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Concise calculation of the scaling function, exponents, and probability functional
of the Edwards-Wilkinson etluation with correlated noise
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The linear Langevin equation proposed by Edwards and Wilkinson [Proc. R. Soc. London A 381, 17
(1982)] is salved in closed form for noise of arbitrary space and time correlation. Furthermore, the tem-

poral development of the full probability functional describing the height fluctuations is derived exactly,
exhibiting an interesting evolution between two distinct Gaussian forms. We determine explicitly the
dynamic scaling function for the interfacial width for any given initial condition, isolate the early-time
behavior, and discover an invariance that was unsuspected in this problem of arbitrary spatiotemporal
noise.

PACS number(s): 05.40.+j

I. I%I 1RODUCTION

Following the much celebrated work of Kardar, Parisi,
and Zhang (KPZ) regarding the kinetic roughening of
Eden clusters, ballistic deposits, and single-step surfaces
[1], there has recently been a concerted effort to tailor
stochastic differential equations to actual film growth via
molecular beam epitaxy (MBE), particularly in cir-
cumstances where surface diffusion of adatoms to highly
coordinated sites is assumed the dominant relaxation pro-
cess [2—4]. In such "ideal MBE" surface diffusion mod-
els, vacancies, overhangs, and particle desorption are
strictly forbidden, apparently ensuring dynamic scaling
behavior outside the KPZ universality class. For the
Wolf-Villain equation (WV) [2], as well as its nonlinear
variant due to Villain [3], Lai and Das Sarma [4], the re-
laxation is governed by a Laplacian squared term, arising
from a quasi-equilibrium contribution to the surface
diffusion current. The true asymptotic scaling properties
of realistic microscopic models of MBE became a matter
of some controversy, however, soon after the introduc-
tion of these conserved-particle surface diffusion equa-
tions, with some suggestions that it would be KPZ-like
[5]. Even the WV model, innocuous at first glance, exhib-
its a rich surface roughness, as revealed by Krug,
Plischke, and Siegert [6]. Interestingly, these authors
show that the intrinsically nonequilibrium conditions of
growth yield surface diffusion processes that generate a
tilt-dependent mass current, ultimately responsible for
the scaling properties of these models. In particular, if
the nonequilibrium contribution to the net diffusion
current is a decreasing function of the inclination, it sta-
bilizes the surface, leading generically, but somewhat
surprisingly, to dynamic scaling characteristic of the
Edwards-Wilkinson universality class [7]. By contrast, a
nonequilibrium surface diffusion current that is an in-
creasing function of inclination incurs a growth instabili-
ty, resulting in a grooved state. In fact, both types of

behavior can be seen within a single model, following
from a nontrivial tilt dependence of the nonequilibrium
surface diffusion current, as previously observed by
Siegert and Plischke [8]. Consequently, the kinetic
roughening community concerned with ideal MBE sur-
face diffusion models may, despite all their efforts, find
themselves at the end of the day face-to-face with the
Edwards-Wilkinson (EW) equation [9]. It is ironic,
indeed, that a good decade following its introduction, the
Edwards-Wilkinson equation, being the very first attempt
to understand the dynamic scaling properties of stochast-
ically roughened self-aSne surfaces, is found at center
stage. Because of the newly appreciated implications of
EW, as well as some additional unsettled matters con-
cerning correlated noise within the KPZ context [10—12],
we have returned to this fundamental linear Langevin
equation to explore some of its hitherto unaddressed sta-
tistical properties.

Rather than transforming the equation into frequency
space, however, as was done by Edwards and Wilkinson
in their original paper [6], and is implicit in all renormal-
ization group schemes applied to its nonlinear generaliza-
tions [9—10], we have solved the EW equation exactly in t
space, encoding all possible initial conditions in our final
expression for fluctuating surface profile h (x, t). Our cal-
culation aSrms explicitly the scaling behavior of the in-
terface width m =I.zf (r/L') as a function of length
scale L, and we obtain directly the critical exponents
P=y/z =p/2+8+ —,', y=p+28+ —,', and z=2 for the
early-time, steady-state, and dynamic behaviors, respec-
tively. Furthermore, we derive the exact expression for
the scaling function f with arbitrary initial condition and
noise of any given spatial and temporal correlation.
These results not only show the steady-state behavior, but
also capture the transient interface growth, which can be
compared with numerical simulation directly, permitting
determination of various phenomenological parameters.
The outline of this paper is as follows. In Sec. II, we ex-
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amine initially the case of spatially correlated noise and
calculate physically relevant quantities, such as the inter-
face width, the height difference correlation, etc. Gen-
eralization to temporal correlations is straightforward,
but reveals a surprising spatiotemporal invariance. In
Sec. III, we derive the time evolution of the full probabili-
ty functional for the surface Auctuations and discuss its
interesting features and consequences. Finally, we sum-
marize the implications of our results in Sec. IV.

After a Fourier transformation to k space, we get

d, hk(t) = —vk hk(t)+gk(t),

(, 2}~(t)2}„,(t') }=2D(p)k '~5(t —t')5(k +k'),
(2.2)

where D(p)=2mpDo f o du u ~ 'cosu =nDol (1+2p)
X cos(2rp), which requires 0 ~p (—,

' for convergence. The
solution to this first-order linear difFerential equation is

II. SPATIALLY AND TEMPORALLY
CORRELATED NOISE

hk(t)=eke "" '+e " 'I e"" '2)k(t')dt',
0

(2.3)

B,h (x, t)=vV h (x, t)+ri(x, t), (2. 1)

Our starting point is the EW equation, appropriate to
kinetic roughening phenomena in which the competing
effects are surface tension relaxation and the incessant
peppering of stochastic noise. In the original EW model
of sedimentation, gravity was explicitly responsible for an
external stabilizing effect of the surface, while stochastici-
ty arose from the random deposition of material. The in-
terfacial profile, h (x, t), then develops in accordance with
the linear Langevin equation

where the ck s are Fourier coefficients specifying the ini-
tial interface profile. By adding the proper constant to
h (x, t), we can always set f "„h(x,O)dx=O, which im-

plies c„o=O. Note that the fiat initial condition [that is,
h (x,O) =0] corresponds to ck =0 for all k.

Let I. denote part of the system; the interfacial width,
w(L, t), can be calculated exactly as a function of L
and t De.fining, as usual, w (L, t}—:L '( fodx[h(x, t)
—

hL (t)] ), with hL (t)=L' f—oh (x, t)dx, and ( ) as the
statistical average, we find

where rt(x, t) represents the noise, with spatially correlat-
ed variance,

w (L, t)=L t'+'f (vt/L )+w„(L,t) (2.4)

(rt(x, t)rl(x', t') ) =Dopix x'i 1' '—5(t t') . — where the scaling function f (a =vt /L ) has the form

f ( )
D (p ) ~ dq

1
2 —2 cosq

( 1
2q2,

}
4~2v 0 q2P+2 q2

D0 1

4v(2p+ 1 )(2p+ 3 ) (2p+ 2 )

(8 )P+3/2 3 1 —1r(i+p) g, —
p

——,—;
2&n. 2' 2' 8a

2p+ 3

8a
(2.5)

in which &F, is a degenerate hypergeometric function indexed by the spatial correlation parameter p, while the noise-
free contribution

oo dk dp p p e'[ +&~
w'(L, t) = v(k +p )f

i (k +p)L ikL ipL

is transient, vanishing in the long-time limit, thanks to
the exponential factor and the initial condition ck 0=0.

Note immediately from (2.4) that we have the
saturation-width exponent y=p+ —,', as well as the dy-
namic exponent z=2. Of course, for the case of uncorre-
lated noise (p=O), these exponents had been derived by
EW. In Fig. 1, we show the form of this hypergeometric
scaling function for various values of p, which serves to
indicate how the crossover to steady-state roughness is
delayed for increasing noise correlation. When t~~,
we find

p+1/2 P I (1
—2u

) +0 (a I
)

4m 0 21'+2

Do 1 (1+p) (8a)~+' +O(a') .
4v 2(2p+1) v'n (2.7)

which gives us the amplitude prefactor for the steady-
state interfacial width. Extraction of the early-time
behavior requires, by contrast, an appreciation of the
asymptotics of our hypergeometric function; in the small
a limit, (2.5) yields

D (p) dq 2 —2 cosq
4' v

D0 1

4v (2p+1)(2p+2}(2p+3)

(2.6)

Consequently, the initial development of the width is

w (L, t) w„(L,t)=(8vt—)~+'/„,Do r(1+p) (2.8}
4v 2(2p+ 1 }3/ n

with the early time roughness exponent P-=p/2+ —,'. Qth-
er quantities of interest, such as correlation functions, are
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1.0

p=0.05

where, with (2 =vt/L as before,

f ( )
D(p) ~ dq 2—2cosq
4~. ~,"--

q

~06 '

~~ 0.4

and

g (y) = I d(( t(28e u+8 —21 J dt( t(28e u

0

(2.13)

(2.14)
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FIG. 1. The ddynamic scaling function for the interfacial
width, as calculated from the Edward -W'lk'

der the assum tioner the assumption of spatially correlated stochastic noise

(1)(x,t}g(x',t') ) =Dopes» x'i)'p—'5(t t') F—

e spatial correlation parameter p, the functi h
o approach unity for infinite argument.

readily calculated; for example,

([h(x, t) —h(0, 0)] }—([h„(x,t) —h„(0,0)] )

D P' (t )p+(1/2)
2u

4n v (n 2)p+1

which is independent of x whe th b
~ ~

ere e su script n is used,
again, to describe the corresponding quantity in the ab-
sence of noise. In addition, the height difference correla-
tion function in the steady state is given by

(2 9)

lim [([h(x,tp+t} h(O, t—p)] )

( [h (x t()+t) h (0 t())] ) ]

lim ([h(x, tp+t}—h(O, tp)] }—0 (2.10

D(p) I k [1—e " '"cos(kx)]
2&v -- (k2) +(

(2.11)

a simple calculation then shows

(()2(L, t)=L, p+ 8+ f ( t/I (2.12)

so we see that the initial condition does change th fge e unc-

hei ht
of the interfacial width as w 11 th h

'
h

'g correlation function. However, after sub

ing both early-time scaling and stead -state behav'

N
o e ar itrarily given initial interface profile.

ote that our anal sis forey ', going Fourier transformation
to frequenc s acey p, permits a complete description of th
surface evolutiontion, whereas the earlier work of EW han-

'no e

died only the long-time limit.
Finall

consider or
y, we allow temporal correlation thn in e noise, but

orwar . Assuming the noise correlation given bn

(q(», t}q(x', t ) ) =Dppei» —x'i"-'it — i"-'t —t'

Now, howeverwever, p+28( —, is necessary to avoid the in-1

rared divergence of (2.13) in addit' ' '
h

a = is not a well-defined limit in this continuum
picture. From (2.12}, it is evident that tha e steady-state
roug ness exponent y=p+28+ —,', while the dynamical
indexz=2. B con ry t ast, an examination of the asymptot-
ics off, reveals the early-time behavior

2(L, t) —(Vt)p+28+(1/2) D n
dQ

4Q p 2p+48+ 2

so we have P=8+(p/2)+ —'.4'

III. PROBABILITY FUNCTIONAL

(rtk(t)haik. (t') }=2Dk p5(t —t')5(k+k') (3.2)

where D =D( ) as
case, while D =D

p, before, for the spatially correl t deae
—D0m for purely white noise. Note that

our D ( ) ivesp g, as p~0, the same spectral d 't

white noise' t
ensi y as

tional of these
, t erefore, we see that the prob b'1' fa iity unc-

*(t)=
ese two cases is the same as ex t d. S

k(t), the set of random variables (t) is re-
duced to (t) k )0

ia es 'gk is re-

as
and the variance can be rew 'ttrewri en

(qk(t)rtk (t') }=2Dk p5(t t')5(k —k')—
with the restriction k&0. T. Thus, rtk (t) can be understood
as uncorrelated both in k spac d

'

spectral density 2Dk
space an in t s ace witp, with the

density of (t} e
y . That is to say, the probabilit

densit
quals the product of the prob b'1 t

'

y of each element, i.e., having k) 0 in mind
pro a iity

~(!rtk(~)] I,'=p}= g p(rtk, )
k, z

To see whether orr not the detailed probability distribu-
tion of the random noise can influe th

functional of the hei h
form and Gaussian distributions for the noise

~ ~

lated n
'

We limit ourselves, here, to the case of t 11spa ia y corre-
e noise and derive the full probability functional

characterizing the height flu t t' f
profile. The variance of the noise is as follows:

(g(x, t)g(x', t') }
Dppix —x'i p '5(t —t') correlated;

Dp5(x —x')5(t —t') uncorrelated .

Aft er a Fourier transformation, we get
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(i) Uniform distribution

P(rIk, )=f,(rtk, .)f; (rik, .» P[[hk j, t] exp — fdk
2n.Do

k
~k~k—2vk t

p(rtk, ) ~ exp —b, tb, k
Ik, 7. Ik, 7.

2Dk

Recall that under the assumption of a Hat initial condi-
tion, we have

h„(t)=e " 'f e"" ' rtk(t')dt' .
0

By definition, the probability functional of the height
profile is

P [ Ihk j, t]=fD [J]P[ [ lk(r) j I',=o]

X5 hk —e "" 'f dec"" 'rtk(r) . (3.3)

Substituting the expression for P [ [rtk(r) j I„I', c], as well
as the integral representation of the 5 function into (3.3),
we obtain the following result:

k 2p+2
P[[hkj, t]=JV 'exp — fdk, h„h„*—2vk t

(3.4)

with

JV= fD[h]exp
k

, hkhk—2vk t

regardless of the probability distribution used for the ran-
dom noise. This is, perhaps, the first analytical
confirmation of the usual hypothesis about the universal
behavior of the interface growth independent of the de-
tailed distribution of the noise.

When the noise is uncorrelated in both space and time,
the probability functional for the height fluctuations is
given by

where f„ is the real part s distribution function of i)k,
and f; is the imaginary part's distribution function of

Ik, 7-~

0, if IxkI &Lk
'L —if Ixk I &Lk

where xk is rik, and Lk =(3Dk t'/Et', k)'~i from (3.2).
(ii) Gaussian distribution.

so that, in the small time liinit, it behaves as
—(' 1/47tDO ) dXh /t

e ', which is Brownian in nature. When
t ~ ac, the steady state of the probability function is

—(v/2n. Do ) dx ( V'h)2

e . Actually, when the noise is Gaussian,
we can understand the probability functional intuitively.
Because hk(t) is a linear combination of rtk(r) in t space,
hk keeps the Gaussian form and remains uncorrelated in
k space. To find P[[h„j,t], we need only know its
second moment (hk(t)hk (t) ). A simple calculation gives
the second moment and the full probability functional for
the height fluctuations follows quickly.

IV. CONCLUSION

We have solved the Edwards-Wilkinson equation in
closed form for noise of arbitrary spatial and temporal
correlation, assuming the most general initial condition.
Foregoing transformation to frequency space, we work
explicitly with the time variable and are able to write
down a scaling expression for the surface roughness in
terms of hypergeometric functions, documenting precise-
ly the e8'ect of spatially correlated noise. This enables us
to extract directly the early-time roughness exponent, as
well as the steady-state amplitude. Direct comparison
with correlated EW-type growth models [13] would be
most welcome. If both space and time correlations are
present, the dynamic scaling exponents depend only upon
the spatiotemporal combination p+28, a symmetry not
shared by the KPZ equation, thanks to its characteristic
nonlinearity. Finally, we have determined the complete
time evolution of the probability distribution for the
height fiuctuations, revealing an intriguing development
between distinct early-time and steady-state Gaussian
forms. It is our hope that knowledge of these quantities
in close form may rejuvenate similar, though admittedly
more demanding, e8'orts in the KPZ context.
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