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An exact kinematic analysis is made of the three-dimensional incompressible Euler Soars. It is
found that the vorticity and rate-of-strain tensors are connected vrith each other through an identical
singular integral transform. Some formal properties of this transform are derived. In particular,
there exist harmonic functions in (3+1)-dimensional space so that the boundary values (toward our
three-dimensional physical space) of a pair of conjugates are simply the vorticity and rate-of-strain
tensors. The generalized Cauchy-Riemann equations are explicitly written. As an application, three
of Siggia's invariants are related by some integrals.

PACS number(s): 47.27.Ak, 03.40.Gc

Singular integral transforms [1]are inherent in the non-
local nature of vortex stretching in three-dimensional in-
compressible fiows. Nonlocality appears in the pressure
term in the Euler equations and in the integral relation-
ship between the vorticity and the strain in the vortic-
ity equations [2-4]. The pressure Hessian [2,3,5,6] is an-
other example, contributing to the evolution of the rate
of strain. We intend to give a theoretical foundation for
the vorticity-strain correlation with an explicit use of sin-
gular integral transforms.

There is a one-dimensional model for the vorticity
equation, the Constantin-Lax-Majda model [7],

by the three-dimensional Euler equations,

Du;
Dt

together with the incompressibility condition V ts =
0 (8; = 8/8x;. ) Here D/Dt = 8/8t + (ts V) denotes
the Lagrangian time derivative, ss the velocity, and p the
pressure. We treat the infinite space case with a fiuid at
rest at infinity. The velocity can be expressed as ts =
V x A by the vector potential A. If we take a curl under
Coulomb gauge V A = 0, we have V'2A. = —w, or

(2)

where

1 ) ~(y)

Taking the curl of (2) yields the Biot-Savart formula. In
order to differentiate (2) further, a formula for the second
derivative of the Newtonian potential is needed. That is,
for any smooth function g(s:), we have [8]

is the Hilbert transform and $ denotes the principal-value
integral. The "vorticity" (o and "rate-of-strain" H[w] are
Hilbert conjugates and are real and imaginary parts of
an analytic function in the upper-half plane (note also
that H = —1). Actually, this model could mean more
than it seems.

We consider the motion of an inviscid Quid governed
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8;8;g(a:) = 8;8,hg(y)dy4x is: —yi
''

b;, + Il.;,[h,g](s:),

where

(f)( ) f I

—sl' ' —3( ' —w')(* —
w )i(„)&„

4nis: —yes

(4)
Here the principal-value integral means
= lim ~o fi i) (similar notations will be used here-
after). The second derivative is made up of the local
term due to the Dirac b function plus the nonlocal term
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in the form of a singular integral. By using (3) and sym-
metrizing we find [2-4]

Gaxrx ~x(y)r, + r'e&x xrx ~x(y)
dy, j5j

8m r5

where v = a —y, and e,~p is the fully antisymmetric
tensor.

The bilateral relationship between the vorticity and
the strain is best seen in terms of the vorticity tensor
n;z = (B~u; —(9;u~)/2 = —(1/2)e;~sos, which decomposes
the velocity gradient as O~u; = S;~ + 0;~. Note that 0
and S do not commute in general. With 0 we can write
Eq. (5) as

3 rx, nx,;(y)r, —r;n, I,(y)rI,
4x r5

—= T;, [A],

say.
Now we look for the inverse transform which expresses

the vorticity in terms of the strain. By the definitions of
S and A we have

1
S; = —(t9;e, x,x(9x, A& + B,e;x x&x A&)2 2 2

Taking a divergence and a curl for i and j, respectively,
we obtain

E Ap
—— 2epq, Bq—8;S;,

Again using (3) under V A. = 0, we have

3 e,,&(*x —yx)S&x(y)(~x —yx) d
2x

In terms of 0 this becomes

3 r S„;(y)r, —r,S, (y)r„
4w r5

A crucial observation is that 0 and S are connected
with each other through an identical singular integral
trunsforrn (up to a minus sign), that is,

T[T[A]] = —A.

The vorticity and rate-of-strain tensors are conjugates
under the transform T. Because of tr(S S)+tr(A A) =
—Lp we have

(s;,s;~) = (n,xn;,.),
where the angular brackets denote the spatial average
and tr denotes a trace. The identity (9) can be regarded
as the Parseval formula for the transform T. The appar-
ently trivial shift kom w to 0 makes manifest the con-
jugate relationship between the vorticity and the strain.
We note that the existence of T satisfying (8) can be at-
tributed solely to the incompressibility condition of the
velocity.

The transform T can also be considered as operating
on general 3 x 3 matrices. Some of its properties are as

follows. T is traceless; tr(T) = 0. Also, T[c(a)I] = 0 for
arbitrary scalar c(e) and I is the identity matrix.

It should be noted that T2 = —I does not hold for
general matrices. In fact, we can show by a direct com-
putation using the Fourier transforxn [Eq. (11)] that
T[T [Ã] + Ã] = 0 for any X'. It can be shown gen-

erally &om this identity that

T,, [X] = —X;, + R;R, [Rx,Rx [Xx,(]]

EzpqEj xpxRpRxp [Xqx],

Here R; denotes the Riesz transform defined by

R;(fl(e) = e„ II "'+, f(p —p)dp

for i = 1, 2, ..., n, a, y E R" with c„
I ("+ ) /xI"+xI/2, where I' is the gamma function and
here n = 3. It is a generalization of the Hilbert trans-
form into n dimensions and its Fourier transform [9] (des-

ignated by a tilde) is given by R~ = ikx/1Isl (for details
see Chapter III of [1]).We also have the adjoint formulas;
for 3 x 3 matrices f and g,

(t (T[f] g)) =+(tr(f T[gl))

where + should be taken when one of f and g is sym-
metric and the other is antisymmetric and when both
are symmetric or antisymmetric. These can be verified
by writing both sides explicitly (proofs omitted).

Further properties of T can be seen through the
Fourier transform,

T,x[n] = S;~ = (k;k(n~x —k~kxnx;),
lg12

5 J J

where Ie is the wave number. Using the Riesz transform
R;, we can write

T;, [A] = R;Rxnxx+ —R~Rxnh.

Because of boundedness (from L" to itself) of R, and
Eq. (8), A and T[A] are comparable [10] in the L"
norm [11],

A, 'IIAllp & IIT[A]lip & ApllAllp

with soxne constants Ap for 1 & p & oo (A2 ——1).
As in the case of the Riesz transform, by analytic ex-
tension the vorticity and the rate-of-strain tensors can
be regarded as the boundary values of pairs of con-
jugate harmonic functions in (3+1)-dimensional space:
Ik++ = {(m,y) lm c Ik', y ) 0). Let

uv(~ y) = (&.* nv)(~ y)

x);, (m, y) = (Py *S;~)(m,y)

(n, x* RxR; [P„])—+ (n-h * RxR, [P„]),
where the + denotes convolution and P„ is the Poisson
kernel defined by

( )=pe/ xexp( —2xit . x)exp( 2e)t(p)e)t'— .

en/
(1~12 + y2)(~+x)/2
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The last line in (12) follows from R~ [P„]s f = P„sR~ [f].
We then have

Note that u;& and v;~ are, respectively, antisymmetric
and symxnetric tensors, u;~ = —u~; v;~ = v~;. As in the
case of the Riesz transform (theorem 3 of Chapter III, in

[1]), it can be shown through the Fourier transform that T;,[aX] = aT;, [X]—. U;, [X;o.], (14)

be regarded as the boundary values of conjugate har-
monic functions in R++ .

As an application of this transform we note the re-
lationship between three of Siggias invariants Iq

((S,,S;,)'), I, = (S;,S„] ] ), I, = (,S,,S.. .),
I4 ——(]co] ), which describe the vorticity-strain corre-
lation [12-15]. By subtracting the singularity it can be
shown for a smooth function a(a) that

8*;8*&
S;, = T;,.[0] -:

8*,8~i

8'v&;

where we have set

with 8;(u,i + v;~) = 0. The system of equations (13) cor-
responds to the generalized Cauchy-Riemann condition
underlying the vorticity-strain conjugation. Moreover,
lim„~ou;, (a, y) = 0;,(e), lim„~ov;, (a, y) = S;,(s:).
Therefore the vorticity and the rate-of-strain tensors can

3 rkXk;(y)r; —r;X~k(y)rk[
( ) ( )]d

4m' ~5

That is, a smooth function a(a) can be passed in and out
of T by introducing a smoothing operator [16]. Letting
a(s:) = tr(A A) = —]w] /2, P(s:) = tr(S S) we find

(tr(T[A] T[A])tr(A ~ A)) = (tr(T[A] aT[A]))
= (tr(A ~ T[aT[A]])) by (10)
= —(tr(A A)tr(A A)) —(tr(A U[S; o.])) by (14),

or

2I2 ——4I4+ (tr(A ~ U[S; n])) .

Similarly we have

(tr(S S)tr(A A))

That is

Note that

~~ I2 = Ig —(tr(S U[A; p])) .

(tr(S U[A; P])) = —(tr(A U[S;P])),

= —(t (S S)t (S S))+(tr(S U[A p])).

vorticity-strain correlation.
An outlook for the use of the formal properties of T

derived here may be in order. The model equation (1)
when extended into the complex plane appears as a sim-
ple quadratic local equation and is exactly solvable [7].
It is expected that in the three-dimensional Euler equa-
tions the nonlocality may be partially reduced when seen
in R++ (at least the nonlocality associated with the in-

tegral relationship between the vorticity and the strain).
Therefore pursuit of the similarity with the model (1)
regarding dynamics may be useful for understanding a
putative singularity formation in Euler fiows [17,18] and
small-scale motion in Navier-Stokes turbulence. Finally,
we note that a similar conjugation is also seen in two
dimensions.
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