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An exact kinematic analysis is made of the three-dimensional incompressible Euler flows. It is
found that the vorticity and rate-of-strain tensors are connected with each other through an identical
singular integral transform. Some formal properties of this transform are derived. In particular,
there exist harmonic functions in (3+1)-dimensional space so that the boundary values (toward our
three-dimensional physical space) of a pair of conjugates are simply the vorticity and rate-of-strain
tensors. The generalized Cauchy-Riemann equations are explicitly written. As an application, three
of Siggia’s invariants are related by some integrals.

PACS number(s): 47.27.Ak, 03.40.Gc

Singular integral transforms [1] are inherent in the non-
local nature of vortex stretching in three-dimensional in-
compressible flows. Nonlocality appears in the pressure
term in the Euler equations and in the integral relation-
ship between the vorticity and the strain in the vortic-
ity equations [2-4]. The pressure Hessian [2,3,5,6] is an-
other example, contributing to the evolution of the rate
of strain. We intend to give a theoretical foundation for
the vorticity-strain correlation with an explicit use of sin-
gular integral transforms.

There is a one-dimensional model for the vorticity
equation, the Constantin-Lax-Majda model [7),

Ow
o H(w)w, (1)

where

_1 [w()
Hw) = w}{w—ydy
is the Hilbert transform and § denotes the principal-value
integral. The “vorticity” w and “rate-of-strain” H[w] are
Hilbert conjugates and are real and imaginary parts of
an analytic function in the upper-half plane (note also
that H2 = —1). Actually, this model could mean more
than it seems.

We consider the motion of an inviscid fluid governed
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by the three-dimensional Euler equations,

Du.-
Dt

together with the incompressibility condition V - u =
0 (8; = 8/8z;.) Here D/Dt = 9/3t + (u - V) denotes
the Lagrangian time derivative, u the velocity, and p the
pressure. We treat the infinite space case with a fluid at
rest at infinity. The velocity can be expressed as u =
V x A by the vector potential A. If we take a curl under
Coulomb gauge V - A = 0, we have V24 = —w, or

A = 5 [y

= —0;p,

()

Taking the curl of (2) yields the Biot-Savart formula. In
order to differentiate (2) further, a formula for the second
derivative of the Newtonian potential is needed. That is,
for any smooth function g(«), we have [8]

-1 1
Biajg(z) = I / maiajAg(y)dy
Ag
= —3—51']' + K;j[Ag)(=), (3)
where
. _ [z =yl — 3(zi — yi)(z; — y5)
Kylfl@ = § P F@)dy.
o (4)
Here the principal-value integral means
= lim,_,¢ flz—vlze (similar notations will be used here-

after). The second derivative is made up of the local
term due to the Dirac ¢ function plus the nonlocal term
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in the form of a singular integral. By using (3) and sym-
metrizing we find [2-4]

3 €iriTerWI(Y)T5 + Ti€juTrwi(Y
Sij(c):s_ﬂ.% b ( )Jrst.’l ( )dy, (5)

where » = & — y, and €;j; is the fully antisymmetric
tensor.

The bilateral relationship between the vorticity and
the strain is best seen in terms of the vorticity tensor
Q;; = (Ojui—0;u;)/2 = —(1/2)€ijrwr, which decomposes
the velocity gradient as 9ju; = S;; + Q;;. Note that €2
and S do not commute in general. With 2 we can write
Eq. (5) as

47 rS5

= Ty;(9, (6)

S,'j (:B) = 3 f”'kﬂki(y)’f'j - Tiﬂjk(y)rk dy

say.

Now we look for the inverse transform which expresses
the vorticity in terms of the strain. By the definitions of
S and A we have

1
Sij = E(aifjklakAl + Oj€iriOnAl).

Taking a divergence and a curl for ¢ and j, respectively,
we obtain

AzAp = —-2€qu Bqai S,'j .

Again using (3) under V - A = 0, we have

w; = —AA; = _53.. }{ €ijk(T; — y,-)Su(zsy)(zz - yz)dy‘
7f | -yl

In terms of §2 this becomes

Qii(o) = — o § DI SR Snling, ()

r5

A crucial observation is that 2 and S are connected
with each other through an identical singular integral
transform (up to a minus sign), that is,

T[T[Q)] = -N. (8)

The vorticity and rate-of-strain tensors are conjugates
under the transform T'. Because of tr(S-S)+tr(2-02) =
—Ap we have

(8:58i5) = (i Qij) (9)

where the angular brackets denote the spatial average
and tr denotes a trace. The identity (9) can be regarded
as the Parseval formula for the transform T'. The appar-
ently trivial shift from w to 2 makes manifest the con-
jugate relationship between the vorticity and the strain.
We note that the existence of T satisfying (8) can be at-
tributed solely to the incompressibility condition of the
velocity.

The transform T can also be considered as operating
on general 3 x 3 matrices. Some of its properties are as
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follows. T is traceless; tr(T') = 0. Also, T'[c(z)I] = 0 for
arbitrary scalar c¢(«) and I is the identity matrix.

It should be noted that T2 = —I does not hold for
general matrices. In fact, we can show by a direct com-
putation using the Fourier transform [Eq. (11)] that
T[T?[X] + X] = 0 for any X. It can be shown gen-
erally from this identity that

—€ipg€iki Rp Ric[ X q1]-

Here R; denotes the Riesz transform defined by

Rilfl(®) = ca f i (@~ )y

for ¢ = 1,2,...,n, e,y € R* with ¢, =
r(2f) /m(+1)/2 where T is the gamma function and
here n = 3. It is a generalization of the Hilbert trans-
form into n dimensions and its Fourier transform [9] (des-
ignated by a tilde) is given by R; = ik;/|k| (for details
see Chapter III of [1]). We also have the adjoint formulas;
for 3 x 3 matrices f and g,

(tr(T(f] - 9)) = £ (tx(f - Tlg])) , (10)

where + should be taken when one of f and g is sym-
metric and the other is antisymmetric and when both
are symmetric or antisymmetric. These can be verified
by writing both sides explicitly (proofs omitted).

Further properties of T' can be seen through the
Fourier transform,

~ = 1

where k is the wave number. Using the Riesz transform
R;, we can write

(kikiQ21 — k;kiShs), (11)

Ti; (2] = —R:RiQj1 + R; RS-

Because of boundedness (from LP to itself) of R; and
Eq. (8), 2 and T[f?] are comparable [10] in the L?
norm [11],

A2l < IT[R]llp < Ap[1R2l,,

with some constants A4, for 1 < p < oo (42 = 1).
As in the case of the Riesz transform, by analytic ex-
tension the vorticity and the rate-of-strain tensors can
be regarded as the boundary values of pairs of con-
jugate harmonic functions in (3+1)-dimensional space:
Rt = {(=,y)|= € R3,y > 0}. Let

uij(®,y) = (Py *x Qij) (2, y)
vij(®,y) = (Py x Sij)(=,y) (12)
= —(Q * RiR:[Py]) + (Ui * RiR;[Py)]),

where the x denotes convolution and P, is the Poisson
kernel defined by

P,(2) = / exp(—2it - @)exp(—2n[t|y)dt

cny
(|2|2 + y2)(ntD)/2°
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The last line in (12) follows from R;[P,]* f = P, * R;[f].
We then have

52 3. 92
Au;,-: @4-,‘25& u;; =0, Av,-,-:O.

=1

Note that u;; and v;; are, respectively, antisymmetric
and symmetric tensors; u;; = —uj; v;; = vj;. As in the
case of the Riesz transform (theorem 3 of Chapter III, in
[1]), it can be shown through the Fourier transform that

3211,51 _ 82u,,- _ 62‘0,'_,'
dz;8z; Oz;0z;  Oy?

Sij = T,_,[Q] = ! 3= y (13)
azvj, 621)u 6211."]'

dz:0z, Oz;0z;  Oy?

with 8;(uij + vij) = 0. The system of equations (13) cor-
responds to the generalized Cauchy-Riemann condition
underlying the vorticity-strain conjugation. Moreover,
limy_,o usj(2,y) = Qj(x), limyovij(®,y) = Sij(e).
Therefore the vorticity and the rate-of-strain tensors can

|
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be regarded as the boundary values of conjugate har-
monic functions in R3*?.

As an application of this transform we note the re-
lationship between three of Siggia’s invariants I; =
((5:8:5)%), I = (8iSijlw|?), Is = (wiSi;Sjkwe),
I, = (|w|*), which describe the vorticity-strain corre-
lation [12-15]. By subtracting the singularity it can be
shown for a smooth function a(z) that

T,',-[aX] = aT,,[X] - U.-J-[X;a], (14)

where we have set

Ui;[X; a](=)

3 f' . Xpi(Y)r; — ri X (y)

= 5 " [a(2) — a(y)dy.

That is, a smooth function a(«) can be passed in and out
of T by introducing a smoothing operator [16]. Letting
a(z) = tr( - N) = —|w|?/2, B(x) = tr(S - S) we find

(tr(T[Q] - T[Q])tx(Q - 02)) = (t=(T[N] - «T'[N2]))
= (x(Q - TlaT(Q])) by (10)
= — (tr(2- Q)tr(Q - N)) — (tr(Q - U[S;0a])) by (14),

or
%Iz = %14 + (tr(Q - U[S; a])) .
Similarly we have

(tz(S - S)tr (2 - Q)

- _ (tr(s . S)tl‘(s . S)) + (tr(S . U[ﬂ,ﬁ])) .
That is

1L =1 - (tx(S - U[; 6])) .
Note that

(tr(S - UQ; 8])) = — (tr(82- U[S; 8])) ,

(tr(2- U[S;q])) = — (tr(S - U[f};2])) -

It seems worthwhile to examine further kinematic con-
straints imposed by the conjugate character of the

r

vorticity-strain correlation.

An outlook for the use of the formal properties of T'
derived here may be in order. The model equation (1)
when extended into the complex plane appears as a sim-
ple quadratic local equation and is exactly solvable [7].
It is expected that in the three-dimensional Euler equa-
tions the nonlocality may be partially reduced when seen
in Ri“ (at least the nonlocality associated with the in-
tegral relationship between the vorticity and the strain).
Therefore pursuit of the similarity with the model (1)
regarding dynamics may be useful for understanding a
putative singularity formation in Euler flows [17,18] and
small-scale motion in Navier-Stokes turbulence. Finally,
we note that a similar conjugation is also seen in two
dimensions.
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