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Formation of spatial inhomogeneities in the electric field intensity and charge density arising due to an

interaction of diffusion or migration with chemical reaction in an ionic version of the Brusselator are

presented. The model involving spatial variations of electric field is compared to a conventional model

assuming spatially homogeneous electric field. Predictions of the effects of electric field on spatial pat-
terns differ. The existence of the field induced transitions between stationary and oscillatory states in a
one-dimensional system and between striped and hexagonal patterns in a two-dimensional system is

demonstrated.

PACS number(s): 41.20.—q

I. INTRODUCI'ION k,
A~X++C

The interaction of nonlinear chemical reactions with

transport of components in reaction media plays a crucial
role in formation of spatiotemporal and stationary pat-
terns and has been proposed as a basis of morphogenesis
(Turing [1],Meinhardt [2]}. Electric field efFects on prop-
agation of chemical waves have been studied both experi-
mentally and theoretically (Ortoleva et al. [3,4],
SevPikova et al. [5,6], Schiitze, Steinbock, and Miiller [7]}
and effects on enzymatic reactions have been also dis-

cussed (Snita and Marek [8]). Theoretical studies have

been performed (Kondepudi and Prigogine [9], Al-

mirantis and Kaufmann [10]) with the ionic Brusselator
placed in one-dimensional (1D} reaction-difFusion medi-

um with homogeneous electrical field. Local inhomo-

geneities in the electrical field intensity and electric
charge density due to different mobilities of reacting ions
were neglected. This approximation is valid for reaction
media with the high ionic strength, high ionic mobilities,
and slow chemical reactions. In other cases, the effects of
electrical Seld inhomogeneities generated due to the mu-

tual interaction of the electrically charged ions present in
reaction-diffusion media must be incorporated into the
mathematical model. Most chemical and biological reac-
tion systems involve ionic compounds and experiments
have shown that the cruxes of ionic components play an
important role in signal propagation (Lechleiter and
Clapham [11,12]) and in morphogenesis (Creton et al.
[13]}.

Here we use a mathematical model enabling us to com-
pute local variations of the electric field intensity and
charge density in the ionic reaction-diffusion systems
where the effects of different ionic mobilities cannot be
neglected.

II. THE MODEL

We used a modiSed Brusselator (cf. Nicolis and Prigo-
gine [14] for the original scheme):

k2

8+X+~Y++a,
k3

2X++ Y+ —+3X+,
k4 g+

X+ X

(2)

(4)

BY 2

Bf
= —V ( DVY DY—VP)+BX——X Y,Y Y

BC = —V ( DVC+D C—VP)+ A —X (8)

where A =c„/Qk4/k, k„B=cn/(k4/k2), C =cr/
Qk4/k3, X =cx I+k4/k3, and Y =c„/Qk4/ki
denote the dimensionless concentrations of respective
components ( A and B are supposed to be constants), c;
are molar concentrations. Dimensionless dilusion
coefficients are D, =2),. /(k4L ),[i—:C,X, Y], 2), are di-

mensional diFusivities, L is characteristic length of the
system. Dimensionless electric potential is P =y/
(RT/F), where y is dimensional electric potential and I'

is Faraday constant. Dimensionless time is ~=k4t. The
fluxes of components X+, Y+, and C in Eqs. (6)—(8)
are expressed by means of the Nernst-Planck relation
(Newman [15]).

The electric Seld intensity (the electric potential gra-
dient} —VP is commonly assumed to be constant with

g+ k~

X +C ~E, (5)

+
where X is an unstable intermediate combining with C
in the last reaction which is assumed to be very fast. The
mass-balance equations for the components X+, Y+, and
C are

BX = —V ( DXVX Dx—XVP)+ A——(B+1)X+XY,2
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respect to position. This assumption implies the electric
conductivity to be constant throughout the system, there-
fore ionic mobility and ionic strength of the medium
must be high. In other cases, however, we must consider
variations of —VP along the spatial coordinate. To
derive an explicit expression for —VP we have considered
that the dimensionless electric charge density is

I=Jx+Jz Jc ~ (10)

where Jx, Jz, and J& are the dimensionless fluxes of
respective components. The charge balance equation is

= —7 I.
7

When the local electroneutrality is assumed, then the
electric current density is constant in a 1D system and

Q=X+Y —C

and the dimensionless electric current density is given by

the pattern if compared to the conventional nonionic
Brusselator [cf. Fig. 1(a)]. Local inhomogeneities in the
electric field intensity arise even in the absence of an
externally applied electric field (or current) reflecting
different mobilities of the ionic components [cf. Fig. 1(b)].
Weak electric current shifts the profile of the electrical
field intensity to lower mean value. Figure 1(b) displays
also a fine structure of the charge density distribution in
the absence of an external electric field.

The externally applied electric field causes not only
spatial distortion of the steady pattern developed in its
absence, but also a formation of coexistent regions with
qualitatively difFerent spatiotemporal patterns within the
system (cf. Fig. 2}: The temporal oscillations arise with
an amplitude varying markedly along the system axis.
The amplitude (concentration of X) at the left boundary

4 ~ ~

Q=O=C=X+Y, V.I=0 . (12}
X

The electroneutrality condition (12) is a good approxima-
tion in macroscopic systems ~here typical dimension of a
generated pattern is much larger than the Debye length
of the reaction-difFusion medium. Then Eq. (12) can be
used for evaluation of C with negligible inaccuracy. Typ-
ical dimensions of patterns observed in experiments
([5,6,16-18])are within the range of hundreds of microm-
eters and are thus much larger than the Debye length
(10 m). When inserting into Eq. (10) for component
fluxes from the Nernst-Planck equation [cf. Eqs. (6)—(8)]
and using C =X+Y [cf. Eq. (12)] the electric field gra-
dient —VP can be expressed as

3 a ~

~ ~

0
0.0 0.5 1.0

(a)

1.5

I+(D» Dc )VX+(D—r Dc )VY-—VP=
(Dx+Dc)X+(Dr+Dc) Y

(13)

The charge density Q is related to the electric field in-
tensity and/or electric potential according to the Gauss
law of electrostatics (Newman [15])

V P=VE= — Q, E—:—VQ,
lD

(14)

where L is typical (macroscopic} dimension of the system
and lD is the Debye length. The fraction L/l~ takes—
very large values. Therefore, the spatial gradient of E is
of significant magnitude despite the negligible value of Q
[cf. Eq. (12)]. This fact is a contradiction to the common-
ly adopted assumption of spatially homogeneous electric
field.

In the following text, we will call the model based on
the assumption of homogeneous electric field (constant E)
as the constant electric field model (CEFM) and the mod-
el using Eq. (13) for evaluation of local electric field inten-
sity as the variable electric field model (VEFM).

HI. RESULTS AND DISCUSSION

The ionic character of the intermediates X+ and F+
leads to a decrease in the amplitude and wave number of
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FIG. 1. (a) Asymmetric pro61es of X for the conventional
(line A) and ionic (line B) Brusselator without an externally ap-
plied electrica1 current; (b) local electrical Seld intensity and
charge density pro6les for the ionic Brusselator (VEFM model).
The charge density was computed according to Eq. (14) and is
scaled by the ratio of a characteristic length of the system and
the Debye length. Parameters are L =1.4, A =2.0, B =5.2,
DX=1.6X10,D&=6.0X10, and D&=1.0. Boundary con-
ditions are Xp=XL =2.0 and Yp= YL =2.6.
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(dimensionless spatial coordinate Z =0) is of the order
10 —10 . The amplitude of temporal oscjllatjons is
several times higher at the right boundary (Z = 1.4) due
to the suppressed bu8'ering capacity of the counterion
C at the vicinity of the cathode. The width of the low
amplitude oscillatory region increases with the increasing
value of the current passing through the system [cf. Figs.
2(a), 2(b)]. The wavelike pattern is generated near the
right boundary and moves to the left where it is annihi-
lated by an interaction with the stable pattern. The am-
plitude of the waves is modulated by the amplitude of

temporal oscillations. The frequency of temporal oscilla-
tions increases sharply with the current intensity [cf.
Figs. 2(a), 2(b)]. The spatiotemporal pattern of the elec-
tric Seld intensity [see Fig. 2(c)] exhibits similar behavior
as the X pattern in Fig. 2(b). The value of E reaches its
maximum at the left boundary due to low ionic strength
and, therefore, low electric conductivity of the medium
[cf. Fig. 3(a)].

The CEFM model yields only the steady pattern (not
shown in the figure) at the value of electric Seld intensity
E =10.67 [the time and spatial average of E (z, t) in Fig.
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FIG. 2. Density plots of spatiotemporal patterns of X and F. for the ionic Brusselator (VEFM xnodel). (a) Plot of X at I= +20.0.
(b) Plot of X at I=+50.0. {c)Plot at E at I=+50.0. Parameters are I.=1.4, A =2.0, 8 =5.9, DX=1.6X10,D&=6.0X10
D& =1.0. Initial conditions are the steady pattern developed under zero external current. Boundary conditions are zero ditusional

cruxes.
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2(a)]. This stable pattern is only slightly distorted by the
applied electric Seld if compared to the steady state pat-
tern generated in the absence of the external field. The
onset of oscillations (traveling waves} in the CEFM model
is shifted towards much higher intensities of applied elec-
tric field if compared to the average field intensity in the
VEFM model.

The snapshots of profiles generated by the VEFM mod-
el at I =+50 in Fig. 3(a} are shown to illustrate the in-
trinsic structure of the system. The low concentration of
X+ ions at the left boundary (anode) results in high elec-
tric field intensity and charge density within this region.
The concentration profiles in other parts of the system
have wavy character, therefore their gradients change the
sign along the system. The spatially averaged value of P
for the VEFM model is depicted in Fig. 3(b) and we can
observe low-amplitude high-frequency oscillations. The
temporal oscillations of the spatially averaged charge
density and the electric potential at the right boundary
follow the oscillations of k Despite their low amplitude
these oscillations play a crucial role in forming the global
oscillatory behavior of the system. The electric potential
profiles in Fig. 3(c) (spatial integrals of E) show relatively
little difference between the results of the VEFM and
CEFM models. The significance of the local gradients of
E and Q for the pattern formation is emphasized.

Patterns evolving in a 2D system with the CEFM mod-
el are shown in Fig. 4. Here the homogeneous electrical
field is assumed directed parallel to the spatial coordinate
Z1. Transitions between striped and hexagonal Turing
patterns occur under increasing electrical field intensity
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FIG. 3. (a) Snapshots of spatial profiles at time t=300
(VEFM model). (b) Temporal oscillations of spatially averaged
electric field intensity (average temporal value E=10.67). (c)
Electric potential profiles for VEFM and CEFM models (for pa-
rameters see Fig. 2).

FIG. 4. 2D steady state pattern of X on a square (side length
L =2.0) for the ionic Brusselator (CEFM mode1 with electric
field parallel to Z1 and zero field gradient parallel to Z2).
Boundary conditions are Xz 0 =Xz 2=2.0 and

1 1

Yz =0= Yz =2=2.6, the zero diffusion fiux boundaries at
1 1

Z2 =0, and Z2 =2.0 (for parameters see Fig. I).
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in a manner similar to transitions described. in the CIMA
reaction experiments [(16,17]).

In conclusion, formation of spatiotemporal and sta-
tionary spatial structures in ionic reaction-diffusion sys-
tems leads to inhomogeneities of the local electrical field
intensity and charge density distribution inside the sys-
tem. Externally applied electrical fields can induce oscil-
latory behavior in part of the system suppressing the for-
mation of the stationary patterns. The predictions of the
onset of wavelike regimes differ for both models. In a
spatially two-dimensional system an external electrical

field can switch between different types of Turing pat-
terns thereby controlling the pattern generating process.
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