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The nonlinear theory of the cluster efFect in a traffic ffow [B.S. Kerner and P. Konhiiuser, Phys. Rev.
E 48, 2335 (1993)],i.e., the effect'of the appearance of a region of high density aud low average velocity
of vehicles in an initially homogeneous flow, is presented. The structures of a stationary moving cluster
are derived. It is found that the density, the average velocities of vehicles inside and outside the cluster,
and also the velocity of the cluster are the characteristic parameters of the traSe flow. The dependencies
of the cluster structure and parameters on the density of vehicles in the initially homogeneous flow and
on the length of the road are investigated. It is found that the cluster can appear within regions of densi-

ty of vehicles which correspond to a stable homogeneous flow. It is shown that an appearance of a local-
ized perturbation, having a Snite amplitude, in the stable homogeneous flow can lead to a self-formation
of a local cluster of vehicles which is surrounded by the homogeneous traf5c flow. The parameters of the
local cluster do not depend on the amplitude of this perturbation but only on the parameters of the low.

PACS number(s): 05.40.+j, 47.54.+r, 89.40.+k

I. &traODUCTION

Almost every driver moving on a long road has at
some time met the phenomenon of "phantom traffic
jam, " i.e., traffic congestion without obvious reason. At
flrst, drivers could move with some relatively high veloci-
ty in an average homogeneous traffic flow. Then, drivers
suddenly flnd themselves in a region with a very high
density of vehicles where they could move at very low ve-
locity only or could not move at all. After some time,
drivers could move again at a high velocity in the homo-
geneous traffic flow, but, to their great surprise, nothing
had happened on the road which could have caused the
traffic „'m (for the results of the experimental investiga-
tions see, e.g., [2,3]).

Traffic congestion in an initially homogeneous traffic
Sow can be explained by a cluster effect in a trafBc Sow
[1]. Indeed, it has been found that, if the density of vehi-
cles exceeds some critical value, the initially homogene-
ous traffic flow loses its stability with respect to a growth
of a long-wavelength nonhomogeneous perturbation.
The numerical calculations of the development of this
critical fluctuation [1] show that the growth of this per-
turbation on a circular road of some circumference leads
to the appearance of a stationary moving cluster of vehi-
cles. A stationary moving cluster of vehicles represents a
region which moves with a constant velocity, where the
density of vehicles can be considerably higher and the
average velocity of vehicles can be considerably lower
than in the initial Bow and outside the cluster.

In this paper, the results of the investigations on the
nonlinear structures and the parameters of the cluster of
vehicles, which can appear in an initially homogeneous
trafBc Sow, will be presented. Sections II and III are re-
lated to the numerical analysis of the structure and the
parameters of clusters. In Sec. II the main equations of
the kinetic model of traSc Sow and the conditions of sta-
bility of this flow [1] will be written, the features of the

kinetics of the formation of a stationary moving cluster
and its structure will be investigated, the effect of the ap-
pearance in a traffic flow of a local cluster of vehicles will
be presented, and the structure of this local cluster will be
found. It will be also found here that, if a perturbation of
a finite amplitude occurs, the stationary moving cluster
can appear in the regions of density of vehicles where the
initially homogeneous traffic flow is stable. The depen-
dence of the structure and of the parameters of the sta-
tionary moving cluster on the density of vehicles in the
initially homogeneous flow and on the length of the road
will be investigated in Sec. III. In Sec. IV the qualitative
nonlinear theory of the stationary moving cluster will be
presented. Based on this theory the explanation of the
main results of the numerical investigations of the struc-
ture and of the parameters of the stationary moving clus-
ter will be given.
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the integral condition

J p(x, t)dx =N,

and the boundary conditions

(2)

(3)

II. STRUCl URE OF CLUSTERS

A. Kinetic mo4ek of tra@c god:
Basic equations

The kinetic model of a trafBc Bow on a circular road of
some circumference L, the motivations for it, and the
conditions where it can apply, have been considered in
[1]. This model includes the continuity equation

Bp+ Bq
dt Bx

the equation of motion
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v(0, t)=u(L, t), Bv/Bxi&=BuIB»iL . (4) g( —[1+(2nlL) pp, '](cv/pl, ) . (lob)

In (1)—(4),

q (x, t) =p(x, t)v (x, t)

is the flux, p(x, t) is the density (0(p p), and u(x, t} is
the average velocity of vehicles (v ~0). N=const is the
total number of vehicles on the road (N))1); L is the
length of the road; V is a safe ("maximal and out of
danger") velocity which is achieved in a both time-
independent and homogeneous trafflc flow. V(p) is a
monotonous decreasing function ofp, i.e., its derivative

g(p)=d V(p)/dp «;
co=const, r=const, I =+pp 'r, @=const, and p is the
maximal possible density of vehicles on the road (for a
road with n lanes p=nl&, where & is the average length
of vehicles).

It will be recalled that the equation of motion (2) fol-
lows from the well-known Navier-Stokes equations,
which for a one-dimensional compressible flow read as

Bu Bv Bp + 8 Bv
p at

+"
5» a»

+
a» "ax

where for the given case the sum of all inner forces,
which appears due to interactions between individual
vehicles, is given by

V(p) —uX=p (7)

pg =N/L, v~ = V(p~ ) .

The corresponding value of the flux is qI, =v&pI, . As fol-
lows from previous investigations [1], this homogeneous
state loses its stability with respect to a growth of the
nonhomogeneous fluctuation of the density of vehicles.
On a threshold of this instability a critical perturbation is

5p(x) =5poexp(2mix/L), 5v (x)=5uoexp(2nix/L) .

(9a)

It represents the greatest long-wavelength nonhomogene-
ous perturbation in a homogeneous traffic flow, which
moves with the phase velocity

v =v cp A 0 (9b)

The instability of the initially homogeneous flow occurs
in some interval of the value p&,

pcl ph pe2 & (10a)

if inside this interval the value f (5) satisfies the condition

p, is the viscosity [4] and p=pcv is the local pressure.
The integral condition (3) expresses the fact that if one
seeks some new distribution for p(x, t) and v (x, t), the ini-
tial quantity of the total number of vehicles on the road
has to be taken into account.

For given values of N and L, there is only one homo-
geneous state pz, vz for the traffic flow under considera-
tion:

As it follows from (10b), one can find the critical values

pz =p„andpz =p, 2 (10a}from the equation

[—1 —(p„lco)g(p„)]p„=(2~/L) (i =1,2) . (10c)

Due to the instability of the traffic flow, a stationary clus-
ter of vehicles, which moves with some constant velocity
vg along the road, can spontaneously appear in the initial-
ly homogeneous flow.

For the numerica1 investigations of the cluster effect
presented below, the problem (1)-(4) has been solved.
For this reason, the functions w (x, t) =Bv/Bx and if(x, t),
where BK/Bx =p(x, t) pz, h—ad been introduced and the
problem (1)—(4) had been written as a system of four first
order difFerential equations for the functions K(x, t),
p(x, t), u(x, t), w(x, t) with the corresponding conditions
K(O, t)=0, it(L, t)=0, u(O, t)=v(L, t), w(O, t)=w(L, t)
The algorithm of the numerical solution of this problem
is described in [1].

B. Structure of cluster and fundamental diagram

From many experimental investigations on traffic flow
it was found (see the results in, e.g., [2-7]) that a depen-
dence of the average velocity of vehicles for a homogene-
ous and time-independent traffic flow on the density of
vehicles has a decreasing character [Fig. 1(a)]. The relat-
ed dependence on p of the flux Q (p) =p V(p) is obviously
a function with only one maximum [Fig. 1(b)]. This
curve is called the fundamental diagram (e.g., [2—7]).
The function V(p} is determined by the average balance
between safety requirements and risk readiness of the
drivers as well as legal traffic regulations and road condi-
tions, i.e., V(p }and, consequently, Q (p), are phenomeno-
logical functions (e.g., [2—7]). In order to understand the
reason why the value V decreases as p increases, notice
that the drivers must decrease their average velocity if
the headway to the vehicle in front of them is reduced.
At the limit, where the density p reaches the maximal
value p, vehicles cannot move at all, and for this reason
V(p)~ &-+0. On the other hand, at small enough
values of p, there is almost no interaction between vehi-
cles, and they can move with some average velocity
uf = V(p) ~ z [Fig. 1(a)].

The given value of the total number of vehicles on the
road N determines the definite density of vehicles in the
homogeneous traffic flow p=pz (8). In other words, the
given N determines the one point on the fundamental dia-
gram Q(p): qt, =Q(pl, ) [or the one point on the speed
density relationship V(p): vz = V(pz ) ].

Because a lot of experimental data have been collected
and plotted in the (p, q) phase plane, it is helpful to use
this plane for the investigation of cluster formation to un-
derstand its structure. In [1] it has been shown that the
given value N can represent not only the homogeneous
solution (8) but also the nonhomogeneous solutions in the
form of clusters of vehicles. In the cluster, the values of
density p, average velocity v, and, consequently, the flux
of vehicles q =pv depend on x and t. It means that in the
(p, q) phase plane the dependence q(p), which corre-
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FIG. 1. The example of the function V{p)
(a) and of the corresponding fundamental dia-
gram Q (p) (b). Results of the numerical
computations for co =2.484451 /~, V(p)
=5.0461 [(1+exp[ [(p/p) —0.25] /0. 06] )
—3.72X10 ]l/~. The found critical va1ues
of the density for I.=8001 are p, ~
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sponds to the distributions u (x) and p(x) in the cluster of
vehicles at some fixed moment of time t, represents some
closed curve. The coordinates of any point on this phase
curve are the values p and q in the cluster of vehicles for
the corresponding value x.

1. Featlres of kinetics ofclgster formation

In [1] it has been found that the growth of a critical
perturbation (9a) at the values pz, which exceed the criti-

cal value p„(10c)but are rather close to it, leads directly
to the formation of a stationary moving cluster of vehi-
cles. The kinetics of the formation of this cluster has
some characteristic features. In particular, one can see
these features clearly if an appearance of a cluster on a
road with long enough length 1.)&I is investigated [Fig.
2(a)]:

(i) At first, the amplitude of the critical perturbation
increases very slowly in time but the previous form of the
perturbation (9a) is gradually deformed [Fig. 2(b),

0. 800

0.4

0.2

500
(/ ()

FIG. 2. The kinetics of the cluster formation: (a) the dependence p(x, t), (bj—(e) the distributions p(x) and v (x) in the intermediate
moments of time [(b) t, = 1(Or, (c) tz =15', (d) t, =216~, (e) t4 =3(Xb ]; (f) the distributions p(x) and u (x) in the stationary cluster (at
t =490r), which moves with the constant velocity u -=—1.09l/v [for a visual demonstration, the functions p(x) aud u (x) in (fl are
shifted to the center of the road] The initial . distribution p(x, O) =p„+5p(x,O) with 5p (9a), Spo=0.02; pz =0.174p. The other pa-

rameters are the same as in Fig. 1.
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t = 100']. In the (p, q) phase plane, the considered distri-
butions are, however, practically disposed on the funda-
mental diagram [Fig. 3(a)].

(ii) At some time in the vicinity of the maximum of this
distribution p(x}, a local perturbation of density and
average velocity is formed by itself. This local perturba-
tion has a shape of the following one after another local
region with larger and lower density and, consequently,
lower and larger average velocity of vehicles [Fig. 2(c)].
On the (p, q} phase plane this local perturbation corre-
sponds to a curve which sharply deviates from the funda-
mental diagram [Fig. 3(b)].

(iii} The further development of the distributions of the
density and of the average velocity of vehicles on the
whole road is almost entirely governed by the growth of
the amplitude of this self-formed local perturbation.
Indeed, the growth of the amplitude of the local pertur-
bation represents an avalanchelike process [Fig. 2(a},
t =(140-180)r]as the amplitude of the distributions p(x)
and v(x) outside of the local perturbation changes

insignificantly. As a result, a local cluster of vehicles is
formed by itself, i.e., a cluster which is surrounded down-
stream as well as upstream by only slightly perturbed
homogeneous traffic flow [Figs. 2(d) and 2(e)]. The clus-
ter represents a local region of large density and low aver-
age velocity of vehicles (up to a standstill), followed
downstream by a local region of low density of vehicles.
The more the amplitude of the local cluster increases, the
more the deviation of the curve, which corresponds to
this cluster on the (p, q} phase plane, from the fundamen-
tal diagram grows [Fig. 3(c)].

(iv) The region of the large density of vehicles in this
local cluster moves upstream. Contrary to it, the transi-
tion layer between the region of low density of vehicles in
the local cluster and the slightly disturbed homogeneous
How downstream moves in the opposite direction. It
means that between the region of the large density and
the transition layer a region of relative low density is
formed, whose width quickly increases in time [Fig. 2(a),
t =(250-290)r].
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FIG. 3. The kinetics of the cluster forma-
tion in the (p, q) phase plane: (a)-(d) the
curves q(p) at the same moment of time as
shown in Figs. 2(b)-2(e), respectively, and (e)
for the stationary moving cluster in Fig. 2(f).
The other parameters are the same as in Figs.
1 and 2. Dotted lines represent the fundamen-
tal diagram from Fig. 1(b), the dashed line in

(e) corresponds to the region of the density,
where the homogeneous traffic Sow is unstable.
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(v) When the width of the latter region becomes wide
enough, the density and the average velocity of vehicles
in this region of a low density of vehicles do not change
in space, practically, and in time anymore. So, the local
cluster of vehicles transforms into a local structure which
is surrounded by the slightly disturbed initial tram[c flow
[blue depicted in Fig. 2(a)]. This local structure consists
of three parts: (a) A proper cluster of vehicles [green, yel-
low, and orange depicted in Fig. 2(a)]. (b) The following
(downstream} region af a new almost homogeneous flow
(red) which is caused by this cluster. (c) The transition
layer between this region and the slightly disturbed initial
traffic flow [Fig. 2(e)]. In the (p, q) phase plane, the local
cluster corresponds to the curve which has roughly the
shape of a "triangle" [Fig. 3(d)]. Two sides of this trian-
gle represent the left (upstream} and the right (down-
stream} fronts of the cluster. The third side represents
the distributions p(x) and v (x}in the transition layer.

(vi) By the time t =300', the amplitude of the local
cluster reaches the almost invariable value
(p,„—=0.709p) [Figs. 2(a) and 2(e)]. The width of the
cluster monotones increases in time as the left (upstream)
front of the cluster moves with a higher negative velocity
(vg&= —1.221/r) compared to the right (downstream)
front (vs„=—1.05l/r). Therefore, the flux q of vehicles
through the left front of the cluster is stronger than
through the right front. This means that the cluster col-
lects more and more vehicles and acts as some new mov-
ing local source of vehicles on the road which forms
behind it (downstream) a new almost homogeneous traffic
flow with smaller density [red in Fig. 2(a)]. For this
reason, downstream from the cluster moves a transition
layer with positive velocity (v =1.531/r} between the
slightly disturbed initially homogeneous traffic flow (blue}
and the new homogeneous traffic flow (red) formed by the
cluster of vehicles.

(vii) By the time t =330' the transition layer [see (v)]
reaches the boundary of the road (x =L). Due to the
periodic boundary conditions (4) used in the model, this
transition layer consequently appears at the upstream
boundary of the road (x=0). Later on, the transition lay-
er reaches the cluster and gradually merges with it [Fig.

2(a}, t =(400—430)~]. As a result, the stationary moving
cluster on the circular road under consideration is
formed [Fig. 2(a}, t )450~]. The form and the velocity of
this cluster do not change in time anymore.

2. Structure ofstationary moving cluster

The stationary moving cluster formed represents a lo-
cal region of large density (p,„)and low average velocity
of vehicles [v;„-=V(p,„}],where the traffic flow is al-
most homogeneous [as v „—=0, it is practically at a
standstill; Fig. 2(f)]. This region is limited upstream and
downstream by two fronts, where both the density and
the average velocity of vehicles sharply change in space.
These fronts move upstream with the same velocity (vg )
equal to the velocity of the cluster. The cluster is sur-
rounded by another homogeneous traffic flow, where the
density is lower and the average velocity of vehicles is
higher than inside the cluster [Fig. 2(f}]. Both the homo-
geneous flows inside and outside the cluster are different
from the initially homogeneous traSc flow. These new
homogeneous flows produced by the cluster are stable,
i.e., the density of vehicles inside the cluster is p,„&p,2
and outside the cluster it is p;„&p, &.

In the (p, q) phase plane, the stationary moving cluster
corresponds to a segment of a line. The ends of this seg-
ment correspond to the stable homogeneous ffows inside
and outside the cluster. For this reason they are disposed
on the fundamental diagram and outside the interval
(p„,p, 2) of the instability of traffic flow [Fig. 3(e}].

C. Local clusters in homogeneous tragic Sow

From the formation process of the stationary cluster
discussed above one can have a conclusion of a decisive
role of a local perturbation which is formed by itself in
the process of the evolution of the initially "global" per-
turbation on the whole road (9a). This self-formed local
perturbation represents, in fact, two local regions, follow-
ing downstream, one after another: A region of large and
a region of low density of vehicles (Fig. 4}.

From these properties of the self-formed local pertur-
bation it can be expected that if, instead of the global per-
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FIG. 4. The shape of the self-formed local
perturbation hp(x): The difference between
two distributions of the density of vehicles in
Fig. 2(a), hp(x) =p(x, 146r)—p(x, 130r). The
chosen moments of time, t =13' and
t =140', are the moments before and after the
local perturbation is formed by itself, respec-
tively.
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turbation (9a), only a local perturbation, which has a
form similar to that shown in Fig. 4, appears, then a local
cluster of vehicles which is surrounded by the initially
homogeneous /tow can be spontaneously formed on a road
that is long enough. Until the local cluster reaches one of
the boundaries of the road, the latter can be considered as
an "open" system.

1. Local cluster in stable homogeneous Jhow

This supposition about an occurrence of the local clus-
ter is conSrmed by numerical analysis, where it was also
found that a local cluster can appear in a stable [with
respect to a global perturbation of small amplitude (9a)]
homogeneous traffi ffow, i.e., when ps &p„(Fig.5).

In the numerical analysis made (Fig. 5), this stable ini-
tial homogeneous traSc flow is disturbed at t=O by the
local perturbation

hp(x) =bp I cosh [0.2(x —xo)]
—0.25cosh [0.05(x —25l —xo)]] .

This perturbation has the form similar to the one of the
self-formed local perturbations shown in Fig. 4. If the
amplitude hp of the local perturbation (11} exceeds
some critical value Ap„the amplitude of the initial local
perturbation (11) grows in time and a local cluster ap-
pears on a road. The shape and the properties of the lo-
cal cluster formed do not depend on the amplitude of this

local perturbation. For the case shown in Fig. 5, this
critical amplitude is hp, -=0.06p. On the contrary, if the
amplitude of the initial local perturbation hp is lower
than hp„the amplitude of the initial local perturbation
fades in time. Notice that a local cluster e+ect, i.e., the
appearance of a local cluster of vehicles surrounded
upstream and downstream by the initially homogeneous
flow, can only be realized on a long road —a road which
is long enough so that a region of the localization of the
cluster is less than the length of the road.

The local initial perturbation of the density of vehicles,
which is situated at t=O on the distance xo=250l from
the beginning of the road [Fig. 5(a}], Srst moves in the
direction of the flow with only slightly increasing ampli-
tude. After some time (t =35'), this local perturbation
stops and its amplitude begins to grow rapidly, forming
the cluster of vehicles of large amplitude [green, yellow,
and orange depicted in Fig. 5(a)] moving into the oppo-
site direction to the initially homogeneous traSc flow
(blue). By the time t =140', the amplitude of the cluster
reaches the almost invariable value (p,„=—0.709p) but
the width of the cluster L„i.e., the distance between the
cluster's fronts, where the density and average velocity
sharply change in space, increases in time. It occurs be-
cause the left (upstream} front of the cluster moves with a
higher negative velocity (v I= —1.22l jr) compared to
the right (downstream) front (u, = —1.061/r). The clus-
ter forms downstream from it a new almost homogeneous
traffic flow with lower density (p;„—=0. 14p) [red in Fig.
5(a}]. For this reason, downstream from the cluster

x//E

0.6

0.4

0.2

FIG. 5. The kinetics of the local cluster formation in the stable homogeneous traffic flow: (a) the dependence p(x, t); (b) and {c)the

distributions of the functions p(x) and U(x) (b) and the corresponding curve q(p) (c) at t =144m", (d) the vehicle trajectories corre-

sponding to (a). pl, =0.17jR The initial local perturbation bp(x) (ll), hp =0.06p, x0=2501. The other parameters are the same as

in Fig. 1 ~
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moves a transition layer with positive velocity
(v„=2.31/~) between the initially homogeneous traSc
flow (blue) and the new homogeneous traffic flow (red)
formed by the cluster of vehicles. In the (p, q) phase
plane, the local cluster represents a "triangle" [Fig. 5(c)].
Two sides of this triangle represent the upstream (upper
line with negative slope} and the downstream fronts
(lower line with negative slope) of the cluster. The third
side represents the transition layer.

When the width of the cluster L, is large enough
[t &180~, Fig. 5(a)], the average velocity of vehicles in
the cluster U .„-=0 and consequently the Sux
q;„=u;„p „—=0, i.e., the cluster corresponds practical-
ly to a standstill. At the upstream front of the cluster
vehicles are entering the cluster and must stop. There-
fore the upstream front is moving with the velocity ugI

against the flow. At the downstream front, the drivers
realize the low density region in front of them. They can
accelerate and leave the cluster. Therefore the down-
stream front of the cluster moves with the velocity ug,
against the flow. Taking into account Fig. 5(c) and that
in the cluster the flux q;„—=0, one can write the approxi-
mate formulas for the velocities of the cluster's fronts:

—1 —1
Vgr qout(Pmax Pmin) ~ Vgl

=
qh (Pmax Ph }

where q,„,=v p;, is the flux directly downstream
from the cluster, i.e., the flux out of the cluster; p;„and
U ~ are the density and the average velocity of vehicles
in the new homogeneous trafflc flow [red depicted in Fig.
5(a)] formed by the cluster; qh

=vhph. As ph &P;„[Fig.
5(a)] and consequently qh &q,

„„

from these formulas it
follows that (vgi ~

& ~vg, ~, corresponding to the results of
the numerical calculations.

Let us compare Fig. 2(a) for the time interval between
the self-formation of the local perturbation and the local
cluster [t=(140-315)~] with Fig. 5(a). One can draw
the conclusion that both kinetics of cluster formations
are very similar to one another. There is only one quali-
tative difference between these two processes: Outside
the local cluster in Fig. 2(a) there is a slightly nonhomo-

geneous flow which appears due to the disturbance of the
initially homogeneous traffic flow by the global perturba-
tion (9a). In Fig. 5(a), however, there is the undisturbed
initially homogeneous Sow. A similar conclusion follows
from the comparison of Fig. 2(e} with Fig. 5(b) and Fig.
3(d) with Fig. 5(c).

Thus the local cluster of vehicles is a nonstationary lo-
calized structure which is surrounded by the initial
homogeneous traffic Sow. As in the kinetics of the for-
mation of the stationary moving cluster in Fig. 2(a), this
local structure consists of the foHowing: (a) the proper
cluster of vehicles (as of now called "cluster"} moving
upstream [green, yellow, and orange depicted in Fig.
5(a)]; (b} the new almost homogeneous trafflc flow (red)
formed by the cluster; and (c}the transition layer between

this new and the initially homogeneous Saws moving
downstream [Fig. 5(b}].

As in the example considered, the cluster of vehicles
and the transition layer between the two different homo-
geneous Sows move in opposite directions and the width

of a region of localization of the whole nonstationary
structure increases in time. However, on the long road
the drivers upstream of the cluster and downstream from
the transition layer move in the initially homogeneous
traffic flow [blue depicted in Fig. 5(a)] and therefore do
not know about the existence of the local cluster de-
scribed.

The same conclusion can be drawn from the considera-
tion of the vehicle trajectories on the (t,x) plane [Fig.
5(d)], corresponding to the local cluster shown in Fig.
5(a}. One can see in Fig. 5(d) that the driver which has
caused the local perturbation at t=0 and x =2501 can al-
ways travel with high velocity in the initially homogene-
ous flow. Indeed, at time t =35~ when the local pertur-
bation stops at position x =—3001 and its amplitude begins
to grow rapidly forming the traffic jam, this driver is at
position x=416l and is therefore far away from the
traffic jam he is responsible for. On the contrary, drivers
which have been at t=0 at positions below x =—100l must
reduce their velocity sharply at the time when they reach
the traffic jam. The width of the traffic jam increases dur-
ing the course of time. For this reason, the later a driver
approaches the jam, the longer he has to wait until the
traffic jam, due to its negative velocity, has passed him.
This fact can be seen in Fig. 5(d), where the vehicle tra-
jectories are considerably denser in the cluster moving
upstream, where also the velocity of vehicles, i.e., the
slope of the vehicle trajectories, is practically equal to
zero. Such a situation is usual for many experimental ob-
servations of a "phantom traffic jam" on a long road
without any off and on ramps, far from other hetero-
geneities, i.e., under "pure" conditions, which correspond
to the model under consideration.

2. Physics ofappearance of local cluster:
Process of random appearance

and disappearance of local clusters

In order to understand the physics of the self-
formation of the local cluster discussed above, let us now
qualitatively consider the behavior of a local increase
hp(x) & 0 on the density in time. In this local region, the
value V decreases: b, V(x) = [dV(p)/dp]hp(x) & 0,
dV/dp&0 (5). This decrease of the "maximum and out
of danger" velocity V forces drivers to decrease their
average velocity v sharply if the value ~dV/dp~ is large
enough. On the other hand, from continuity Eq. (1), it
follows that a local decrease in U is accompanied by a lo-
cal increase in p and vice versa. Therefore, the decrease
in u in the local region under. consideration causes a fur-
ther increase in the local value of p in this region and,
therefore, leads to further subsequent decreases in the
values V and u and also to an increase in the value p in
this local region. This avalanchehke process of the de-
crease in the average velocity and the corresponding in-
crease in the density of vehicles in the local region of
traSc Sow one can consider as some kind of active pro-
cess, which causes the spontaneous appearance of local
cluster in trafBc Sow.

On the other hand, the local increase considered above
in the density and the corresponding local decrease in the
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average velocity could disappear due to the diffusion
(viscosity) process, influence of the gradient of pressure,
and also to the relaxation process of the average velocity
v to the "maximum and out of danger" velocity V.
Therefore, there is a competition between these two kinds
of processes: the active processes, trying to increase the
amplitude of the local perturbation, and the damping pro-
cesses, acting in the opposite direction.

The active process becomes weaker if the density pI,
decreases. Indeed, for low density the interactions be-
tween vehicles seldom occur and the value ~dV/dp~,
which characterizes the strength of the active process, is
small [Fig. 1(a)]. For this reason, there should be some
boundary value of the density pb, i.e., in a homogeneous
flow the boundary flux qb

= V(ps)ps. At pl, &ps (i.e., at

qt, &qs), a local perturbation of any amplitude fades in
time, i.e., a trafllc jam cannot develop (Sec. II C 3}.

The avalanchelike process of the growth of an ampli-
tude of the local perturbation in the traSc flow discussed
above can be observed from Fig. 5(a} at t =45~ From.
the integral condition (3}it follows that downstream from
the local region under consideration, where the density is
higher, there should be a consequent decrease in the den-
sity of vehicles on the road. This consequence can be
seen in Fig. 5(b). It also follows from (3) that the local-
ized perturbation at t=0, which leads to the self-
formation of the local cluster, should be the following one
after another a local increase and a local decrease in the
density that is taken into account in (11).

As the amplitude of the cluster in the course of time in-
creases, the average velocity of vehicles decreases more
and more inside the cluster, practically to a standstill
[Fig. 5(b}]. As a result, in the course of time, the cluster
"stores" more and more vehicles. This means that the
flux of vehicles q,„,out of the cluster (downstream}
should be less than the flux q;, into it (upstream), where

q;„=qI,. It also becomes clear why downstream the clus-
ter the new almost homogeneous flow develops, where
the density p;, is lower than in the initial flow pi, (Fig.
5). As q;„)q, „„

the width of the cluster L, monotonous-
ly increases in time [Figs. 5(a) and 5(d)].

On the other hand, from this qualitative consideration
it follows that if upstream from the cluster the density

p &p .
„

the local cluster should disappear in the course
of time. Indeed, in this case q;„&q „,and, consequently,
the width of the cluster L, should monotonously de-
crease. Therefore, the boundary density pb of an excita-
tion of the local cluster should be close to the density p;„
in the new flow formed by the cluster directly down-
stream from the cluster: pb =—p „.Consequently, the
boundary flux qb of an excitation of the local cluster is
close to the flux q,„,: qb

———q,„,. These conclusions from
the qualitative consideration of the physics of the local
cluster formation is supported by the results of the nu-
merical calculations (Sec. II C 3).

Let us stress the possible effect of random appearance
and disappearance of local clusters on a long road if an
initial traffic Sow is nonhomogeneous. Such an effect can
be observed if the density in the regions, where the traffic
flow is dense, is higher than pb and the density in the di-

luted regions is lower than pb. If the extension of these
regions of different density is large enough to consider
traSc flow inside each of them as almost homogeneous,
local clusters, as has been described above, can spontane-
ously appear in regions of high density, where p&pb.
When a cluster, which moves against the flow [see Fig.
5(a)], finds itself in a region of low density, where p &pb,
it wi11 disappear if the extension of the region of low den-
sity is large enough. Indeed, the flux of vehicles qggt,
formed by the cluster downstream, exceeds the flux in
front of cluster q;„in the region with p &pb and therefore
the width of the cluster L, gradually decreases.

Qualitatively the same process of random appearance
and disappearance of local clusters can be realized on a
multilane road even if the flow is initially homogeneous
on each lane, but the density on one lane is p &pb and on
the other lanes the densities are p &pb. Under those cir-
cumstances a local cluster can spontaneously appear on
the lane with high density p & pb and then can disappear
in the course of time due to lane changing of vehicles to
the other lanes with low densities upstream of the cluster
or/and inside the cluster. The other possibility of the
process of random appearance and disappearance of local
clusters on a long road, which can be realized in traSc
flow, will be discussed in Sec. II C 4.

3. Boundary of excitation of local cluster

From the numerical analysis it is found that the lower
the density of vehicles in the initially homogeneous flow

pt, (i) the more the amplitude of the initial local perturba-
tion bp in (11) needs a local cluster to be excited [Fig.
6(a)]; (ii) the less the density of vehicles, which is formed
directly behind (downstream) the cluster, differs from the
value pl, [Fig. 6(c)]. Consequently, the segment of a line
on the (p, q) phase plane, which corresponds to the down-
stream front of the cluster [lower line with negative slope
in Fig. 6(e)], becomes closer to the segment of a line for
the upstream front of the cluster [upper line with nega-
tive slope in Fig. 6(e)].

Because the flux out of the cluster q,„,at pI, &pb is al-
ways less than the flux into it q;„,its width increases dur-
ing the course of time. However, its amplitude is limited
and does not exceed some maximum value, which coin-
cides practically to the value p for a wide stationary
moving cluster. Because the length of the road is finite,
there is not enough time for the full development of this
maximum amplitude, if the density of the initial homo-
geneous flow p& is only slightly higher than the boundary
density pb. For this reason, for a given length of the road
L, the amplitude of the local cluster p, „

is an increasing
function of pl, [Fig. 6(b}], as long as pt, is below some
value. The latter is a decreasing function of the length L
and tends to pb if L ~ ao. This means that in the limit
L~~ the amplitude of the 1ocal cluster can reach the
maximum value p =-p for all p& &pb.

As has been mentioned, there is a boundary value of
density pb [Figs. 6(a) and 6(b)]: At pt, &pb, a local cluster
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cannot be excited independently on the amplitude of an
initial local perturbation (11). The boundary value p» is
less than the critical value p„which determines the
boundary of the stability of the initially homogeneous
Sow with respect to the global critical perturbation (9a)
of a small amplitude.

At p& =pb, the formed cluster has the smallest width

L» =L, (p» ) and the lowest possible amplitude [Fig. 6(b)].
The density of vehicles in the new almost homogeneous
Sow formed directly behind (downstream} this cluster

p „practically coincides with p». Because of that, the
segments of a line on the (p, q} phase plane, which corre-
spond to the Srst and the second fronts of the cluster,
practically coincide with one another [Fig. 6(f)] and the
transition layer almost disappears. As a result, the struc-
ture of the local cluster represents the proper cluster,
moving upstream and the "anticluster, " moving down-
stream [Fig. 6(d}]. The total increase in the number of
vehicles in the cluster is compensated for by the decrease

in the number of vehicles in the anticluster, as is required
by the integral condition (3).

4. Critical amplitude of local perturbution

As has been mentioned above, there is the boundary
density of vehicles in the initiaHy homogeneous Sow pb
for the existence of a local cluster in this Sow. The criti-
cal amplitude of a local perturbation (11) hp„which is
needed for an appearance of a local cluster, is maximal at
this critical point (Sec. II C3}.

There is also some other critical value p„which is
higher than p„.At pz &p„any amplitude of the local
perturbation, which has an arbitrary small initial ampli-
tude, grows on the long road in time. This means that
the critical amplitude of the local perturbation (11) is a
monotonously falling function of the values p» in the in-

terval p» «p» &p„[Fig.6(a)]. Therefore, in the interval

pb &pI, &p„the homogeneous traf6c flow is in a "meta-
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stable" state: a random appearance of a localized critical
fluctuation (whose amplitude exceeds a critical value)
causes an appearance of a local cluster of vehicles.

On the other hand, a random appearance of a fluctua-
tion, whose amplitude is large enough, can cause a disap-
pearance of this cluster and a return of traffic flow into
the homogeneous state, as the latter is stable in the inter-
val of density under consideration with respect to local
fluctuations of a small amplitude. In other words, there
are different "metastable" states of traffic flow in the in-
terval pb &pI, &p„,which are not stable with respect to
local perturbations of large enough amplitude: (a) the
homogeneous traffic flow and (b} a nonhomogeneous state
of traffic flow with one or a few local clusters.

It is known from the investigations of many nonlinear
systems, due to a noise-active escape from a metastable
state, that the random transitions between different meta-
stable states are possible (e.g., [8]). For the case under
consideration this means that in the interval of density

pb &pt, &p„[Fig.6(a)] a process of randotn appearance
and disappearance of different local clusters on the road
can occur. It is also known (e.g., [8,9]) that an average
time of a noise-activated escape from a metastable state is
decreased if the dispersion of fluctuations in the system is
increased and also if the value of a bifurcation parameter
of the system comes nearer to the critical points. These
critical points are p„andpb for the homogeneous state of
traffic flow and for a state with a local cluster, corre-
spondingly. Therefore, if the interval (pb,p„)is not very
wide and the dispersion of fluctuations in traffic flow is
large enough, one can suppose that there is a consider-
able probability to find in this interval of density a pro-
cess of random appearance and of disappearance of
different local clusters on the road.

5. Structure of transition layer

For the values p&, which are appreciably less than the
critical value p, &

(10c), the transition layer between the
new homogeneous flow formed by the cluster and the ini-
tial homogeneous flow has a simple structure [Fig. 5(b)].
This transition layer is represented on the (p, q} phase
plane by a curve which practically coincides with the fun-
damental diagram [Fig. 5(c)].

The kinetics of appearance of the local cluster shown
in Fig. 5(a) correspond to pt, &p„.As the value pl, ap-
proaches the value p, &, exceeds it and increasingly ap-
proaches p„,the kinetics of self-formation of a local clus-
ter disclose qualitatively new peculiarities.

If the value pI, increases and approaches the critical
value p„(10c),the form of the transition layer changes
qualitatively: A spatial oscillation of the density and the
average velocity appears at that place [Fig. 7(a)]. The
largest peak of density p is, as a rule, next to the cluster
[Fig. 7(a)], but can also change its position in the transi-
tion layer in time. Nevertheless, the peaks of p in the
spatial oscillation finally fade in space (downstream) [Fig.
7(a)]. When the oscillation in the transition layer ap-
pears, the curve, which represents this transition layer on
the (p, q ) phase plane, becomes longer and can jut out the

maximal value q on the fundamental diagram [dotted line
in Fig. 7(b)] which is defined only for homogeneous flows.
Notice that, as expected, the qualitatively spoken same
oscillation appears at p& =p„in the kinetics formation of
the stationary cluster for the time interval from t =150~
to t =300~, i.e., when the local cluster exists on the road
[Figs. 2(a), 2(d), and 2(e)].

6. Reasons ofappearance of sequence

ofclusters in tra+c flow

The higher the value p&, the larger the amplitude of
the peaks in the oscillations in the transition layer. It is
clear from here that, at some value pi„the amplitude of
the largest peak can reach a critical value in the course of
time, which is large enough to start the avalanchelike
process discussed in Sec. II C3. This process leads to the
spontaneous self-formation of a new cluster downstream
of the first cluster (Fig. 8}. In other words, the largest
peak in the distribution of the density in the transition
layer between the new almost homogeneous traffic flow
formed by the first cluster and the initially homogeneous
flow acts as in the initially local perturbation in the flow.

The new (second) cluster develops the next almost
homogeneous traffic flow downstream from it (Fig. 8).
Although this flow corresponds to a lower density than
the density in front (upstream) of the second cluster, the
difference between both values of the density is very
small. Apparently, because of this reason, this second
cluster is the narrower one (Fig. 8).

If the value p& is increased further, the avalanchelike
process of cluster formation can start in many peaks in
the distribution of the density in the transition layer.
Therefore, a sequence of clusters, which appears subse-
quently in space and time, is created. The clusters in this
sequence have, as a rule, different amplitudes, different
widths, different velocities, and are not situated periodi-
cally in space [Fig. 9(a}]. Some of these clusters [the first
and the second, shown in Fig. 9(a)] can catch up with one
another [Fig. 9(b}]and then merge into one cluster with a
larger width [Fig. 9(c)]. This localized structure of the se-
quence of clusters on the (p, q) phase plane represents the
complex picture of many bound segments of lines with
different slopes corresponding to the different velocities
of the clusters [Fig. 9(d)].

The local clusters shown in Figs. 5-9 appear due to the
occurrence of only one local perturbation in traffic flow.
As a lot of local perturbations of trafBc flow on the long
enough road can arise independently, a lot of local clus-
ters can almost simultaneously appear in flow. The possi-
bility of this process of the appearance of a lot of clusters,
which can completely cover the flow, is essentially large,
when the value pI, approaches the value p„,because the
value of the critical amplitude of a local perturbation is
decreased [Fig. 6(a)]. As in the latter case the clusters
can have different amplitudes, different widths, different
velocities, and may not situated periodically in space [1],
the sequence of such clusters on the (p, q) phase plane can
represent, as follows from the numerica1 investigations
made, a very complex picture. The corresponding func-
tions p(xo, t) and q (xo, t), i.e., the density and the flux at
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a fixed point x =xo on the road, can be very complex
functions of time. This agrees with the experimental in-
vestigations of traffic flow (e.g., [10]},where for a relative
high density of vehicles the large scattering of values of
the Aux, which have been measured at a fixed point on a
road, have been found on the "fundamental diagram. " In
other words, the chaotic behavior of trafBc flow may be
linked to the spontaneous appearance in traffic flow of a
lot of interacting clusters with difFerent parameters.

III. PARAMETERS OF STATIONARY
MOVING CLUSTER

A. Equations for stationary moving cluster

In the case of clusters of vehicles moving along the cir-
cular road with a constant velocity v, one can introduce
in (1)-(4) a self-similar variable x x u t—In .this new
system of coordinates the kinetic model of trafFic low
(1)-(4) reads as

E(u(x), q*,v )= V
u(x) —ug

—u(x)

v (x)—ug
(20)

Equations (17) and (18) with the boundary conditions

v (0}=u(L), dv /dx ~o=dv /dx ~l, (21)

(22)

which follow from (4},pose an eigenvalue problem whose

spectrum defines the possible values of velocities v and
whose eigenfunctions u(x} corresponding to (16) deter-
mine the form of different clusters p(x) which can appear
in the initially homogeneous Bow.

The solutions u(x} of Eq. (17) can be regarded as tra-
jectories of classical "particles" which move with "time"
x on the ( v, w) phase plane, where

Bp Bq
Bt Bx

Bu Bu co Bp i Biu
2

+(v —us) = V(p) —u — +pBt s Bx p

and the conditions (3), (4), where

(12)

(13)

Multiplying (17) by w (22), integrating it along the trajec-
tory of a "particle, " and taking into account the bound-
ary conditions (21), one can derive the condition, which
the solutions in the shape of a cluster of vehicles should
satisfy:

Dovw v v=O.

(15)

i.e., a value q' (14) does not depend on x. It means that
on the right-hand side of the formula,

p(x) =
u (x)—us

(16)

only the value v depends on x.
This allows one to derive the equations for the time-

independent function u (x), substituting the function p(x)
in (13}and (3) for q'[u (x)—vg ]

d U ~ du+Do(v(x), q', vg) +F(u(x), q', u )=0 (17)

and

q'=p(u —vg) .

Here, and as of now v, V, and co are measured in units of
1/r; the length in units of i, the time in units of r, the
density of vehicles in units ofp.

For the time-independent functions v(x) and p(x),
which describe the forms of a stationary moving cluster
of vehicles in the new system coordinates, one gets from
Eq. (12),

In addition, the parameters of stationary moving clus-
ters, which have been found from the numerical solution
of the problem (1)-(4), have been proved by the help of
the numerical solution of the problem (17)-(21). For this
purpose, the unknown function I(x), where
d8'/dx = [q'/(v —

us ))—p„, was introduced and the
problem (17}, (18), and (21) was written as a system of
three ordinary first-order difFerential equations for the
functions K(x}, v(x), w(x) (22). For given pi, (i.e., N)
and L, the corresponding boundary conditions are the
following: iT(0) =0, 11'(L)=0, u (0)= u (L), w (0)=w (L),
and v (0)=vi, . The condition v (0)=us = V (pi, ) (8) can be
claimed for the periodic case (21}because the condition
v =uh is satisfied for every distribution u(x) in a cluster
at least at two points on the x axis, and because the posi-
tion of the point x=0 is arbitrary. This system has been
approximated on a grid x,.=(i —1)dx, i =1:1:I,xi =L by
the centered box scheme [11). A system of 3(I —1) non-
linear equations for the 3(I—1) unknown ii(x; ), v(x;),
i =2:1:(I—1},w(x;), i =1:1:(I—1) as well as q' and vg
have been obtained. These nonlinear equations have been
linearized by employing Newton's method, and a rough
approximation of their solutions has been improved itera-
tively until convergence was achieved.

dx paL
o v(x) —

ug q'
where

q'Ic(~) —[v(x)—v ]'J
Do(u(x), q', u )=

[u (x)—ug ]

(18)

(19)

B. Wide cluster

As follows from Fig. 2(f) and Fig. 3(e), the stationary
moving cluster, which appears for the chosen parameters
of the initial homogeneous flow on the road, consists of
two new difFerent stable homogeneous flows being sur-
rounded by two fronts moving with the same velocity.
Only at these fronts the density and the average velocity
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of vehicles on the road sharply change in space. An ex-
tent of each of these two new homogeneous states of a
flow inside and outside the cluster can suSciently exceed
the characteristic value I. Such a cluster is conveniently
called a wide cluster.

The width of a wide cluster L„i.e., the distance be-
tween its two fronts, as follows from the numerical calcu-
lations, depends on the value pz. The higher pz is, the
higher L, becomes.

On the contrary, the other parameters of a wide clus-
ter, as there are the maximal and minimal density
(p;„,p ), the average velocity of vehicles (U;„,U,„),
and the velocity of cluster U~=vz, are practically in-
dependent of the value p„[Figs.10(a)-10(c)]. The same
conclusion is valid for the value q'=q, ' [Fig. 10(d)].
Indeed, as follows from (15}and (16), one can write the
expressions

qs pmin(Umax Ug } pmax(Umin Ug (23}

These parameters, as follows from numerical calcula-
tions, are also practically independent of the length of the
road L for a wide stationary moving cluster. In other
words, the values p;„,p,„,v;„,u,„,u~, and q,

' for a
wide cluster suSciently depend only on the function V(p}
and parameter co in the equation of the motion (2). This
means that these parameters of a wide cluster are the
characteristic parameters of the traSc Sow.

As follows from numerical calculations, the values

p,„,p „,Us„and q,„,for the local cluster (Secs. IIC 1

and IIC2) practically coincide with the characteristic

values for a wide stationary moving cluster p,„,p;„U~
and q,„=u,„p;„respectively, when the cluster is
wide enough [r & 18(h; Fig. 5(a)]. To understand this re-
sult notice that both the flux q,„,and the flux q,„are
determined by the same possible rate of vehicles escaping
from a standstiH inside the cluster. Therefore, the
characteristic parameters mentioned above are practical-
ly identical for both local clusters and wide stationary
moving clusters.

C. Narrow cluster

If the value pz is decreased, the width of a wide cluster
L, also decreases. Therefore, by decreasing p& the region
of the homogeneous traSc flow inside the cluster gradu-
ally disappears. Finally, the cluster consists of two fronts
and the one homogeneous Bow only, which is situated
outside the cluster [Fig. 10(e)]. Such a cluster is con-
veniently called a narrow cluster.

The amplitude of a narrow cluster p,„decreases with
the value pz, i.e., it is less than the characteristic value

p, „

for a wide cluster [Fig. 2(f)]. The amplitude of a nar-
row cluster p,„decreases also with the length of the
road L. The other parameters of a narrow cluster p;„,
U;„,U,„,v, and q', on the contrary to those for a wide
cluster, also sharply depend on pz [Figs. 10(a)-10(d)] and
L. The narrow cluster corresponds to the segment of a
line on the (p, q) phase plane, which has one point (qm,„,
p „,where q,„=p„U,„)outside the interval [p„,p,2]
being situated on the fundamental diagram [Fig. 10(Q].

0.6g

x/f.

800

FIG. 9. The kinetics of the appearance of the sequence of clusters in traf6c Sow: (a) the dependence p(x, t); (b) and (c) the distribu-
tions of the functions p(x) and v(x) at t =150m (1) and at t =180~ (c); (d) the curve q(p), which corresponds to (c). The initial local
perturbation hp(x) (11),hp =0.005p, xo =2101;pz =0.2p. The other parameters are the same as in Fig. 1.
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m g m m
ug qmRR(pmRx pmin) (24)

There is a boundary density of vehicles in the initially

homogeneous traSc Bow for the existence of the cluster

p». At p& &p», a cluster cannot exist. At pz =p», the
cluster has the lowest amplitude p [Fig. 10(a)] and the
smallest width Lb =L,(p»).

As follows from the numerical calculations made, the
boundary value p» decreases the more the length of the
road L increases. It tends, for suSciently large values of
L, to the characteristic for the local cluster boundary
value pb [Figs. 6(a}and 6(b}],e.g., for the chosen function
V(p) and value co (Fig. 1), p» -=0. 1676p for L =50l, and

p» -=0. 1441p for L =8001, as for the local cluster

pb =—0.14p. Emphasize that the critical value p;„for a
wide cluster practically coincides with the critical bound-
ary value pb for the local cluster, i.e., also with the
boundary value pb, for a wide stationary moving cluster:

pb ~p» —=p, if the length of the road L is large enough.
Notice that if the length of the road L is not very large,

a boundary value pb& for the stationary moving cluster is
noticeably higher than a boundary value pb for a local
cluster. For this reason, if a local cluster in an interval of
density pb &p& &pb& appears, this cluster on the circular
road should disappear when a transition layer reaches the
cluster and merges with it [see Sec. II B 1, no. vii]. This
effect has been observed in the numerical simulations
made.

E. "Anticluster" in trafBc flo

Up to now, only the structures which can appear in the
initial homogeneous flow in an interval of relative low
density of vehicles, more precisely, in the interval of the
values pb &pl, &p„,have been considered. It has been
found that a different kind of cluster, i.e., of the local re-
gion with a larger density of vehicles than in the initially
homogeneous flow, can exist. It can be expected that in a
homogeneous trafBc fiow with a very large density of
vehicles, precisely, for the values p&, which are in the vi-
cinity of the second critical point p, 2 (10c), an
"anticluster" —a local region with a lower density of
vehicles than in an initially homogeneous low —can be
formed. This supposition is con5rmed by the numerical
calculations (Fig. 11).

It turned out that the parameters of a wide anticluster
[Figs. 11(b)-11(e)],i.e., the values p~„,p, u . , u

v, and q,', are practically the same as for a wide cluster
(Sec. IIIC). In particular, the wide anticluster corre-
sponds to the same segment of a line on the (p, q) phase
plane [Fig. 3(e)].

D. Velocity of clusters.
Minimum density for the existence of a cluster

From (15) and {16},for both wide and narrow clusters,
one can write the expression u =—{q

—q,.„)/
(p —p;, ), where the minimal fiux is q;„=u;~
and the maximal flux is q,„=u p .„.As for a wide
cluster of large amplitude q;„=-0,the latter formula has
a simpler form:

If the value pb is increased, the region of low density
gets narrower, i.e., the width of the anticluster L, de-
creases. As a result, a wide anticluster [Fig. 11(a)] gradu-
ally transforms into a narrow anticluster [Fig. 11(f)]. The
narrow anticluster corresponds to the segment of a line
on the (p, q) phase plane, which outside the interval

[p,&,p,2] has one point (q „p,„,where q, =p u .„}
is situated on the fundamental diagram [Fig. 11(g)).

An amplitude of a narrow anticluster, i.e., a value p;„,
increases as the value pb is increased [Fig. 11(b)]. The
other parameters of the narrow anticluster also
sufficiently depend on pb [Figs. 11(c}-11(e)].There is a
boundary value pbbs. At pI, &pbbs, an anticluster cannot
exist [Figs. 11(b)-11(e)], i.e., the value pb2 is the max-
imum density for the existence of a stationary moving
cluster. This boundary value pb2 increases with the
length of the road L, and for the values L large enough it
tends to p,„.At pI,

=
pb2 the anticluster has the smallest

width Lb =L,(pb2). In other words, the qualitative
behavior of parameters of the anticluster, when the value

pI, is increased, is similar as it is for the cluster discussed
above when the value pz is decreased.

Therefore, the stationary moving clusters can exist in
the interval of the density pbi —pI,

~pb2. At p„=p»the
cluster has the smallest width Lb =L,(p» ). If the density
is increased, the width of the cluster L, is increased, too,
and the cluster gr'adually transforms into an anticluster,
which has the width L, =L —L, . If the density is further
increased, the width of the anticluster is decreased, and it
reaches the smallest value Lb =L, (pbbs) at pb = pbbs.

F. Average characteristics of trai5c flo
and comparison mth other results

l. Auerage fundamental diagram

The functions q(p) shown in Figs. 3, 5(c), 6(e}, 6(f),
7(b), 9(d), 10(6, and 11(g) correspond to the calculated
distributions q (x) and p(x) in the clusters at some fixed
moment of time. However, for a comparison of these re-
sults with the results following from investigations on
other models of trafBc fiow and with experimental results,
where the average (in time) values of a fiux have usually
been plotted on "fundamental diagrams, " a correspond-
ing averaging of the results presented should be made.

Notice that in Sec. IIC6 it has been shown that in
traSc Bow the sequence of clusters, which have different
amplitudes, different widths, different velocities, and are
not situated periodically in space, can spontaneously ap-
pear. The faster clusters moving against the flow in time
merge with the slower one upstream [1). In the case of a
circular road these faster clusters, reaching the left
boundary of the road (x=0},appear at x =L, i.e., they
can merge with the other slower clusters which were pre-
viously downstream of them. Because of this reason on a
circular road, in time, Snally often only one cluster can
remain [1], although, previously, there have been many
clusters in the flow. Besides this scenario, it follows from
the numerical investigations made that there are a lot of
others, when two, three, or more clusters with the same
velocity remain on a circular road. It occurs that some of
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Ls
q =qmax

m g —~ mfor pmin —p —pmax

On the other hand, the width of the cluster L, is the in-
creasing linear function of p [see also (58)]. As follows
from Secs. III0 and III E, at p~pb& the width I,~Lb
and at p~pb2 the width L,~L —Lb, where Lb and Lb
are the smallest widths of the cluster and the anticluster,
correspondingly. In other words, at very large values of
L, when L »LI„L&,the line q(p) given by this formula
{line C in Fig. 12} [12] practically coincides with the seg-
ment of a line on the (p, q) phase plane for wide anticlus-
ters [Fig. 3(e)].

The homogeneous Sow loses its stability with respect
to fluctuations of the smaH amplitude in the interval of
density (10a) and the critical values p„,p,2, as follows
from Secs. III B—III E, satisfying the conditions p„&p .

„

and p, 2 &p . Therefore, there are two intervals of den-
sity p;„&p &p, &

and p, 2 &p &p, where the homogene-
ous flow is still stable with respect to perturbations of
small amplitude, and additionally the states of flow with

the different clusters show a tendency to equalize their
parameters, in particular their velocities, in the process of
their motion on the road. If the value L is large enough,
the sequence of wide stationary moving clusters, traveling
with the same velocity vg=vg as the cluster shown in
Fig. 2(f), can remain. Such a sequence of stationary mov-
ing wide clusters on the {p,q} phase plane corresponds to
a segment of a line which coincides with the segment of
the line for one wide cluster shown in Fig. 3(e).

For the stationary moving cluster on the circular road,
the value of the average flux q, averaging over a time in-
terval large enough, practically coincides with the value

q =L ' fOq (x)dx, where q (x)=v (x)p(x) is the ffux in

the self-similar variable x =x —vst used in (12)-(14).
The average density, as follows from (3), is p =

pl, .
Here, we restrict the consideration of an average fun-

damental diagram for the case of the circular road with a
large enough value L, when, as follows from the results of
Secs. IIIB—IIIE, that intervals of density p, where the
narrow clusters and narro~ anticlusters exist, can be
negligibly small. In other words, one can suppose that in
the whole interval of density p» &p &

p&z, where the clus-
ters can exist (Secs. III D and III E), they are stationary
moving wide clusters or else wide anticlusters. On the
other hand, at a very large value of L, which corresponds
to the mentioned condition, the boundary value pb& for a
wide cluster tends to p;„,i.e., these parameters practical-
ly coincide: pb&

=—p;„.The same conclusion is valid for
the wide anticluster: pb2=p, „(Sec.III E). Therefore, in
the case under consideration, the wide cluster can exist
practically in the whole interval of density p;„p p
From the results of Sec. III 8 it follows that: (a) the wide
cluster can be approximately represented as two homo-
geneous states of traffic flow with the fiuxes

q „=v;„p and q,„=v p;„,correspondingly, in-
side and outside the cluster, which has the width L„(b)
for a cluster under consideration, q;„=—0. Taking this
into account, one can get an approximate formula,

clusters can exist, i.e., there are two intervals of "hys-
teresis" on the average fundamental diagram [Fig. 12(a)].
The form of the fundamental diagram realized in these
intervals depends on the initial conditions.

If one starts the calculations from a distribution of the
density which is disturbed by nonhomogeneous perturba-
tions with a high enough amplitude, it will be possible,
finally, to find that in the intervals of density

p .„&p&p„and p,2&p&p the homogeneous states
cannot appear, i.e., only the states of ffow with clusters
can be realized. In this case, the whole average funda-
mental diagram consists of two parts: (i) a segment of a
curve (practically a line) with a positive slope, in the in-
terval of the density 0&p~p „which corresponds to
the homogeneous traffic ffow; and (ii) a segment of a line
in the interval p „&p&p „with a negative slope, which
coincides with the value of the velocity of wide cluster vg

(24) and corresponds to the existence in the traSc ffow of
the wide stationary moving clusters [Fig. 12(b)]. The in-
terval of the density p,„&p &p, where the fiux q is prac-
tically equal to zero, corresponds to a homogeneous state,
which is, in fact, a standstill. Notice that by a corre-
sponding choice of the function V(p) and the value co in

(2), the width of the latter interval can be reduced practi-
cally to zero.

If, on the contrary, one starts, as has been done in Sec.
II 8, from the homogeneous flow in the presence of only
small amplitude nonhomogeneous perturbations, the
homogeneous state can occur up to the critical point
p=p„(orp=p, z} [Fig. 12(a}]. In this case, and if only
small amplitude fluctuations are present, the jump from
the curves H (corresponding to the homogeneous state},
to the line C (corresponding to the state with clusters},
can occur on the average fundamental diagram, when p
exceeds p„[jump 1~2 in Fig. 12(a)] or p becomes less
than p, 2 [jump 3~4 in Fig. 12(a)].

On the other hand, for the same reason which has been
mentioned in Sec. II C4, due to possible fluctuations of a
relatively large amplitude in traSc flow, the process of
random transitions between the homogeneous state and
the state with clusters can occur in the intervals of densi-
ty p „&p&p,& and p,2&p&p,„.In this case, one can
suppose that the behavior of the average fundamental di-
agram in these intervals of density can strongly depend
on the parameters of fluctuations in traffic flow.

Regarding the case of a not very large L (but neverthe-
less L »1), notice that the boundary values pb„pbbs and
the critical values p, &, p,2 depend on L (Sec. II A and Sec.
III D). In particular, the position of the maximum point
of the average fundamental diagram also depends on the
length of the road L.

2. Comparison with cellular automation model

of tra+e jhow

The kinetic (hydrodynamic) approach to trafffc flow,
which is followed in this paper, has developed since the
1950s [13]. The further advances in this approach and
references can be found in [2,4—6,14,1].

Besides this kinetic approach to traKc flow, different
"microscopic" models of traf6c flow, i.e., models, where



B.S. KRONER AND P. KONHAUSER

the behavior of each individual vehicle in traffic Sow is
investigated, have been developed (see, e.g., [15—17]). In
the cellular automation model of traffic Sow developed in
[17], which belongs to the group of microscopic models,
the four consecutive steps, based on Sxed rules, are per-
formed, in parallel for all vehicles: {i}acceleration, (ii)
slowing down, (iii) randomization, and (iv) vehicle
motion.

As follows from the investigation of a cluster forma-
tion based on the kinetic model (1)-(4) shown above, the
physics of an appearance of the cluster of vehicles in an
initially homogeneous traffic Sow (see Sec. IIC2) is
linked to the competitions between active processes, which
try to increase the amplitude of the nonhomogeneous
perturbations in traffic flow, and the damping processes
which act in the opposite direction. The active process is
linked to the falling character of the function V{p). The
dkmping processes are considerably connected with the
diffusion (viscosity) process in traffic Sow and an
inffuence of the gradient of a pressure. If the falling char-
acter of the function V(p) can explain why the different

clusters by principe/e occur in traSc fiow, the considera-
tion of the competition between the active and the damp-
ing processes made in our paper can explain the structure
and some important properties of the clusters formed.

On the other hand, it is well known (e.g., [2,5-7]) that
the falling character of the function V{p) in (2) is linked
to the realization of two processes [(i) acceleration and (ii)
slowing down] (see also Sec. IIB), which are also very
essential processes in the cellular automation model, if
the density of the vehicles is large enough [17]. Ap-
parently, because of that reason, the different clusters of
vehicles, including the cluster of the large amplitude
moving against the Sow (see Fig. 2 in [17]},have been ob-
served in the numerical investigations of the cellular au-
tomation model [17] and, as for a large enough density,
the active process discussed above has been realized
there Th.e analogue of the damping processes may be the
limitations for both an acceleration and a slowing down
for a vehicle in the algorithm of the cellular automation
model.

Therefore, one can suppose that both the kinetic model
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points u„.(i = 1,2,3},have the usual [18]form:

5u, =u(x) —u„~exp(A,"x),
where

g(i) —g(i) — y+(D(i) /2)2 P(i)
D(s)

1,2 P U

F„"=BE/Bu)„=„,D"=D ~„=„,i =1,2, 3 .
(28}

tively smooth and the left front, where w &0, is sharp. So
the antisymmetric form of the cluster is essentially linked
to the sign of the second term in Eq. (17).

In the same way it is also possible to show that the
phase trajectories near the saddle point of Eq. (17) deter-
mine the behavior of the function u(x) near the value
u,

„

for the narrow cluster [Figs. 10(e) and 12(b)] and
near the value u .

„

for the narrow anticluster [Figs. 11(I)
and 12(c)].

From (25), (20), and (5) and taking into account that
p=q (u —us) ')0, one can get that on the u-q' curve
the value BF/Bq'=q'(u —ug) g~ + &0.

Therefore, from (26) and from the & shape of the u-q'
curve (Fig. 14), one can see that

F' '&0 I'„'"and I", '&0. (29)

It follows from (28) and (29) that, at the points u =u„and
u =u, 3, where F„"' &0, the coefficients A,I' and A,2" (i = 1

and 3), independent of the values D~" (28), are real num-
bers of unlike signs. At the point u =u, 2, where F„'2')0,
the coelicients A, 'i z are complex.

Hence, the singular points v, &
and v, 3 are saddle points

of Eq. (17). On the other hand, a wide cluster on the
(u, q') plane corresponding to (15) and (23) represents a
segment of the horizontal line q' =q,' (Fig. 14). The end
points v;„and v of this segment are practically equal
to the values u„and u, 3, correspondingly. Notice that, as
one can expect from the results of Sec. II 8 2, the points
u;„and u,„aresituated outside the interval (u, 2, u„)of
the instability of the Sow, i.e., the homogeneous traffic
Qows inside and outside the cluster are stable.

One can consider the peculiarities of the phase trajec-
tories which pass near the saddle point u„(oru, 3). First
notice that the value Do" -=3.231/~ is positive and the
value Do'= —0.611/~ is negative. This means, taking
into account (26)-(28), that the values ~w~ on these
separatrices for w) 0 are considerably less than for w &0
for the same values v. This explains the fact that the
right front of the cluster [Fig. 2(f)], where tu) 0, is rela-

H. Clusters of "small" amylitude

In the numerical calculations of the cluster effect (Figs.
2—13), the function V(p) and the value ce (Fig. 1) in the
kinetic model of traSc Sow (1)-(4) have been chosen to
satisfy qualitative properties of traSc Sow, especially to
satisfy the conditions (5) and (10a) (Sec. II A). The addi-
tional numerical calculation, which has been made for
the other examples of a function V(p) and a value co,
shows the same qualitative structures and parameters of
clusters in a traffic flow, if the conditions (5) and (10a) are
fulfilled.

As one could expect, this conclusion is also preserved
for the numerical calculations of the cluster effect in a hy-
pothetical homogeneous traffi flow, which is unstable
only in the relatively small interval of the density of
vehicles (10a}, i.e., when (p, z

—p„)/p„«1.In this
case, clusters of small amplitude are formed:
rI=(u —

um )/u~„&&1. The numerical analysis
shows that the properties of clusters of small amplitude
and of large amplitude qualitatively coincide.

There is, however, one important quantitative peculiar-
ity of a small amplitude cluster: The values Du' (28) in
the saddle points u„,u, 3 [Fig. 15(c)] of Eq. (17) and also
the value of the function Du(u (x),q', ur ) (19) in the ex-
treme points v;„,v~„due to the small amplitude of the
clusters can be also small enough (of the order of rl «1).
Therefore, the values ~A,"~ in (27) for these saddle points
are almost equal to one another. As a result, the form of
the stationary cluster is almost symmetric [Fig. 15(a)]. It
allows for the function Du(u(x), q', u ) (19) in Eq. (17),

q%p&/t)

O.S—

FIG. 14. The v-q* curve for the wide clus-
ter [Fig. 2(f}] and the wide anticlnster [Fig.
I l(a}). The dashed line corresponds to the re-
gion of the average velocity of vehicles, where
the homogeneous traSc Sow is unstable. The
found values are v, &

—=0.0021/~, v,2~1.476I/~,
v, 3

——4.31//v.

0.4—

0.3
0 v 0.5

Yc2
Y$2

I

2.5 3 0 35 ) 345
ii
v/(l/X)
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which corresponds to a small amplitude cluster, to write
formally the following condition:

IV. NONLINEAR THEORY OF A STATIONARY
MOVING CLUh l'ER

Do(u, q', vs)= eD(u, q', vs), with e, «1 (30) A. Non&5~ear equations for stationary cluster
of small amplitude

where the constant value c. should be chosen so that it is
of the order of g=(u,„—v „)/v « l.

Clusters of large amplitude (Figs. 2—12) in comparison
with the clusters of small amplitude (Fig. 15) may de-
scribe better real traSc flow. Here, traSc jams with high
density inside and low density of vehicles outside are ob-
served. Nevertheless, clusters of small amplitude, as has
already been emphasized, have the same qualitative prop-
erties as clusters of large amplitude. Therefore, using
(30},one can develop the qualitative nonlinear theory of a
stationary moving cluster on the example of small ampli-
tude clusters and explain the main characteristic proper-
ties of any stationary moving clusters found from the nu-
merical analysis above.

v (x)=v' '(x)+ su("(x)+. . . ,

q
+ —

~ +(0)+~ e(1)+

v =v +sv~ )+
g g g

(31)

Substituting (31) into (17), (18), and (21) one can get equa-
tions for zero,

d u' '/dx +dU/dv' '=0 U= F' 'du' '
u(0)

(v(o) u(o))-)dx p L/qe(o)
g

(32)

(33}

Under the condition (30), one can seek the solution of
the problem (17), (18},and (21) in the form of expansions

(a)
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FIG. 15. The wide cluster of "small" ampli-
tude (a), the corresponding phase trajectory
(b), and the v-q curve (c). Results of the nu-

merical analysis of Eqs. (1)—(4) for
V(p}=[0.1(1+exp[[(p/p) —0.5]/0.002])
+4.8689[1 (p/P)]]1/r, —eo =3 72631/~, L.
=1001, p„=0.495p. The found values are

pci —=o 4944p~ pc2=0. 5057p, vsi =2.3312l/v;
v» -——2.48271/~, u, 3——-2.6221/~, vo =uc2
—=2.4111/~, vo -=v,

&
~2.5551/v. The found

characteristic parameters of a wide cluster are
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=- —1.24917 s
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u' '(0)=u' '(L), dv' '/dx~z=dv' '/dx~i,

and the first

d2u(i)/d 2+F{Q)v(1)— D(Q) (Q) F(Q) «(1) F(Q) (()
V q«q V

(34) «(0) ydv (o)— P(0)gy (0)
V q

«(Q)(v(Q) v(Q)) —&P ]g

X [( (Q) (Q)
)
—lg«] —)

(35) where a value

0

(
~I)

v 0 2
~ ~g ~

~
~ ~ v

~~q «qL u'"dx (, ) f L dx «(() PhL
Q (

Q —u
Q )2 (( ~Q (u ) —v(Q))2 ( «(Q))2

g

(36)

u'"(0)=v"'(L) du"'/dx~Q=du'"/dx~{L

approximation in e. In (32) and (35) the functions

F(Q) F(u(Q) «(Q) u(Q)) D(Q) D(u(Q) «(Q) u(Q))~vg oq f g

g„=aF/au( ... ,.... ..„F„=aF/au,),.. .,.. .., ,
(0)— (0)—

(37)

F,"'=&F/&q '1„(o),«(o) „(o)

are of order of 1; w{ '=dv' '/dx.

(38)

B. Structure of clusters

Equation (32} is formally identical to the equation
describing the conservative motion of a "particle" with
"coordinate" v and "time" x in a potential U. Given the
values of L and N [i.e., ph (8)], the form of the patential
U(v' ') (32) and (38) depends on the two quantities, u'Q'

and q" '. Choosing first some fixed value of vg ', one can
try to find the corresponding forms of the potential U for
different values of q" ' and the trajectories af the "parti-
cle" in it and an the (u' ',dv' '/dx) phase plane. There-
fore, it will be possible to find the corresponding solutions
(v' '(x),q" ') which satisfy the chosen value of u' '.
Then, one can repeat this rocedure for a new value of
us{ ', if the chosen value u' does not fulfill some require-
ments to be discussed below.

«(o){ (o) „(o))—) &0

is introduced. If the shape of the v-q' curve is known,
one can reconstruct the form of the potential U(v' ') for
diferent values q" ' and then find the possible solutions
u' '(x) (Fig. 16).

For a construction of the v-q' curve, one can use the
conditions of the instabihty of traffic flow (10) and the
condition (5). I.et us reconstruct only a part of the v-q'
curve for some range of values v' ', q" ' and also for
values of the velocity v' '&u' ' (Fig 16.}. Exactly, the
consideration of the values v' ', q

«( ' will be restricted to
some vicinity of those values which satisfy the condition:

(o)/(„(o) „(o))&

The characteristic feature of the interval (44) follows
from the above-mentioned conditions for the instability
of traffic fiow (10). On the one hand, to satisfy the condi-
tion (10b} in the interval (10a), it should be an interval of
density p of traffic flow, i.e., corresponding to (14) it
should fulfill the condition (44), where the value g (5) [and
therefore the value P (43}] has to reach large enough
negative values. On the other hand, outside the interval
(10a) the traffic flow is stable, i.e., the ~alue (g~ (and (g'~ )

should be considerably lower than inside the interval (44).
In other words, from the conditions of instability of
traffic flow (10) follows that the value ~g'~ should have a
relatively sharp maximum somewhere inside the interval
(44).

The latter means that there are always some values of
the velocity vg

' so that there is some interval

U()& ( )&0'( ) (45)

where the value ~P~ is large enough to make on the v-q'
curve (F' '=0) the function

1. Form ofpotential

The extremes of U(v' ') correspond to the condition

d U/du ( '= F( '=0, (39)

I (q (" u(I } )= I (p)l «(o){ (o) „(o))—) ~ (41)

Analogously to Sec. III G, one can call this curve
q" '(v' ') a u-q curve. A derivative dq' '/du' ' on the
u-q' curve, as follows from (40}, (41), (38), and (5}, is
equal to

i.e., they correspond, as follows fram (38), (20), and (16),
to an intersection of the curve q" '(v' '), defined at the
chosen value vg

' by the equation

&(q «(Q)(v (Q) —u ( )
) ') —v (Q) (40}

with the straight line q" '=const. In (40}, the function

F(Q) ( 1+ «(Q)(u(Q) u{Q))—2~@«~) «(Q)(u(Q) v(Q)) —1
U Ug

(46)

positive inside and negative outside the interval (45).
Due to ug '&u' ' and P &0 (43), on the u-q curve the
function F',' =q*(u' ' —u' ') ~P is always negative.
For this reason, inside the interval (45) the derivative
dq' '/du' ' (42) is positive and outside this derivative it
is negative. At the boundaries of (45), i.e., in the charac-
teristic points v' '=vo', v' '=vo ', the derivative is
dq«( '/dv' '=0, as in these points the value E„('=0.
Therefore, in the range of values v' ', q«( ', and vg

' un-
der consideration, the u-q' curve has an 14 shape [Fig.
16(a)] [19). The same shape and properties of the u-q'
curve follow from the numerical calculation [Fig. 15(c)].

From the consideration made it foHows that the v-q'
curve [Fig. 16(a)] consists of three branches (I, II, and III)
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FIG. 16. Illustrating the qualitative construction of the solutions v' '(x) (d)-(i): (a) the shape of a part of the v-q curve, (b) the
form of the potential U, (c) the phase trajectories. The solutions v' '(x) in (d)-(i) have been marked by the same designations
(s &,s2, s, 1,2,p) as the corresponding trajectories in (b) and (c).

of the single-valued function v+'(q" '). Branch I, where
v' ' v0', corresponds to F„''~0. Branch II, where
v0'&v' '~v0' ', corresponds to F„'' 0. Branch III,
where v' '&u0' ', corresponds to F„''~0. On the other
hand, in accordance with (32) and (39), at the extreme
points of the potential, U(u' ') is

d'Urdu'=F"' .
V (47)

«(0) ( «(0) ( «I(0) (48)

where the values qo' '=q' '(vo '), qo' '=q" '(uo' '),

Therefore, the interception of some straight line
q" '=const with branch II of the u-q' curve at some
point v' '=v2 ', where F„''&0, corresponds to the
minimum of the potential U(v' ), and the interception of
the straight line q

' '=const with branches I and III of
the v-q curve at some paints v' '=v& ' and v' '=V3 ',
where F„''(0 corresponds to the maximum of the paten-
tial U(u' ') [Fig. 16(b)]. Hence, in the range

the function U(u' ') has the shape of a potential pit [Fig.
16(b)].

The above-mentioned points v' '= v ' (i =1,2,3) satisfy
(39), i.e., they are the singular (fixed) points of Eq (32). It.
is easy to show that the fixed points u

&

' and v 3 ', where
F„''&0, are "saddle" points and the point vz ', where
F„'') 0, is a "center" [Fig. 16(c)]. Indeed, the solutions
of Eq. (32), linearized near the extreme points v

(i= 1,2,3) of potential U(v' '), have the form (27), where

g(t) g(c) y( Q( )l„(0)— ) i 1 2 3
l

1 g(0) ~(0) + 0s Fp l (Q) —p(0) ~ g l (0)—(&)
(0)i (0) l (0) i

"2

One can see from (49) that at points u' '=uP' and
v v 3, where F„"'& 0, the caeScients A, &' and A,z' are
real numbers of unlike signs. At a point v' '=v

2 ', where
F„''&0, the coefBcients X'& ' and A,z

' are strictly imagi-
nary. Therefore, it follows that u' '=u'& ' and v' '=v3 '

are saddle points, and u' '= u 2
' is a center.
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U(o"') = U(U"') (50)

This value q
" '= q,

*' ' and the corresponding Sxcd
points v& '=vs'&', v' '=v,'2', v' '=u' ' as follows from
(50) and (32), correspond to the equations

2. Eorm ofsolutions

There is some value q«( '=q," ' for which the poten-
tial U(v' ') in both saddle points u( '=U', ) =v,()) and
v' '= v(3 ) =u,'3' coincide [Fig. 16(b)]:

C. Paawuneters of clusters

Velocity ofclusters

The expression for an evaluation of the velocity v' ' of
a cluster can be found from the condition of solvability of
the problem (35), (37) for the next (first) approximation in

This condition, known as the Fredholm alternative
(e.g., [21]), is reduced to the requirement that the right-
hand side of Eq. (35) has to be orthogonal to the solution
U', "(x)of the problem

~(0)
p(0)(U (0) «(0)

U
(0)

}dU
(0)—()qs ~ug

"si

p(0)(U(0) «(0) U(0)) 0
(51)

d'u") /dx'+F") '"=0
U(l)(0)=V 1 (L)

dU ) /dx
~ ~ —()

=dU ) /dx
~ ~ —L

(53)

For q" '=q," ', the "particle" trajectories s, and s2
[Fig. 16(c)] from one saddle point to another (U,(0(), u,(3o) )

describe, with exponential accuracy, the distributions
v'0'(x) in the form of moving steps [Figs. 16(d) and 16(e)].
But both of these solutions do not satisfy the boundary
conditions (34}. Contrary to it, a trajectory s, which is
close to both separatrices, describes a solution u( '(x} in
the form of one wide stratum [Fig. 16(f)] which satisfies
the boundary conditions (34). If L,L, ))i, then, with ex-
ponential accuracy, the extremal values v „0'=v,(&' and
u ~() =v,'3' [Figs. 16(c) and 16(fl]. Notice that there are
also a lot of other closed trajectories, which describe
different periodical solutions v( (x) [Fig. 16(i)].

Taking into account the formula (16), one can see that
the phase trajectory s on the (v, w) phase plane [Fig.
16(c)] and the solution u( '(x) in the form of one wide
stratum [Fig. 16(fl] found from the qualitative nonlinear
theory approximately describe the corresponding trajec-
tory [Fig. 15(b}] and the structure of a wide cluster of
vehicles [Fig. 15(a)] found above from the numerical in-
vestigation. Therefore, for a wide cluster the values of
the maximal and the minimal average velocities of vehi-
cles (v~~, v~;„)and q,

' (with the accuracy of s} can be
found from approximate formulas:

dv"' du'"
dx x =0 dx

d du"' d dv'"
dx dx „=0 dx dx

(54)

It follows from (53) and (54) that the function
u)' '(x) =—dv' '/dx is proportional to the solution U', "(x)
of the problem (53). The functions v' '(x) in Figs.
16(f)—16(h} are even functions of x. Therefore, the corre-
sponding functions w( '(x} are odd. On the other hand,
the functions F(«), I( ' (38}on the right-hand side of Eq.
(35) for the symmetric (with respect to point x =L/2)
functions v(o)(x) [Figs. 16(f)-6(h)] are even functions of
x. Consequently, the Fredholm alternative for this case,
taking into account (19), (35), and (38), has the form of
the expression

~2 v(0) x u(0) 2

which is conjugate to the problem (35), (37) when the
right-hand side of (35) is zero. Differentiating (32) and
(34) with respect to x, one can get the problem

d du (0) du2 (0) (0)

dx dx dx

um V(0) um u(0) ««(0)
u min vs 1 & max us3 (52) X(U' '(x) —

vg '} [w' '(x)] dx =0
y (55}

The same conclusion about qualitative agreement be-
tween the theory and the numerical investigation follows
for a narrow cluster and a narrow anticluster. Indeed,
one can see that for q" '& q,

«( ' the trajectory l in Figs.
16(b) and 16(c) describes the distribution u' '(x) in the
form of the narrow stratum of low value u' ' [Fig. 16(g)].
These trajectories and solutions approximately describe
the corresponding trajectory and the form of the narrow
cluster, as follows from the numerical analysis. For
q«(0) (q,«(+, the trajectory 2 [Figs. 16(b) and 16(c)] de-
scribes the distribution u( '(x) in the form of a narrow
stratum of high value u ' [Fig. 16(h)], i.e., corresponds to
a depleted local group of vehicles moving with larger ve-
locity u' '. The trajectory and solution approximately de-
scribe the corresponding trajectory and the form of the
narrow anticluster [20].

which determines the value ve(
' together with (32}—(34).

Outside of the fronts of a cluster, i.e., outside the re-
gions, where an average velocity of vehicles u' '(x) sharp-
ly change in space [Figs. 16(fl—16(h}], the function
w' '(x) =du' '/dx is close to zero. On the contrary, this
function has the maximum near the pomt u' '=u,'z' [»g.
16(c)], i.e., inside the fronts of a cluster. Taking it into
account, one can get from (55) that the value Ue

' for a
cluster approximately is

v (0)—u (0)
"g "s2 ~O .

By comparison of this formula with formula (9b) for a
phase velocity u~ of small amplitude perturbations near a
threshold of an instability of a homogeneous Sow one can
SCC that Ug Up Vs 2 Uh AS R valuC Us 2 Uh GRQ bC(0)

both positive Rnd negative, the velocity of a cluster can
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diSer from v~ not only quantitatively, but also by sign.
This explains the results of the numerical investigations
made in [1].

2. Characteristic parameters of cluster

From the numerical investigation of the parameters of
a wide cluster it has been found (Sec. IIIB) that the

I

values p;„p,v;„,v, vg, and q,
' for a wide cluster

do not practically depend on the density of vehicles in the
initially homogeneous flow p& and on the length of the
road L as far as L &&I. The theory presented can explain
these results.

Substituting the value vs '=u,'P —co from (56) into
Eqs. (51) and taking into account (20), one can exclude
the value vg

' and find four equations:

„(0) '
«(p)

f $3 s

(0)+ (ov cp vs 2

(p)
+(p) e(0)

du"'=0 V(o)+ v(o) ' „(o)+
p s2 vsi &p "s2

vsi 0, 1=1 23(p)— (57)

PS
ph pmin

s m nl 7

pmax pmin
(58}

where one took also into account (23} and (52). The
analogue formula L, =L (pt, —p .„)/(p —p;„)quali-
tatively describes the dependence of the width of the nar-
row cluster L, on p& and L.

From (58} it follows that corresponding to the numeri-
cal calculations (Sec. III B) the width of the wide cluster

for the values U,';o' (i=1,2,3},q" '. The latter four values,

which correspond to (23) and (52), approximately deter-

mine the values p;„,p, v;„,v, and q,
* for a wide

cluster, as one can see from (57), depend on the function

V(p) and on the value co, and do not depend on the

values pt, and L Num. erical analysis of (57} shows that
there is a wide range of functions V(p) and values co for
which the system (57} has solutions corresponding to a
wide cluster. One of the examples has been considered in

Sec. III H.
Finding from (57) the value U,'x', one can also estimate

the velocity of a wide cluster from (56). Hence, it appears
that the values p;„,p, v;„,u, v, and q,

' for a
wide cluster practically do not depend on pz and L.
These conclusions of the nonlinear theory qualitatively
explain the results of the numerical analysis conducted
above (Sec. III}. The formulas (56), (57) also show good
presented in Sec. III H. For example, the velocity of the
cluster found from the numerical calculation is
v ~ —1 249l /r, . and from (56) and (57},
U '=- —1.2441/r. Also, for clusters of large amplitude
(Sec. IIIB), formula (56) gives satisfactory agreement
with the numerical calculations, if in (56) the value
U,2-=1.4761/r from the numerical calculation (Fig. 14) is
used: from the numerical calculation v -= —1.09l/r,
from (56) Us

'= —1.01//r.
From the theory presented corresponding to the nu-

merical investigations, one can find that the width of a
wide cluster L, depends on both the density pI, and on
the length of the road L. Indeed, the value L, can be
determined from Eq. (33}.One can take into account that
the regions of the fronts of a wide cluster [Fig. 16(f}]are
of the order of l and for a wide cluster, L,L, » I (Sec.
III B). So, to estimate the value L„onecan neglect these
regions of the fronts and write from Eq. (33) the approxi-
mate condition:

L, monotonously increases with both the value pI, and L.
If the value pz is decreased, the value L, also decreases
and for the density p&, which is still larger than p;„,the
wide cluster gradually transforms into the narrow cluster,
at least when the value L,~l [Fig. 16(g)]. The longer the
length of the road L is, the less the difFerence between the
values pl, and p;, is, which corresponds to the transfor-
mation of the wide cluster into the narrow cluster. This
means that the region of density, where narrow clusters
exist, is decreased with the increase in the length of the
road L. These results explain the numerical investiga-
tions presented in Sec. III B.

On the other hand, one can also see from (58) that as

p& ~p;„the value L, tends to zero even for a very large
(but a finite) value L. It means that at ps &p;„even for
L ~ ao a solution v' '(x) [Fig. 16(f)], which describes a
cluster, cannot exist, i.e., the value pz =p

„

is the lowest
possible boundary density of vehicles in the initially
homogeneous traSc flow for the existence of a cluster in
the fiow. This result of the theory can give a qualitative
explanation of the numerical investigation, where it has
been found that the boundary value of the density pb, for
the existence of a cluster tends to the value p;„if the
length of the road L is increased (Sec. III D).

In the same way one can get the formula
L, =L(p p„)l(p —p—;„)for the width of a wide
anticluster L„where L, =L —L, . From this formula it
follows that L, monotonously decreases if the value pl, is
increased (Sec. III E) and also that the value pt, =p,

„

is
the highest (for L —+00} possible boundary density of
vehicles in the initially homogeneous flow for the ex-
istence of a wide anticluster in this flow.

V. CONCLUSIONS

A. Local cluster and other nonstationary clusters
in traf5c fiow

(i) If a local perturbation of a finite amplitude in the in-
itially homogeneous traSc flow occurs, a local cluster,
which is surrounded both upstream and downstream by
the same homogeneous flow, can spontaneously appear
on a long enough road. The 1ocal cluster is a nonstation-
ary moving localized structure. The local cluster consists
of the following: (a) the proper cluster of vehicles, where
the density of vehicles is considerably higher and the
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average velocity of vehicles is lower (up to a standstill)
than in the initial flow; (b) the new almost homogeneous
traffic flow formed by the cluster; and (c}a transition lay-
er between this new flow and the initial traSc flow. The
oscillations of the density and the average velocity of
vehicles, which can occur in the transition layer of the lo-
cal cluster at higher density of vehicles, are responsible
for the spontaneous appearance of a complex localized
structure which consists of a sequence of a lot of clusters.

(ii) There is a boundary density (pb } for an excitation
of the local cluster: if the density is less than the bound-
ary density, the local cluster cannot be excited. There is
also a critical density (p„),when small-amplitude local
perturbations grow in traffic flow. The boundary density
is lower than the critical density: p& &p„. Both the
boundary and the critical density are characteristic pa-
rameters of the traffic flow. In the interval of density
(pb, p„)a local cluster can be formed, if a critical local
perturbation whose amplitude exceeds a critical value,
occurs. This critical local fluctuation can be considered
as a "nucleation center" for the formation of local clus-
ters. The critical amplitude of the local perturbation is a
falling function of the density: it is maximal at the densi-
ty pb and it tends to zero, when the density approaches
the value p„.The parameters of the local cluster formed
do not depend on the amplitude of the local perturbation
but only on the parameters of the traffic flow.

(iii) An appearance of a lot of local perturbations in
traffic flow can lead to the formation of many interacting
moving nonstationary clusters. These clusters, especially
in the vicinity of the critical density p„,can have
difFerent amplitudes, different widths, difFerent velocities
and they may not be situated periodically in space. The
effect of the appearance of such a complex sequence of
moving nonstationary clusters, collisions between clusters
which cause their merger, and also a possible process of
random appearance and disappearance of clusters, may
explain the chaotic behavior of traffic flow which has
often been observed in experimental investigations.

B. Stationary moving clusters on circular road

(i) The critical density (p„)of the instability of a traffic
flow on a circular road that is long enough with respect
to a growth of a small-amplitude global perturbation [see
(9a)] is higher than the boundary density for the excita-
tion of the local cluster and it is lower than the critical
density of the growth of small-amplitude local perturba-
tions: pb &p, &

&p„.
(ii) On a circular road a stationary moving cluster of

vehicles or a sequence of many stationary moving clusters
can be formed. The process of a formation of a station-
ary moving cluster in an initially homogeneous traSc

flow near the critical density p, &
is linked to the spontane-

ous appearance of a local cluster of vehicles on the circu-
lar road that is long enough.

(iii) There are wide or narrow stationary moving clus-
ters in treNc flow. Besides, at a relatively large density Qf
vehicles, there are wide or narrow stationary moving an-
ticlusters. In the anticluster, the density is lower and the
average velocity of vehicles is higher than in the initial
homogeneous flow.

(iv} A wide cluster represents a local region of a large
density and a low average velocity of vehicles, where the
traSc flow is almost homogeneous. This region is re-
stricted by two moving fronts, where both the density
and the average velocity of vehicles sharply change in
space. The homogeneous flows inside and outside the
cluster are stable and difFer from the initial homogeneous
traffic flow. The velocity of the wide cluster, the maximal
and the minimal density, and the average velocity of vehi-
cles in it are the characteristic parameters of the traffic
flow, as they do not practically depend on the density of
vehicles in the initial homogeneous flow and on the
length of the road, if the latter is large enough.

(v) If the density of vehicles in the initially homogene-
ous flow is decreased, the width of a wide cluster de-
creases, too, and the wide cluster gradually transforms
into the narrow cluster. The amplitude of the narrow
cluster do:reases with the density of vehicles in the ini-
tially homogeneous flow. On the contrary, the wide anti-
cluster gradually transforms into the narrow anticluster
as the density of vehicles in the initially homogeneous
flow is increased.

(vi) There is a boundary density. of vehicles (pb, ) in the
initially homogenous flow, when a stationary moving
cluster in traffic flow still exists. The width of a cluster is
minimal at this boundary density. For the large enough
length of the road this boundary density is lower than the
density, which is critical for the stability of traffic flow
with respect to small-amplitude global perturbations:
p» (p„.This means that a cluster of vehicles can ap-
pear at a density of vehicles, where the homogeneous flow
is stable with respect to small-amplitude Suctuations. If
the length of the road is increased, the boundary density

pb& decreases and tends to the deSnite minimal value
which is reached for the inflnitely long road and practi-
cally coincides with the boundary density pb of an excita-
tion of a local cluster.
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