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Time decay of excitations at quasi-one-dimensional trapping
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The survival probability of a particle that performs a quasi-one-dimensional random walk on a lattice
with randomly distributed traps is considered. The derivations are based on the approximation of weak

transitions between one-dimensional chains where detailed results on the survival probability are avail-

able, neglecting returns to the same chain. It is shown that calculated curves of the survival probability
coincide rather well with data of Monte Carlo simulation at times t -1/52, where 52 is the degree of
quasi-one-dimensionality.

PACS number(s): 05.40.+j, 78.90.+t, 82.20.Rp

I. INTRODUCTION

The problem of random walks of electronic excitations
in low-dimensional systems with randomly distributed
traps is rather actual. There are a number of theoretical
papers studying the migration and trapping of excitations
in one-dimensional (1D) systems [1-8], and far less in
quasi-one-dimensional (Q1D) objects [9]. Wieting, Payer,
and Dlott [9] studied in detail the time dependence of the
mean number of new sites visited by a walker in the case
of Q1D energy migration in two- and three-dimensional
topology. However, their expression for the trapping
rate and survival probability is based on the Rosenstock
approximation [10], which is rather rough at long times
in 1D and Q1D systems.

At the same time in a number of experimental papers
the energy migration and trapping are studied by time-
resolved luminescence spectroscopy in Q1D crystals (an-
tiferromagnetic [11—15] and molecular [16,17]}. These
investigations have shown that even the insignificant
probability of an excitation off-chain hop results in essen-
tial changes in the luminescence decay curves. In all like-
lihood, while studying the energy migration in multichain
biopolymers [18], the Q1D character of transport should
be taken into account.

The present paper is concerned with a simple model
describing the decay law of survival probability due to
Q1D random walks on a lattice with randomly distribut-
ed traps. This approach is based on the exact [2,8) or ap-
proximated [5,10] solutions for the survival probability at
strictly 1D random walks at high and low trap concentra-
tions, respectively. In spite of some simplifications, the
calculated survival probability at times corresponding to
the time of an off-chain hop is in good agreement with
the results of Monte Carlo (MC) simulations.

II. THE DECAY OF SURVIVAL PROBABILITY

Consider the following problem: a walker performs
Q1D random walks in three-dimensional topology on the

I

periodic lattice with randomly distributed quenched
traps. When a walker hops to a trap site, it is captured
instantaneously (eflicient trapping}. The discrete time
and nearest-neighbor transitions are considered. At each
step with relative probabilities W,„,W,ff &, W,ff 2 a walk-
er is able to transit to one of six neighbor sites. These
probabilities are determined as

Fon
on chain (1D direction} W,„=

tot

Foff 1

Woffi= Ftot
off chain '

off 2
Wff2=

tot

tot on off1 off2 ~

where F,„andF,ff &, F,N &
are hopping rates on the chain

and off chain, respectively. It follows from the quasi-
one-dimensionality condition that F,ff, , F,ff 2 &&F,„.
For the sake of simplicity we assume
W ff i W ff 2 W ff and indicate W,„=5,, 2W, ff 5i,
then 5,+52=1.

Let S(n) be the number of new sites visited by a walker
in n steps. Then the survival probability (the probability
that a walker will be not trapped} is

f (n ) pS(n)

where p =1—C and C is the trap concentration. Further,
consider QlD random walks for a certain motion route
(or configuration). It is assumed that at the
l, +1, 12+1, . . . , 1k+1 step a walker makes an off-chain
hop (l„&n). Thus, after n steps, a walker makes k off-

chain hops. If we assume that after leaving the given
chain a walker never hops back again, then the mean sur-
vival probability for the given configuration is

(3)(f( ) ) z (
S(!) )

) (
S[!~ —(!!+ 1 ) ]

) (
S[n —( tk + 1 ) ] )

Such averaging is possible due to the above assumption of the factors in Eq. (3) being of statistically independent values.
By averaging all the configurations [I„lz,. . . , Ik j and all off-chain hops we get the mean survival probability (hereafter

1063-651X/94/50(6)/5115(4)/$06. 00 50 5115 1994 The American Physical Society



5116 BRIEF REPORTS

the survival probability) for Q1D random walks

ll =0

ll 0ly ll+I

The first term of this expression determines the survival
probability for a ~alker that has not gone to a neighbor-
ing chain after n steps; the second term corresponds to
that for a walker that has made one off-chain hop, the
third term to that for a walker that has made two or'-

chain hops, and so on. It is essential that in Eu. (4) 4(n)
gr l,.+ 1

—(7,.+1)]
is expressed by survival probabilities (p '+' ' ) for
strictly 1D walks. For this case the well-known solutions
are exact for high concentrations [2,8] and approximated
for low concentrations [2,5-8].

If we consider the times when a walker makes one off-
chain hop (the walker's lifetime on a chain)' that corre-
sponds to n —1/5z, it is possible to leave only the two
first terms, without a large error in the series (4). Since
the parameter 52 is —10 —10 for a number of crystals
[11—17], a decrease of 4(n) at times —1/52 and concen-
trations C-10 -10 will be less than 10 from the
initial value (a similar decrease of 4(n) is characteristic
of 1D systems at the same concentrations and times
[1,2, 5—8, 11—15]). The latter allows us to use this ap-
proximation for comparison with the experimental
luminescence decay of an exciton population in a Q1D
system with traps.

Proceeding to integration at n &&1, and taking into ac-
count that the integrand is symmetric with respect to the
permutation of the l, and n —l, indices,

(+s(n) )

x = ( rr l—np ) m '

The substitution of Eqs. (6) and (7) for Eq. (5) and a
change of m for l, , n —l„nmakes it possible to calculate
a number of curves for some 52 values by the numerical
integration.
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(5)

At low concentrations (C =0.01) the integrand can be
calculated using the Rosenstock approximation [10] for
the short-time limit and the approximation obtained in

[5] for the long-time limit. The survival probability in
the 1D system as described by the Rosenstock approxi-
mation [10] is

o
QO

6 -"0

According to [6], at C=0.01, the expression (6) corre-
lates fairly well with MC data for m ~2X10 . In the
long-time limit, when n ~2X10 an approximation ob-
tained by Anlauf [5] is used:
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FIG. 1. Decay of 4(n) for the trap concentration C =0.01 at
various values of the quasi-one-dimensionality degree 5&. The
circles denote the MC simulation, the solid lines the results
from Eq. (5), and the dashed lines the results from Eq. {8). {a)
From top to bottom: 52&10 ', 5,=5X10,10 '. The thin
line is the exact decay form of 4(n) for strictly 1D migration as
obtained in [8]. (b) From top to bottom: 52=2X10 ', 4X10



50 BRIEF REPORTS 5117

III. MC SIMULATION AND DISCUSSION

4(n) "=exp —ln
1 R (n)

1 —C
(8)

where R (n) is the mean number of new sites visited by a
walker in n steps or sampling function (for C &(1 and
R (n)=&8/nn ~ [19] we obtain Eq. (6)). The expres-
sion for R (n) can be obtained on the basis of a procedure
developed by Montroll [19],as it was made in [9], too. In
accordance with [9]

R(n)= + n'~ +0(n '},
uo 7ru 0

(9)

with u&=+2/(&5&5z) and uo depending on 52 such
that it can be evaluated by numerical integration via an
appropriate structure function [19]. The results obtained
in accordance with Eqs. (8) and (9) are given in Fig. l. As

In order to check Eq. (5), the curves of the survival
probability were simulated for Q1D random walks by the
MC method. The expression (2}was used as the basis of
the algorithm, making it possible to reduce computation
time relative to the direct computation of the survival
probability when it was necessary to store the trap
con5guration. For introducing randomness in the step-
ping a fast random number generator with a sequence
period of 2 —1 was written. Depending on the 5z value,
realizations from 2 X 10 to 8 X 10 were simulated. The
time intervals were n =2X10 steps for C =0.01 and
n,„=4X10for C =0.1. We used periodic boundary
conditions with L =3600 X 10X 10 sites (L is a site of the
lattice) for simulation. The walker started in the center
of the lattice with S(n) =1 at n =0.

Figure 1 presents the dependences of 4(n) [Eq. (5),
solid lines] and MC simulation (circles) at various 52
values. For 52& 10, MC data coincide with the exact
solution [thin line in Fig. 1(a)] for strictly 1D random
walks [8]. With an increase of 52 the calculated curves
coincide well with MC data for 52=5 X 10,10,and a
difference between the MC simulation and Eq. (5) is ob-
served only beginning from 52&2X10 . It should be
noted that at 5x=2X10 when 52=4/n,

„

the approxi-
mation still describes the survival probability satisfactori-
ly. Calculated values of 4(n) have to be less than those
obtained by the MC method, since only the first two
terms of the series (4) were taken into account in Eq. (5).
With an increasing of 5t this difference will increase due
to an increasing of the contribution of the series terms,
which were not taken into account. This is observed
graphically when one compares the curves for
52=2X10 s and 52=4X10 s in Fig. 1(b).

It is interesting to compare calculations by Eq. (5) and
results obtained for Q1D random walks in three-
dimensional topology [9]. In this model the survival
probability was calculated by the Rosenstock approxima-
tion [9,10]
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FIG. 2. Decay of 4(n) for the trap concentration C =0.1 at
various values of the quasi-one-dimensionality degree 52. The
circles denote the MC simulation, and the solid lines the model
results from Eq. (5). The thin line is the exact decay form of
4(n) for strictly 1D migration as obtained in [8]. From top to
bottom: 5, &5X10;52=10,5X10, 10 '.

is readily seen, these data are rougher than those of Eq.
(5). This is most likely due to the Rosenstock approxima-
tion being unsatisfactory for Q1D systems at long times.

For high concentrations (C=0.1) an exact solution
obtained in [2,8] for the survival probability in 1D sys-
tems has to be used in Eq. (5). Asymptotics (6) and (7)
are not satisfactory for high concentrations [8]. We used
results by Onipko and Galchuk [8] since it was not neces-
sary to perform the Laplace transform, distinct from the
approach suggested in [2]. As Fig. 2 shows, the calculat-
ed curves of 4(n) coincide with MC data if 52 ~ 5 X 10
The approximation describes quite satisfactorily the de-
cay of 4(n) for 5&=10, although 52 exceeds 1/n
(52=2/n, „).It is also of interest to compare the effect
of a degree of quasi-one-dimensionality 52 on the charac-
ter of decay curves of 4(n) at high and low concentra-
tions.

An increase of the 52 parameter by a 1.5 order of mag-
nitude from 5X10 to 10 for C=0. 1 results in an
insignificant change of the character of 4(n) decay
curves (Fig. 2). For example, at 4(n) =0.01@(0}[4(n) is
related here to 5&=5 X 10 and 52=10 ] the change is
12%, while this change is 37% for C =0.01 with an in-
crease of 52 by a 1.5 order of magnitude [from 10 to
5X10 Fig. 1(a)]. Thus, at high concentrations the
4(n) decay law is less sensitive to the changes in a degree
of quasi-one-dimensionality than at low concentrations.
This can be explained by taking into account the fact that
a fluctuation of the trap density decreases with an in-
crease of their concentration. The quasi-one-dimensional
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trapping manifests itself most efFectively on long chains
because a walker should make at least one o8'-chain hop
before it will be trapped. Then due to a decrease of the
trap density fluctuation the contribution of long chains
into survival probability @(n) will be less at high trap
concentrations than at low ones, all things being equal.
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