A„, f„, and h all con-
tribute to error in o.. In particular, errors in the magni-
tude and direction of both f„and h lead to an error e
in h„, which appears in the denoxninator of all the gain
equations. Letting the incorrect value h'„= h„(1+a) and
using 1/(1+ e) = 1 —e, the resulting error in the gain a
1S

(17)

where the magnitude of F(A„) is an increasing function
of ]A„~ [see Eqs. (6), (10), and (12)].

Time to achieve control. The characteristic time scale
of the original system is very important. A control
scheme that takes thousands or millions of cycles to lock
on is more practical in systems operating at 10 kHz than
1 Hz. The time to achieve control is otherwise controlled
by the dimension of the chaotic attractor D and the size
of the linear neighborhood surrounding the relevant fixed
point [12]. Suppose that a particular local linear approx-
imation holds true in a sphere of radius 1/10 relative to
the size of a three-dixnensional attractor. That neigh-
borhood will probably be visited about 100 times less

frequently than a linear neighborhood occupying 1/10 of
a one-dixnensional set.

Noise. The noise level in a system can also be thought
of as a radius of uncertainty in state space (Fig. 1). If
this radius is larger than the size of the region where
the local linear approximation remains accurate, then the
linear control schemes described above will not xnaintain
periodic behavior. A noise-related error e in the mea-
surement of the point /t (/t' = g + e) leads to an error
in the control applied during the next iteration. Substi-
tuting g'„ into Eq. (2), the expression

$„+~ ——A js„+h bp + n h (f„e)
is obtained, where the last term on the right-hand side
is due to measurement error. Large gains (resulting from
large ]A„]), thus tend to amplify the inaccuracy of mea-
surements. If g +~ falls outside the linear region, control
may be lost.

Robustness of control. If there is little margin for er-
ror in the choice of feedback gain for a given control
scheme, then the control will not be very robust to es-
timation errors or deviation from linear behavior. The
width of the stable regions in Figs. 2—4 re8ects the ro-
bustness of the control for a given value of the unstable
eigenvalue. In particular, the range of efFective gains for
the alternating CD control becomes very small as the
magnitude of A„ increases.

Time-delay coordinates. If only one state variable is
accessible for measurement and local dynaxnics are not
close to being one-dimensional, time-delay coordinates
may be used to describe observed data [17]. Dressier and
Nitsche [13] showed that using time-delay coordinates in
a control scheme introduces a complication however. The
Poincare map in delay coordinates explicitly depends not
only on the current iteration's parameter value p„, but
also on the parameter value during the previous cycle
p„q [13]. The linear approximation of the map then
takes the form g„+~ —Ag„+ hbp„+ gbp„q, where

g represents the correction due to a perturbation in the
previous cycle g = BP/c/p„q. The vector g is more
difficult to estimate than h since the parameter p must
be alternately perturbed and reset [13].

The control schexne devised by Ott, Grebogi, and
Yorke, and modified by subsequent authors, is a remark-
able application of nonlinear dynamical systems theory.
In practice, current versions will work better on systems
whose Poincare sections are nearly one-dimensional, with
weakly nonlinear and weakly unstable local dynamics.
Necessary properties of the physical experiment include
an accessible parameter that can be changed quickly and
which affects local dynamics strongly. In applying con-
trol, the effects of using time-delay coordinates xnay be
significant. Reducing experimental noise is crucial. A
control strategy that has as large a margin of error as
possible can be selected on the basis of linear stability
criteria. The range of gains that can stabilize a given
fixed point is a good measure of the robustness of the
control algorithm.
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