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Multiyeriotbc orbits in a pentiulutn with a vertically oscillating pivot
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Some of the complex orbits of a pendulum whose point of suspension is subjected to vertical oscilla-
tions are studied by means of an analog electronic simulator. The eKcacy of this approach to problems

requiring considerable interactive exploration of parameter space is demonstrated for this system. In a
number of cases, confirmation of the simulator results is provided by numerical integrations of the equa-
tions of motion, together with analytic approximations. Some of the orbits have also been observed
directly on an experimental realization of the vertically oscillating pendulum.

PACS number(s): 46.10.+z, 03.20.+i, 84.30.Wp

I. INTRODUCTON

Driven nonlinear systems typically exhibit extraordi-
narily rich dynamical modes. The most common ap-
proach to the problem of investigating these many modes
is, at present, numerical simulation. The difFerential
equations describing a system are reexpressed in some
Rnite difference form, according to the rules of an ap-
propriate algorithm, and the resulting algebriac problem
is solved on a digital computer. Even with relatively fast
desktop personal computers (PCs) and workstations, this
usually turns out to be an extraordinarily slow process,
involving as it does a good deal of trial-and-error search-
ing of parameter space.

Until just a few decades ago, analog computers were
available as commercial products. These machines were
commonly employed by engineers to simulate such
diverse phenomena as Suid Now, mechanical vibrations,
and chemical reactions. Like the earliest digital comput-
ers, they had to be programmed by means of patch cords
on large connector panels. In effect, the programmer
wired together operational ampli5ers, capacitors, poten-
tiometers, switches, and other components to create a cir-
cuit which would behave as an electronic analog of the
original system. These machines have now all but disap-
peared, victims of the digital culture. Yet the underlying
rationale for analog computation remains valid, if over-
looked. A properly designed circuit can often provide
real-time results faster than a digital simulation on a
supercomputer. Of course, there is some loss in
precision —analog results might typically be valid to
within a percent, whereas digital calculations can be per-
formed to better than ten significant digits. This tradeoff
of precision for speed is entirely justifiable in many cases,
particularly where the original phenomenon under inves-
tigation does not lend itself in the real world to experi-
mental verifications beyond perhaps a four or Sve digit
accuracy. In other words, the availability of ultra pre-
cision o.i digital machines has led to an excessive focus
on that precision. In the years since the demise of analog

computers, integrated circuit op amps, integrators,
differentiators, summers, multipliers, log and antilog
ampli6ers, etc., have undergone enormous advances in
performance. As the results here will demonstrate, the
analog approach using modern components can prove
very effective as an analytical tool for the study of various
physical phenomena.

The particular system to be considered in this paper
consists of a simple pendulum whose pivot undergoes
harmonic vertical displacements of specified amplitude
and frequency. Certainly the most celebrated behavior of
this pendulum is the possible stabilization of the "invert-
ed" state [1-5]. This process of dynamic stabilization is
of particular current interest because it is central to the
operation of the Paul trap [6,7]—a charged particle
confinement scheme in three dimensions which uses ac
electric quadrupole fields.

In this study, we employ an electronic analog of the
physical system. The observations from this simulator
are then supplemented when appropriate with measure-
ments taken from an experimental apparatus [8] consist-
ing of a small pendulum mounted on a vertically oscillat-
ing platform, with numerical simulation data, and with
analytical approximations.

For this driven pendulum, it may happen that an in-
teger number (n, ) of pendulum oscillations occurs in a
time interval during which the vertical oscillations have
executed another integer number (n2 ) of complete cycles.
If n, and n2 are either identical, or commensurate, and
remain so far at least small perturbations of the system,
then the pendulum has become synchronized to the forc-
ing function. It is sometimes possible for several difFerent
modes of synchronization (combinations of n i and nz } to
be attained for the same set of parameters. The investiga-
tion of some of these characteristic synchronization
modes using analog computation (electronic simulation}
is the primary objective of this study. We note in passing
that synchronization can also occur between autonomous
oscillators subject to some degree of interactive coupling.
An early description of this phenomenon was given by
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Huygens [9] who discovered that two pendulum clocks
attached to a common beam (which introduced a weak
coupling between the pendula) ultimately would run at
the same rate. Blekhman [10] and Berge [11]have writ-
ten comprehensive reviews of synchronization.

Runge-Kutta algorithm. %here appropriate, analytical
approximations to the desired phase space orbits could be
obtained. Finally, as noted already, we designed an elec-
tronic analog of the pendulum. This design will now be
described in some detail.

II. THEORY

Consider an apparatus consisting of simple pendulum
of mass m and length l, attached to a supporting struc-
ture of mass M, all of which is driven up and down by an
applied force. The equation of motion of the pendulum
in terms of its angular coordinate 8 is then

ml(F, —mg cos 8)sin(8) d~8 d8=I +b, (1)
dt

where I is the moment of inertia of the pendulum, b is the
velocity dependent damping coefBcient, and E, is the to-
tal vertical force that is applied to the mass M. In prac-
tice it is the position, rather than the force, which is
de6ned by the drive. For the case of a sinusoidal dis-
placement (at frequency co), F, is given by

III. ANALOG COMPUTATION

Figure 1(a) is a schematic of the complete electronic
simulator. The sine generator, Fig. 1(b), is a voltage con-
trolled oscillator (VCO) with an output which can be ex-
pressed in the form V,sin(8) where d8/dt =2nEVO (see
Wu et al. [12]}and Vo is the input to the sine generator.
The amplitude V, of the sine generator circuit was nomi-
nally targeted to be 1 V; in the actual circuit its measured
value was 0.933 V. Similarly, the design goal for the con-
stant K was 1 kHz/V; it was measured as 990 Hz/V.
The angular coordinate 8 is generated by that part of the
VCO circuit [Fig. 1(b)] which is enclosed by the dashed
box. Note that the circuit sets the angle in the range—n./2) 8) 3m /2. In Fig. 1(a), the leftmost op amp per-
forms the current summation,

F, =Mg +mg cos 8 Focos(cot —) . (2)

In most practical situations M &m. Combining Eqs.
(1) and (2) and using the following identities,

co ~o
FO =MA co, Q=, Q =I

cop b
' 1/2

e=—~=a t co =
p ~ p

d Vo Vo V, sin(8) V;sin(cot ) V, sin(8)

dt R3 Rq (10}R)

which reduces to

d8 1 d8
1

(4)

where A is the amplitude of the displacement of the mass
M and v is dimensionless time, gives the normalized equa-
tion of motion of the system:

d8 1d8+— + [1—eQ cos(Q~)]sin(8) =0 .
Q d~

(3)

In the zero damping limit and for small-angle motion
about the vertical equilibrium position, this becomes the
Mathieu equation for which a considerable literature ex-
ists detailing in particular the various regions of stability
[1—5].

A fundamental principal which must be obeyed in a
steady state is the requirement that the "average" energy
input to this system must equal the energy dissipated.
This is not a continuous condition, but one that must be
satisfied when integrated over some appropriate time in-
terval. For this harmonically driven system, the integra-
tion must be applied over a number of complete cycles of
the input excitation. In some orbits, as will be seen, the
pendulum continuously rotates and so 8 monotonically
increases with time, although certainly not in a linear
manner. For other orbits, the pendulum coordinate 8 os-
cillates about a fixed value.

Several methodologies were employed in this study of
dynamical modes of an inverted pendulum. An experi-
mental apparatus was constructed which permitted direct
observation of the motion of a "real" system. Numerical
solutions of Eq. (3} were computed using a fourth order

V;sin(cot }
+2m' + V, sin(8) =0, (5)

where the output of the op amp is Vo. Also note that the
electronic multipliers (Analog Devices: AD532} have a
built-in divide-by-10 feature. Initial conditions are set in
the conventional way by precharging the appropriate in-

tegrating capacitors. (d8/dt); is set by precharging C,
by means of the battery and switch, while 8, is set by
precharging the capacitor of the integrator in the sine
generator circuit [Fig. 1(b)], again using a potential
source and switch.

The natural frequency cop, with V; =0 is given by

2mKV,

R2C)

Equations (3) (the pendulum) and (5) (the analog circuit)
can be made equivalent by normalizing time to 1/cop and

by using the following identities:

~;R2~o ~ d e ~o2~&
Q =C&R3c00, e= z, Q=

co'R, (10)

The X and Y position coordinates of the pendulum bob
are electronically generated by the multiplier and integra-
tor in the dashed box of Fig. 1(a},as can be seen from the
following discussion. Note first that the output of the in-
tegrator is
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R4Cz(10) 0
VOVsin t .

But d8/dt =2mKVO and by setting R4Cz(10}=(2nK}
(that is C2=0.0047 p,F and R4 =3420 0 in the present
case) this output becomes exactly V, cos(8). In real space
units, the horizontal and vertical coordinates of the pen-
dulum bob are 1sin(8) and 1[cos(8)+icos(cot}],respec-
tively. The analog voltage equivalents of these coordi-
nates, as indicated in Fig. 1(a), are V, sin(8) and

[V,cos(8)+ V, (Rs/R6)sin(tot)]. Hence the simulated

true space motion of the pendulum bob can be viewed

directly on an oscilloscope by simply feeding these two

voltages to the x and y inputs. Note that
R5/R6=V, R2/(R&Q 10) so that R5 and/or R6 must be
set to new values for each choice of excitation frequency
Q.

Thus the electronic analog simulator provides both a
phase plot and a coordinate plot. The values of C, and

R2 are chosen so that coo is within the operating frequen-

cy range (10—10000 Hz) of the op amps. For the experi-
ments reported here, t00 was set equal to 779 rad/s
(f0=124 Hz) by making C& =0.097 p,F and Rz=99. 1

kohm. The measured low amplitude natural frequency
was 760 rad/s (f0=121 Hz). By setting R3=280.5

kohm, a design target of g equal to 22 was established;
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1.5

1.0

0.5

the measured value of Q was 19.
The possible periodic orbits for this system have been

divided into two groups: (i) rotational orbits in which 8
increases monotonically with time (steady phase winding)
and (ii) oscillating orbits where 8 fiuctuates about some
fixed reference phase. The vertically up ( 1 ) and vertical-
ly down (l } modes fall within this latter category. The
pendulum coordinate 8(t) is repetitive, completing n, cy-
cles in an interval within which there are n2 cycles of the
drive signal. The integers n, and n2 thus serve to label
the periodic orbits.

To facilitate subsequent analysis of the pendulum
motion, the analog outputs (X, Y} from the electronic
simulator were digitized in real ti.me with a Keithley
MetraByte DAS20 PC data acquisition board.

-0.5 IV. ROTATIONAL MULTIPERIODIC ORBITS

- 1.0

—1.5
-1.5 -0.5

I

0.0 0.5

I

1.0 1,5

Rotational multiperiodic orbits with n, = 1 and n 2
= 1,

2 or 3 synchronizations are easily detectable. The
difference (5) between angle 8 and the drive phase Qr is a
particularly useful indicator of orbit type. VA'th the
definition 5(r) = [8(~) Q~] m—, Eq.—(3) becomes

di5 Q 1 d5
de Q Q dr

+ [1—eQ cos(Qr)]sin(Q~+5+m. ) =0, (6)

FIG. 2. A plot of an n, = 1, n2 =3 trajectory of the pendulum
mass from the analog simulator with parameters g =22,
a=0.30, and 0=6.5. The inset is a photograph taken directly
from an oscilloscope display of the simulator output. The X and
Y dimensions are in units of I. The arrow indicates the extent of
travel of the pivot.

which can also be expressed

d5 0 1d5+—+— +sin(Q~+5+ m. )
dr Q Q dr

eQ [sin(2Qr+ 5+m ) +sin(5+ m ) ] . (7)
2

FIG. 3. A photograph of the
actual pendulum in a rotational
multiperiodic orbit n& =1, n2=3
with the pendulum parameters
estimated to be Q =22, @=0.30,
and 0=6.55—that is, essential-

ly the same as for the previous
6gure.
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Example: n
&

=I, nz =3 .Parameters for the electronic
simulator were set to Q =22, @=0.30, and Q=6.5. The
resulting simulated motion of the tip of the pendulum is
shown in Fig. 2, where the inset is a photograph taken
directly from the oscilloscope and the larger drawing is
constructed from digitized data.

This mode was also observed with the experimental ap-
paratus [8],as can be seen in Fig. 3, for which the param-
eter values were Q =22, @=0.30, and Q=6.55. The im-
age of the illuminated pendulum was projected directly
onto a sheet of 8X 10 standard photographic paper using
a 75-mm, f1.9 lens. This method of direct projection re-
sults in a negative image of the apparatus.

Figure 4 is a corresponding plot obtained from a nu-
merical solution of Eq. (3), again with the same parame-
ters. There is close agreement with both analog simula-
tion and experiment. It was found that this particular or-
bit could be obtained only for a limited range of initial
conditions. This does not pose a problem for numerical
simulations, but experimentally such is not the case. In
practice, the pendulum was started with a number of
different initial conditions until the required orbit was ob-
tained.

From the point of view of analytical approximations, it
must Srst be noted that the pendulum is rotating, and so

5=5, +5osin(Qr+P) .

With the amplitude of the oscillations of 5 large, as is
true in this example, 5 can be approximated as
5=5osin(Q~+P). There are some harmonics at frequen-

1.5

0.5—

n& ng 5O [Eq. (10)] 5p [Eq. (3)]

0.25
0.30
0.35
0.38
0.38
0.16
0.60

4.1

5
7

10
15
3

15

0.95
1.51
1.82
1.96
1.20
1.37
1.19

1.1
1.45
1.85
2.0
1.2
1.4
1.2

cy 2Q in 5(r) which balance the sin(2Qi+5) term on the
right of Eq. (7). Thus by assuming that 5 contains no
harmonics in 2Q, then the sin(2Q~+5+tr) term in Eq.
(7) can be ignored. Hence

25 1 d5 e.Q2+— + sin(5) =——+sin(8),Qdr 2 Q
(9)

which has the form of an equation of a driven damped
"pendulum" with angular "coordinate" 5. The frequency
of large-amplitude (maximum displacement 5o} natural
oscillations of an undamped pseudo pendulum, represent-
ed by Eq. (9) in the limit Q -+ ee, can be expressed as

'1/2 ' ' —1
pQ&Q= —K(sin(5o/2 })

2 1r

where (n, in&)Q is the resonant frequency and K is a
complete elliptic integral of the erst kind. Equation (3)
was numerically solved with appropriate values of Q, Q,
and e in order to obtain various rotational synchronous
modes. In Table I, values of 5c from the numerical simu-
lations are compared to values calculated from Eq. (10).

The effective drive term sin(8) on the right hand side
of Eq. (9) contains many harmonics. For the undulations
in the rotational motion to become synchronized to the
drive signal, a harmonic of sin(8) must correspond to the
frequency of oscillation of the pseudopendulum, which it-
self is a function of its amplitude 5o. This amplitude will

TABLE I. A comparison of values of 50 from a numerical
calculation of Eq. (3) and from the formula Eq. (10) using

Q =22.

0.08—

-0.5— 0.06—
O

0.04—
CL

—1 ~ 5
-15 -1.0 -0.5 0.0 0.5 1.0 1.5

0.02—

FIG. 4. The calculated trajectory (numerical integration) of
the tip of the pendulum for the parameters of Fig. 3 using the
initial conditions 8;=1.526 rad and (d8/dv); =4.861. The X
and Y dimensions are in units of I. The arrow indicates the ex-
tent of travel of the pivot.

0
0 4 6 8 f0

I

12

FIG. 5. Power spectrum of the pendulum (numerical simula-
tions) in the rotational multiperiodic orbit n& =1, n&=3 with
parameters @=0.25, Q =22, aud 0=6.5.
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FIG. 6. Basin of attraction for the mode depicted in Fig. 5.

adjust until the oscillation frequency is equal to a har-
monic of sin(8). However, the amplitude of 5o is restrict-
ed to the range of 0 to n Whe. n 5o=n. the oscillation fre-
quency would be zero. Thus whether or not synchroniza-
tion occurs is dependent on the harmonic content of
sin(8).

This issue was investigated using the speci6c mode
n, =1, n2=3 in part because it can be achieved over a
wide range of the parameters e, 0, and Q. Equation (3)
was solved numerically for (Q =22, @=0.25, 0=6.5)
and the power spectrum of the resulting time series 8(t)
was calculated.

An inspection of Eq. (10) reveals that with the parame-

0

10

8
(1,3)

&,2)

INVE RTED

Q=22

(2 2)

13

2
ROTAT ION A L

j(2,2
)OR AL

I

0
0

OSC I LL AT IN G

3

OSCILLATING
I

4 5 12

FIG. 7. A state diagram showing the values of Q and e (for
Q =22) which lead to n, = I, nz =2 (dark shading) and n, =1,
n2=3 (light shading) rotating orbits. The domains of several
other oscillating modes are also indicated. Rotating modes can-
not occur to the left of a boundary line that is given by
e=2[QQ] '. The (l, l) rotating mode can occur in all nonshad-
ed regions for Q & 2. Not all possible modes are shown in this
figure. For example, the (4,4) mode is a bifurcation of the (2,2)
mode and occurs in a very small region to the right of the shad-
ed patch for the (2,2) state.

0 X 1 2

FIG. 8. The space trajectory of the tip of the pendulum, from
the electronic analog simulator, for 0=3.38, Q=22, and
@=1.84 showing the n& =2, n2=2 oscillating orbit. (a) Normal
(the inset is a photograph taken directly from an oscilloscope
display of the simulator output; (b) inverted. The X and F di-
mensions are in units of l. The arrow indicates the extent of
travel of the pivot and the approximate position of the pendu-
lum has been sketched in to show the motion.
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ters (Q =22, @=0.25, Q= 6.5), the factor (n, /n2 )Q must
be between 3.6 and 0 in order for 5o to bet between 0 and
m. In Fig. 5 (the power spectrum), the only harmonic of
sin(e) in this range is at Q=2. 167. Although it has a
small amplitude, it is still strong enough to drive the
pseudopendulum. Of course there are competing orbits,
principally the n, =1, n2 = 1 rotational mode.

The basin of attraction for this n
&

= 1, n z
=3 mode was

also obtained for the parameters ( Q =22, @=0.25,
Q=6.5) using interpolated cell mapping [13-16]. This
basin, plotted in Fig. 6, indicates the domain of initial
conditions which lead ultimately to this orbit.

The example just given illustrates the constructive in-
terplay among the three methods being applied to this
problem: electronic simulation, direct experimentation,
and numerical computation. Other modes such as n, =1,
n2 =1 and n, =1, nz =2 were also observed. The approx-
imate domains in parameter space [e,Q] of these rota-
tional modes are indicated in Fig. 7. Comparison with
Fig. 4 of Ref. [5] reveals that these domains are coex-
istent with stability regions for the normal and inverted
states of the pendulum.

V. OSCILLATING PERIODIC ORBITS

In these modes the pendulum executes oscillations
about some constant angle. The amplitude of these oscil-
lations will depend upon the particular orbit and it may
be small or large, even greater than 2~ in some cases.
The vertically up (inverted state) and vertically down
(normal state) orbits are examples where the amplitude is
small.

Example: n, =2, nz=2. The n, =2, n2=2 orbit is
especially interesting because the amplitude of oscillation
is greater than 2m.. The pendulum alternately rotates in
one direction and then reverses for more than 2~ rad but
less than 3~ rad. One cycle of the drive force is required

to complete the forward rotation of the pendulum and a
second cycle of the drive force is needed to complete the
reverse rotation.

Figures 8(a) and 8(b) show two trajectories of the pen-
dulum as observed on the electronic analog simulator for
Q =22, @=1.84, and Q=3.38. Note that one is the in-
version of the other. For convenience we have labeled
the orbit of Fig. 8(a) as the "normal" orbit and that of
Fig. 8(b) the inverted orbit. The approximate position of
the pendulum has been sketched in a numbered sequence
in order to show the motion.

The domain of the n, =2, n2=2 orbit in parameter
space [Q,e] is indicated in Fig. 7. It is subdivided into
darkly shaded region in which the final state is reached
relatively quickly with the indicated parameter values,
and a lightly shaded region in which a lengthy interval of
transient chaos [17—20] precedes the arrival at the final
state. These transient times can be as long as thousands
of periods of the driving force. Many other oscillating
~odes were observed, including n, = 1, n 2

= 1 and n, = 1,
n2 =4.

VI. CONCLUSIONS

Some of the multiperiodic orbits of the pivot driven
pendulum have been described and their domains in state
space are determined by means of an electronic analog of
the nonlinear system. It is worth noting that the richness
of modes in this system complicates the task of exploring
its salient features, and serves to underscore the
significant advantages of high speed analog computation
for this type of problem.
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