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A numerical method is developed for calculating the spectral density of states, eigenvalues, and eigen-
vectors of very large non-Hermitian matrices with real eigenvalues. We also present an eScient method
to calculate the dynamic correlation function of the system described by non-Hermitian matrices. The
e8ectiveness of the method is demonstrated by applying it to percolating classical Heisenberg antifer-
romagnets.
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I. INTRODUCTION

Eigenvalue analyses of very large matrices are impor-
tant in many fields of physics [1], so efficient numerical
algorithms, particularly suitable to advanced supercorn-
puters, have been developed. It is becoming common to
work with Hermitian matrices having a degree N of 10
or more. Among these, the forced oscillator method [2,3]
is powerful enough to accurately compute the spectral
densities of states, eigenvalues, and eigenvectors of very
large matrices. This method is based on the principle
that a linear mechanical system when driven by a period-
ic external force of frequency Q will respond with large
amplitudes in those eigenmodes close to this frequency.
One can treat, in general, eigenvalue problems of very
large N XN Hermitian matrices, by mapping them onto
those of lattice dynamics. The algorithm [2,3] has been
successfully applied to eigenvalue problems of large-scale
Herrnitittn (or symmetric) matrices. Examples are frac-
ton dynamics [4], photon localization [5], quantum-spin
systems [6], electronic structures of amorphous systems
[7], and 2J Ising spin glass [8].

It is highly desirable to extend the forced oscillator
method (FOM) to be applicable to large-scale non-
Hermitian matrices (with complex number elements).
The eigenvalue analyses for non-Hermitian matrices are
important in many areas of condensed matter physics
such as antiferromagnets [9,10], spin glasses [11,12], elec-
tronic structures [13], and the master equation in non-
equilibrium thermodynamics [14]. The standard method
for treating an eigenvalue problem of N XN non-
Hermitian matrices is the diagonalization techniques,
such as the QR method or the Arnoldi method [15]. [The
term QR method comes from the "QR decomposition" of
a given matrix A as A =QR, where Q and R represent a
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unitary matrix Q and a right (or upper) triangular matrix
R, respectively. ] These have, however, a serious problem
requiring a large amount of computer memory space,
which makes it difficult to treat an eigenvalue problem of
very large non-Hermitian matrices. Another difKiculty
arises due to the fact that, in general, eigenvalues of non-
Hermitian matrices are sensitive to small changes in ma-
trix elements [15]. This difficulty is due to the lack of
orthogonality among eigenvectors for non-Hermitian ma-
trices. From these mathematical difficulties, practical al-
gorithms have not yet been developed for the analysis of
large non-Hermitian matrices. The purpose of this paper
is to extend the FOM [2,3] to be applicable to an eigen-
value problem of very large non-Hermitian matrices with
real eigenvalues. We also present an efficient algorithm
to calculate the dynamic correlation function S(q, co).
The advantage of the algorithm is that it is not necessary
to perform the spatio-temporal Fourier transform of the
correlation function S(r, t). An application is made for
percolating classical Heisenberg antiferromagnets.

In Sec. II, we present general arguments on the FOM
[2,3] extended to non-Hermitian matrices. In Sec. III,
the algorithm for calculating the dynamic correlation
function, i.e., the dynamical structure factor S(q, co), is
given by illustrating classical Heisenberg antiferromag-
nets. Section IV presents calculated results obtained by
applying the present algorithm to percolating classical
Heisenberg antiferromagnets. Conclusions are given in
Sec. V.

II. FORCED OSCILLATOR METHOD
EXiaNDED

A. Spectral density of states

We focus our attention, in the following general argu-
ments, on an eigenvalue problem of a nonsymmetric ma-
trix I D „]with real number elements. The condition is
not essential for our algorithm. In fact, the extension is
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straightforward to the case of non-Hermitian Inatrices
with complex elements [16]. A nonsymmetric {as well as
non-Hermitian) matrix has two sets of eigenvectors called
right eigenvector

~
u (A, ) ) defined by [1,17]

a)„u (A, )= gD „u„(A,),
n

and left eigenvector (v(A, ) ~
given by

coiu (A, )= g v„(A, )D„ (2)

These eigenvectors belong to the same eigenvalue co&. We
can assume hereafter that all eigenvalues co& are positive
without loss of generality, because one can rewrite Eqs.
(1) and (2) as

(u(A, )~, and varies as -exp( —ipit).
The spectral density of states is calculated by the fol-

lowing procedure. The displacements x (t) and y (t)
are set to be zero at t =0, then the periodic "forces"
icos(Qt) are imposed on each site m in Eqs. (6) and (7).
Here I should be chosen as

F =Focos(P ), (10)

E(t)= ,' g x—(t)y (t)+ g gy (t)D' „x„(t)

where P is a random quantity taking a value within the
range 0 ~$ (2n., and Fo is a constant.

As a next step, we calculate the quantity E(t) defined
by

and

(c0i+c00)u (A, )= g (D „+5 „coo)u„(A,) (3)

=-,' g [Pi(t)gi(t)+piPi(t)Qi(t) j,
(c0i+cvo}v (A, )= g u„(A, )(D„+5 „a)0}, (4)

where an appropriate amount of coo should be added so
that the minimum value of coi+c00 is positive. Though
left (or right) eigenvectors do not form orthogonal sets
due to the nonsymmetricity of the matrix jD „j,
biorthogonality conditions are present between them
[1,17]. These are written as

4(T}=e
2

i(Q —p~)t

gF u (A)
' Q p

—i(Q+p&)t
e

i(Q+pi),

where the biorthogonality condition Eq. (Sb} is used. We
introduce the quantities gi(t) and gi(t) defined by

(t):Pi (t)+—litiPi (t), and gati(t) = Qi (t)—+i pi Qi (t)
After a time interval T, gi(t) becomes, using Eqs. (3), (6),
and (8),

and

g )u(A, ))(v(A, )(=I (Sa) e
i(Q —p&)T

~ QF~u (A)
i Q —pi

(12)

2

, x (t)= gD'—„x„(t),t'
n

(6)

y (t)= —g D„' y„(t),di'

(v(A, )~u(A, '))=5i i, (Sb}

where I is the unit matrix. The mapping of Eqs. (3) and
(4) onto the equations of vibrational motion is done by
[2»]

lpgT i(Q —p~) T

rii(T)= gF u (A, ) (13)

Utilizing these quantities gi(t) and gi(t), the right-hand
side of Eq. (11) is rewritten as —,'gigi (t)gi(t). Thus, one
has

where the second term in the square brackets of Eq. (12)
is neglected because the contribution from Q =pi is dom-
inant. In the same way, g&(t) is obtained as

where D'„ is defined as D'„=D „+5 „c00, and x (t)
and y (t) denote the displacements of the site rn Since.

~
u (A, ) ) forms a complete set of vectors [note that

~
u (A, ) )

does not form an orthogonal set, but they are linearly in-
dependent], the displacement x (t) can be decomposed
into a set of right eigenvectors

~
u(A. }) as

E(T}=—,
' g gF u (A, )

m

X QF„u„(A)
sin [ (pi —Q )T/2 j

(u~ —Q)'

The averaged value of E(T) over P becomes

(14)

x (t)= g Pi(t)u (A.), (8) Fo sin ((pi —Q)T/2j
E{T)

where P&(t) is the amplitude of the right eigenvector
~u(A)), and varies as -exp( —i@it) (p&= co&+coo) as —seen
from substituting Eq (8) into (.6). In the same way, the
displacement y (t) can be expanded by a set of left eigen-
vectors (u(A, )~ as

+2

4

X v A, u„A, cos cos
m n

sin {(pi—Q}T/2j
(1S)

y (t)= g Qi(t)u ( A. ),

where Qi{t) is the amplitude of the left eigenvector

where ( . ) denotes the random phase average and the
terms satisfying m =n remain in the summation for m
and n For sufficiently .large time T, the modes A, 's con-
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tributing to the sum in Eq. (15} are those belonging to
eigenfrequencies p& within the narrow range of p&=Q.
For very large systems, it is not necessary to average over
all possible ensembles [P ] explicitly. It suSces to
choose a single configuration of I P J. Provided that the
proper time interval T is used, Eq. (15) yields

m. TI'0
(E(T,Q)) = +5(pz —Q)=

aTNFO

8
2)(Q ), (16)

where 2)(Q) is the density of states for the mapped sys-
tem. The spectral density $(co) for the original system is
obtained as

The calculated spectral density 2)(co) should be normal-
ized unity by

I"2)(co)dco= 1 . (18)

The forced oscillator method enables us to calculate
the density of states with an arbitrary resolution of fre-
quency 5co by taking the proper time interval T. Let us
describe the criterion for the choice of the time T to con-
trol the resolution 5co. The frequency width of resonance
5p, for the mapped system should be chosen as
5@=~dp(co)/dco~5co, where 5co is the eigenvalue resolu-
tion required for the original system. Equation (15) indi-
cates that the frequency width 5p is inversely proportion-
al to the time T, as given by 5p =4m /T. Since
pe=co&+coo, the time interval T should be taken as

T=4m [/~ pd( c)o/dc~ o5c]o=8m+ co+coo/5coto gain the
required resolution 5co. In actual calculations, a small
time step v for time development must satisfy the condi-
tion p,„~& 2, where p,„ is the maximum frequency of
the mapped system. This means that a large coo requires a
small time step v. This makes the CPU time large be-
cause the CPU time is proportional to computational
steps (=T/r). In this point of view, the value of coo

should be chosen to perform efficient computations. In
addition, the resolution 5co of the original system must
satisfy the condition 5co))hco [=I/N2)(co)], where b,co

is the level spacing between adjacent eigenvalues [co&] at
the eigenvalue co and 2)(co) is the spectral density of states
per site. The condition 5~ (&m is also important to cal-

l

2)(co)= 2)(p)= (E(T,p)) .
n TNFO+co+coo

(17)

culate accurately the spectral density of states at very
small eigenvalues.

B. Kigenvalues and their eigenveetors

By multiplying the left eigenvector ( v(A, ')
~

and taking the
sum for m in Eq. (19), one obtains the equation for the
amplitude P&(t), by using Eq. (Sb},

d Pz(t)
+@2&P&(t)= g [F u (A, )jcos(Qt) .

dt
(20)

Equation (20) is solved with the initial condition
Pz(t =0)=0 as

P&(t)= . gF u (A, ) .

2 sin [(Q+p&)t /2] sin[(Q —p&)t l2]
X (21)

and the amplitude of x (t) after the time interval T
yields, using Eq. (8),

x (T)= g QF„v„(A,) .
n

2 sin[(Q+ pz)T/2] sin[(Q —pz)T/2]
0 —

p&

Xu~(A, ) . (22)

For sufficiently large time T, only a few eigenmodes with
eigenfrequencies pz close to 0 have large amplitudes.
One can accelerate the calculation by replacing the am-
plitude of the periodic force F at each site m by

F =x (T) .

Initial amplitude x (t =0) at the site m is set to be zero
again, and we follow the time developments of Eq. (6)
with the external force F cos(Qt). After p iterations of
this procedure, the amplitude x ( T) becomes

Let us describe the procedure to compute right and left
eigenvectors. For right eigenvectors ~u(A, ) ), the equation
of motion with the external force F cos(Qt) is written as,
using Eqs. (6}and (8),

d P), (t}
+p~&P&(t) u (A, )=F cos(Qt) .

dt

2 sin [(Q+pz) T/2] sin I (Q —pz) T/2]
u (A).0 —p~

(24)

For sufficiently large p, only a single eigenmode
(pq =Q) survives such as

1

x'~'( T}=Cu (A,
& ), (25)

ct =—gD'„b„,

where

(26)

(27)
where C is a constant. The eigenvalue p& for the calcu-

]
lated right eigenvector ~u(A, , )) is obtained as follows.
We define the quantities a, b, and 5 given by [3]

We introduce the quantity 5 de5ned by

5 =—a —pb (28)
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$2—
2a

(29)

The quantity p should be chosen as the deviation 5 to be
minimized. By differentiating Eq. (29) with respect to P,
the deviation 5 takes the minimum value

where p, is a quantity to be defined later. We see from
Eqs. (26)—(28) that if the displacement x'~'(T) is equal to
the eigenvector u (A, , ) and p=pz, 5 vanishes for any

m. The normalized sum of the deviation 5, defined
below, expresses the degree of convergence

2
m

g J„S .S„
(mn)

(32)

where S denotes the spin vector at the site m, and J „
the exchange coupling between nearest-neighbor sites m
and n. The linearized equation of motion for spin waves
is written, in units of S/%= 1,

i S—+(t)=o„gJ „[S+(t)+S+(t)],8 +
dt

(33)

cation of the algorithm to classical Heisenberg antifer-
romag nets.

The Hamiltonian for Heisenberg antiferromagnets is
given by

2 =1—
go gb2
m m

(30)

where S (t} is the spin deviation at the site m, and o is
a variable taking +1 at the site m belonging to the up-
spin sublattice and —1 for the down sublattice. The
equation of motion is transformed into a matrix form

when
corfu (A, )= gD „u„(A,), (34)

a b

(31}

where D „ is the matrix element defined by D „=o J „
for mAn, D =cr g„J „,and u (A, } is the element of
the eigenvector A,.

The dynamic structure factor for antiferromagnetic
spin waves is defined by [18-20]

If the quantity 5 is very small, p becomes quite close to
the eigenfrequency of the mapped system. Provided that
the calculated x'~'(T) converges to the right eigenvector
~u(A, )), the deviation 5 approaches to zero One .can
judge the convergence of the eigenvector from the magni-
tude of 5. In the same way, one can calculate the left
eigenvector (v(A, )~ and its eigenvalue. The eigenvalue co&

of the original system is obtained by the relation
coz=p —cov. For the criterion of the time interval T for
obtaining eigenvalues and eigenvectors, see Appendix A.

IH. ALGORITHM CALCULATE'rNG

DYNAIVlIC CORRELATION FUNCTION

This section describes an efBcient method to calculate
the dynamic correlation function of the system described
by a nonsymmetric matrix [D „]. This algorithm en-
ables us to treat very large systems compared with the
direct diagonalization methods [15], without performing
the Fourier transform of the spatio-temporal correlation
function S(r, t) of the system. The following is an appli-

I

S(q, ~v) =(n +1)y"(q,co)

=(n+1}m+5(co—coq} ge o v (A, }
m

X pe "u„(A,) (35)

where (n +1) is the Bose factor expressed by
1/(1 —e ~), g"(q, co) is the imaginary part of general-
ized susceptibility, R is the positional vector of the site
m, and v (A, } is the element of left eigenvector of the ma-
trix ID „] (see Appendix B}. Let us define the symbols
u' (A, }—:o u (A, ) and v' (A, ) =o v (A, ) in Eq. (35).
From the properties of matrix [D „jdefined in Eq. (34),
u (A, ) and v' (A, ) are related with v' (A, }=A&u (A, ),
where A z is a constant depending on the mode A, (see Ap-
pendix C). From this relation, one finds that the product

] [ ] in Eq. (35) becomes a real quantity. Equa-
tion (35) is then rewritten as

S(q, co) =(n +1)n g 5(co—
co&) g cos(q R )v' (A, ) g cos(q.R„)u„(A,)

+ g sin(q R )v' (A, ) g sin(q R„)u„(A,} (36)

We consider two eigenvalue equations mapped to

@au (A, }= g D' „u„(A,}

and

(37)

p~v' (A, )= g (cr~D„' o„)v„'(A,), (38)
n

where D'„and p& are defined by D „and co& as de-
scribed in Sec. II, and Eq. (38) is derived from Eq. (4)
The corresponding equations of motion are
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and

d2
, x (t)= —gD'„x„(t)

dt2

d2
, z (t)= —g(tr D„' o „)z„(t) .

dt2

(39)

(40)

In order to calculate Eq. (36), we put the external force
F =Fucos(q R ) in Eq. (48). After sufhcient time inter-
val T, H ( T, Q ) becomes

m. TFOH'(T, Q}—: +5(pi —Q) ~ gu'(A, )cos(q.R ) '

By expanding the displacements x (t) and z (t) by
eigenvectors, one has

X g u„(A, )cos(q R„),.

and

x (t)—= QP, (t)u (k)

z (t)= QR—&(t)u' (I,),

(41)

(42)

The time interval T should be chosen by the same way as
the calculation of the spectral density of states described
in Sec. II A. By setting external force F =Fusin(q R ),
Eq. (48) yields

m TFO
Hq(T, Q)—= +5(pi —Q) g u' (A, )sin(q R )

m

where Pi (t) and Ri (t}are the amplitudes of the mode 1,,
and Eq. (41) is the same as Eq. (8). From Eqs. (40) and
(42), Ri(t) varies as -exp( i pit } as—well as the case for
Pi(t) Equa. tions for Pi(t) and Ri(t) with the external
force a F cos(Qt) become

X g u„(A, )sin(q R„} . (50)

From Eqs. (49), (50), and (36), the dynamic structure fac-
tor S(q, to) is given by

and

d Pi(t)
+pizP&(t)= gE u' (A, ) cos(Qt)

dt2
(43) S(q, tu) =(n +1) [H' [Tp(co)]dc) TFO

+Hq[T, p(to)]] .

d'Ri(t)
+pi2R&(t)= gF u (A, ) icos(Qt) . (44)

dt2

As a next step, we introduce the quantity H(t) defined
by

H(t)—=—,'go' x (t)i (t)+ —,'+go z (t)D'„x„(t) .

Using Eqs. (37), (41), (42), and the biorthogonality condi-
tion Eq. (5b), this becomes

For actual calculations, one can simplify Eqs. (37)-(51)
using the following properties of the eigenvectors

~
u (A, ) )

and ( u(A, )
~
of antiferromagnetic spin waves.

From Eqs. (43) and (44), the formal solutions of x (t)
and z (t) with the initial conditions x (t =0)
=z (t =0)=0arewrittenas

x (t)= g g F„u„'(&)
n

2 sin((Q+pi )T/2]sin[(Q —pi)T/2]
XH(t)=-,' Q IPi(t)R~(t)+piP, (t)Ri(t)] . (45)

Xu (A), (52)
By defining gi(t) =Pi (t)+ip&P&(t) and gi(t)
=R&(t)+iy &R &(t), Eq. (45} is expressed by the neat form
H(t)= ,'gi„gz(t)gt„—(t) As in th.e case of Eqs. (12) and
(13), gi(t) and gi(t) become

i@at i(Q —p.&)t

gi(t)= gF u' (A, ) . (46)
l Q pi

and

and

z (t)= g ~ g E„u„(A,) .

n

2 sinI (Q+pi )T/2] sin[(Q —pi )T/2]

lPgt i(Q —p~)t

gi(t)= QE~u (A}
t Q —pi

Substituting Eqs. (46) and (47) into Eq. (45), one has

H(t, Q}=—,
' g gF u' (A) QF„u„(A)

sin I (pi —Q)t/2]
X

(47)

(48)

Xu' (A) . (53)

Equations (52) and (53) lead to x (t)=z (t) from the re-
lations u~(A, )= Aiu (A. ) and u (A, )= Aiu' (A, ). Thus, it
is sufhcient to calculate only one part of Eqs. (39) and (40)
with the external force a E cos(Qt) The wave vect.ors
q used in Eqs. (49) and (50) difFer from each other by m/a
[for example, (m. /a, ~/a ) for d =2], where a is a lattice
constant. This is due to the difference between the mag-
netic Brillouin zone and the nuclear Brillouin zone for
antiferromagnets [21]. This algorithm enables us to cal-
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culate the co dependence of S(q, ro} for fixed q as well as
the wave number dependence for Sxed co by the same
CPU time as that required for the density of states.

It is straightforward to extend this algorithm to other
systems. For the dynamic structure factor of vibrational
systems, one can define the formula [18,22]

becomes

g F;+p; (ll, )u;QA, )
i a @+a)

Fv —icos (P, )[v,. &(A, )u; &(A, )

S(q,a))= +5(a) c—og) g [q.u (A)je
N m

+v, s(A, )u; t(A, ) (56)

(54)

where u (A, ) is the atomic displacement of the vibration-
al eigenmode A, at the site m. Using this formula, one can
calculate the co and q dependence of S(q, co) by the same
procedure described in Eqs. (37)-(51).

We have described in this section the efficient method
to calculate the dynamic structure factor for the system
described by large-scale non-Hermitian matrix. This
method enables us to calculate directly the dynamic
structure factor without making the spatio-temporal
Fourier transform of the correlation function.

IV. APPLICATION TO PERCOLATING
HEISENBERG Abl'I IFERROMAGNETS

There is a growing interest in dynamic properties of
spin-wave excitations on percolating Heisenberg antifer-
romagnets (antiferromagnetic fractons), because they
show peculiar properties originating from geometrical
disorder and self-similarity [23,24]. In a previous work,
we have calculated the density of states (DOS) of per-
colating antiferromagnets [25], using the equation of
motion method [21]. We have conjectured that the spec-

8 —1
tral dimension Z„defined by the DOS, 2)(co)-co ', is
equal to unity for any Euclidean dimension d, and antifer-
romagnetic fractons belong to a different universality
class from that of vibrational or ferromagnetic fractons
(Z= —', ) [26,27].

Let us show that our algorithm mentioned above is
quite efficient compared with the equation of motion
method. We apply the external force F cos(Qt) to the
system. The amplitude F is given by F; =a+vcos(P; },
where i denotes a unit cell and a the sublattice index, P;
is chosen as a random quantity within the range [0,2n ].
Note that this form of the external force is different from
Eq. (10). The product [

.
j [ j in Eq. (14) becomes

The value in the curly brackets of Eq. (56) vanishes using
the relation between u„(A, ) and v,'(A, )=o „v„(A,) described
in Appendix C. The averaged value of Eq. (55) yields

. X)" v (I, ) . . Qp„u„() )~ ~ ~

m n
v J

= F XcX cos (p, )v, ()) (v)u))vi i
i a=7, l

p2

2
(57)

In this way the same result as Eq. (15) is obtained. The
following is the reason why the external force is chosen as
F, =o+.vcos(P; ). If we take F, given by Eq. (10), the
left-hand side of Eq. (57) becomes

Fm Um

m n
u v I

=As X(c s (bio; s)l s(ku)l)cos (@v—i(us() )I l) .
i

(58)

cos i Qi f Qi

The summand in the right-hand side of Eq. (58) includes
both positive and negative terms, and this makes the con-
vergence of the random phase average worse. When ap-
plying the forced oscillator method to the system de-
scribed by a Hermitian matrix, this does not occur, be-
cause the corresponding summand to that in Eq. (58) has
only positive terms. In the case of F; =cr+vcos(P;), the
random phase average is given by, from Eq. (57),

~ ~ ~. xF v (A, ) QF„u„().) .
)m n

I v

g F v (A, ) g F„u„(A,)

=ggF; v; (A. )u; (lL, )

+ gg g F~ev; (A, )u;p(A, )
i a P(Aa)

+ g g g gF;+g, (A, )ujiJ(A, ),
i j(xi) a P

(55)

where rn =ia and n =jP. In Eq. (55), the third term van-
ishes by random phase averaging, and the second term

(59)

For antiferromagnetic spin waves, spin deviations at one
sublattice have larger amplitudes than those on the other
sublattice [28]. From this, the sign of
[ ~u;t(A, )~

—)u;~(l(, )) j tends to be definite, and this makes
the convergence of the random phase average in Eq. (59)
better. This choice of I' makes the actual calculation
quite efficient.

Now let us check the efficiency of the algorithm by cal-
culating the DOS of d =2 antiferromagnetic spin waves
excited on a regular system. The matrix [D „j defined
in Sec. III has positive and negative eigenvalues mz, and
the distribution of co& is known to be symmetric around
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F0=0 [20]. In the following numerical calculations, we
only consider the range of positive ~, and the deSnition
of the density of states 2)(ro) ddfers by a factor of 2 be-
cause the normalization condition [Eq. .(18)] should be
changed. The SHed circles in Fig. 1 show the numerical
results calculated for a 840X840 square lattice with
periodic boundary conditions. The solid line in Fig. 1 is
the exact DOS for d =2 antiferromagnetic magnons. We
see that the calculated DOS is proportional to ro in the
low frequency regime, and agrees well with the exact
solution.

We have calculated, by applying the present method,
the DOS for d =2,3 percolating classical Heisenberg anti-
ferromagnets. The exchange coupling J „ in Eq. (32)
takes the value of unity when site m and n are connected,
and J „=0otherwise. The calculated DOS for a d =2
percolating antiferromagnet at p, (=0.50) is shown in
Fig. 2 by filled squares. The bond-percolating (BP) net-
work is formed on a 1100X1100 square lattice with
periodic boundary conditions. This network has 657426
spins. Least squares Stting for Slled squares in Fig. 2
leads to Z, =0.99%0.04. The DOS for d =3 percolating
antiferromagnets at p, ( =0.25) are shown by filled trian-
gles in Fig. 2. The BP networks of three realizations are
formed on 100X100X100 cubic lattices with periodic
boundary conditions, and the largest network has 114303
spins. The value of the spectral dimension calculated by
least squares fitting for Fig. 2 is Z, =0.98+0.04. These
values agree well with our previous conjecture, Z, =1 for
any Euclidean dimension [25], for which the equation of
motion method was employed. Our numerical method is
more accurate than the equation of motion method, espe-
cially in the lower frequency regime.

We have calculated an antiferromagnetic fracton eigen-
mode by the method described in Sec. II B. This eigen-
mode is calculated for d =2 BP antiferromagnet at the
percolation threshold (p, ) formed on a 100X100 square
lattice, and the number of spins is 6885. Figure 3 shows
the eigenmode belonging to the eigenvalue
co=0.049 341 266 562. The magnitude of spin deviation

010

10

~gS ~ E~+ ~
~ ~~ ~ ~ ~ ~&

10
-2

d=3 (100x100x100)

~ d=2 (1100x1100)

10
-3

I I

10 10 10
Frequency [ru]

10

FIG. 2. The density of states of antiferromagnetic fractons
for d =2,3 BP networks at the percolation threshold p, . Filled
squares indicate calculated results for d=2. Filled triangles
show the results for d =3.

S~ on each spin is shown by arrows in Fig. 3. One sees
that the fracton is strongly localized. The deviation 5
defined in Eq. (30) takes a value 5=1.0X10, suggest-
ing that the eigenmode is very pure, as described in Sec.
II B.

Let us show the results for S(q, co) calculated by the
numerical method described in Sec. III. Uemura and
Birgeneau [29] have performed inelastic neutron scatter-
ing experiments on Mn„Zn, „F2. They have observed
the crossover between the sharp spin-wave peak at small

2.0

840x840

M
C &.0—
Q

0.0
0.0 1.0 2.0 3.0

Frequency [ru]

4.0 5.0

FIG. 1. The density of states of spin waves for a regular
square lattice per one site. The solid line shows the exact solu-
tion. Filled circles are calculated results for a 840X 840 square
lattice.

FIG. 3. Antiferromagnetic fracton eigenmode excited on
1=2 Bp network formed on a 100X100 square lattice. The
eigenfrequency is ~=0.049341266562. Arrows for very small
magnitude are omitted in this Sgure.
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S(q,tn) (arb. units)

120--

80 200x200

p=0.58

0.2 0.4 := 0)
q=0.13

0.20
0.26

0.33
0.39

FIG. 4. The co dependence of S(q, co) for d =2 BP networks
at p =0.58 formed on 200X 200 square lattice. The results were
obtained by averaging over six realizations of BP networks.

space of the order of N for large sparse matrices, (ii) it is
very suitable to parallel and vector supercomputers, (iii)
the algorithm is simple and efficient compared with other
conventional techniques, . (iv) it is possible to calculate the
spectral density of states within an arbitrary range of ei-
genvalues and with a given resolution, and (v) one can
calculate quite accurately the specific eigenvalue and its
eigenvector, and judge the accuracy.

We have described an efficient numerical method to
calculate the dynamic correlation function for the sys-
tems described by very large non-Hermitian matrices.
This method enables us to calculate directly without
making the spatiotemporal Fourier transform of the
correlation functions S (r, t ).

We have demonstrated the efficiency of the FOM by
calculating the DOS, eigenvectors, and S(q, co) for per-
colating classical Heisenberg antiferromagnets. We hope
that the present work is useful to study dynamical sys-
tems described by very large non-Hermitian matrices,
and also stimulates experimental researches on fracton
dynamics of percolating antiferromagnets.
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wave vectors and the broad fracton response at large
wave vectors, and a double-peak feature at the crossover
which refiects magnon and fracton components. Chen
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magnetic zone center. These results indicate, for small
wave vectors (q (g '), the appearance of sharp asym-
metric peaks at low energies with tails extending towards
higher energies. These sharp asymmetric line shapes are
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netic fractons.

V. CONCLUSIONS

We have extended the forced oscillator method to be
applicable to eigenvalue problems for very large nonsym-
metric (or non-Hermitian) matrices. This method has the
following advantages: (i) it requires computer memory
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APPENDIX A

$&2—
+5 5

ga a
(Al)

where quantities a and 5 are defined in Eqs. (26) and
(28). i%~ and 8 are defined by 0' =g„D„' b„and—
8 =it pb, respectively—, where b =y'~'(T) is the
displacement y (t) introduced in Eq. (9) after the p itera-
tion. Note that 5' is different from 5 defined by Eq. (29).
Equation (Al} is rewritten as 5' =(I 4

—2p, I z

+P I o)/I'4, where I o=g b b, I ~=ga b—

This appendix provides the criterion for the proper
time interval T for obtaining eigenvalues and eigenvec-
tors. In principle, large T makes the frequency width of
resonance 5' small, but the required CPU time becomes
large at the same time to be proportional to p X T, where
p is the number of iterations introduced in Eq. (24). In
Ref. [3], the optimization conditions (the choice of T and
p} are given, in addition to the method to judge the mode
mixing ratio for the eigenvalue problem of Hermitian ma-
trices. We present here similar formulas to Eqs. (15)—(27)
in Ref. [3] for non-Hermitian matrices. These are much
more complicated due to the absence of orthonormality
condition among the eigenvectors.

Let us introduce the deviation 5' defined by
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and I 4
—=g a ct~, respectively. One can show

I „=+~2P&( T)Q2 ( T), corresponding to the formula Eq.
(20) in Ref. [3]. Under the assumption that the displace-
ment x~~'(T} [and y't'(T)] consists primarily of two
modes (I,= 1,2) after p iterations, one finds

1uiP1 Qi+w2P2Q2

P1 Q 1 +P2Q2

and

as in the case of Eqs. (18)-(22) in Ref. [3]. Provided that
level spacing ~@=I@i p2I «pi

(Q, »Q2), the quantity 5' becomes

' 1/2
2b,P P2Q2

P P1Qi

P1P2Q1Q2(PI P2)

(PlQ1+P2Q2)(P1P1Q1+P 2 2Q2 }
(A3)

Equation (A4) corresponds to Eq. (23) in Ref. [3]. Equa-
tion (A4) leads to, using Eq. (21) and the formula for
Q&(t),

h(Q, P2; T)
log5'=p ln +ln

h Q, i41,
' T p

g F U (A,2), g F„u„(A,2) .

gF U (A, , ) QF„u„(A,, )

1/2

where

h (Q,}uz, T)=2sinI(Q+pz)T/2]
i S+—(t)= gD „S„+(t) cT h+—(t),~ a +

c}t
(B1)

Xsin[(Q —pz)T/2] /(Q2 —p~z) .

The second term of the right-hand side of Eq. (A5) is in-
dependent of the time interval T. The relation between
the required values ofp and T for fixed 5'=50, is given by

1/2 g 6 „(co)S„+(co)= —h+(co), (82)

where h+(t)=h" (t)+ih1'(t) is the transverse magnetic
field applied at the site m.
Introducing the temporal Fourier transforms S+(co) and

h+(co), Eq. (Bl) is rewritten as

P5o
p =ln

gF v (A, , ) QF„u„(A,, ) .

g F U (A2) g F„u„(A2)

where 6 „(co}—:a ~(5~ „co D„). By d—efining the two-
point susceptibility y „(co}—=S+(co)/h„+(co) and its spa-
tial Fourier transform y(q, co ) [20], one has
y „(co)= —IG(co) '] „and

h(Q, P2; T)
h(Q, p, ,;T)

(A6)
y(q, co)=—gee "y „(co)

m n

= —gee t«co) 'J „e (83)
Equation (A6) indicates that the time interval T should
be taken to satisfy ~sinI(Q —p, )T/2] ~

=1 [and
)sinI(Q —p2)T/2] ~

=0] in order to make the value of p
small. One can choose the magnitude of 0—

IM, to be the
same order as the level spacing hp, and the time interval
T as T-m/hp from this condition.

By introducing the quantity C& defined by

e
"" = y C,u~(X),

one has

APPENDIX B

Proof of Eq. (35): Equations of motion for antiferro-
magnetic spin waves are written as

Cz= QU' (}1,)e

Using this, Eq. (B3}is calculated as

X(q co)= —Ere [«co) '] .e "= XC2. X' X I«co)
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Here the relation G(cv)~u(A, ) }=(cv —co&)~u'(A, ) } is used.
The dynamic structure factor S(q, co) is given as
S(q, co) =(n +1)y"(q,cv), where x"(q ~)
=lims +zlm[g(q, cv+i5}]. Then, one has

y"(q, cv) =m g 5(cv —co~) g e "v' (A, )
A, m

U=—(lu(&)) &, ~u(&, ) ), . . . ),
and, from Eq. (5),

X g e "u„(JL.) (B4)

APPENDIX C

Proof of u' (A, ) = A&u (A. ): Eq. (34) yields

Since crDe =D from the definitions of D and
(cr )~„=5 „cr,Eq. (C2) becomes

(crDcr)(U ') =(U ') A

DU=UA, (C 1)

Hence,

D(U 'cr) =(U 'cr) A (C3)

and the corresponding equation for left eigenvectors leads
to

~u'(A, ) }= A ~u(A, ) }, (C4)

where (U 'cr) =(~v'(A, &)}, u'(A2) },. . . }. From Eqs.
(Cl) and (C3), one has

(U ')D=A(U ') .

Here we have defined

(C2) where A& is a constant depending on A, . The constant
A& can be determined by Eq. (Sb}, using the condition
g„u„(A,)v„(A,)= A~+„cr„tu„(A,))~= 1.
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