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DNA sequences of higher organisms contain thousands of nearly identical dispersed repetitive
sequences. In order to understand the eKect of such repeats on word entropies, we construct a
model that can be analyzed analytically. The hypothetical model sequences consist of independent
equidistributed symbols with randomly interspersed repeats. As a conclusion, we predict that the
entropy of DNA sequences measuring the information content is xnuch lower than suggested by
earlier empirical studies.
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I. INTRODUCTION

The immense progress of molecular biology revealed
that genomes are of extraordinary complexity [1—7]. De-
spite the complicated mechanisms of recombination and
gene expression, a first inspection of &equencies of nu-
cleotides, dinucleotides, etc. indicates that letters and
short words are approxixnately equidistributed and hence
the entropy of the source was estimated to be higher than
1.9 bits per nucleotide [8—12]. However, available data
bases are strongly biased towards genes since these &ac-
tions of the genome are naturally of particular interest.
But in order to discuss the overall information content,
the repetitive character of large parts of the DNA has to
be taken into account.

Repeated nucleotide sequences are a characteristic fea-
ture of enkaryotic genomes. Reassociation experiments
from single to double strand DNA revealed that up to
50% of the DNA consists of repeats. These subsequences
include repetitions of segxnents coding for RNAs and hi-
stones, of pseudogenes, of "satellite DNA" (long runs of
tandemly repeated short words), and of randomly inter-
spersed repeats. The latter are divided into "long in-
terspersed repeat sequences" (LINES), which are typi-
cally 6000 bases long, and "short interspersed repeat se-
quences" (SINES) of a few hundred bases. These seem-
ingly randomly dispersed repeats have presumably been
distributed by replicative transpositions [3,7]. A promi-
nent example of SINES is the family of Alu repeats with
an approximate length of 300 bases. The name Alu de-
rives from the fact that nucleotide sequences occur in
these repeats that can be cut by a restriction enzyme,
AluI. It has been estimated that the human genoxne con-
tains about 900000 copies of this repeat corresponding
to about 9% of the whole genome [5]. Hence this family
alone makes up more DNA than protein coding regions.
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The biological role of repeats is now recognized as an
extremely important subject. For xnultigene families,
which represent a specific class of repeats, the function
is known. They are needed for the synthesis of proteins
with a similar, not identical, function in differentiated
cells and tissues [7]. However, the function of most repet-
itive sequences is, so far, obscure. There are indications
that repeats may help to ensure the complex hierarchi-
cal system of genome regulation, i.e., folding of DNA
into chromatin, its reproduction, storage, and differential
gene expression. For instance, Alu repeats are assumed
to affect the expression of adjacent genes because of the
functional sites contained in these repeats [7].

Obviously, repetitive nucleotide sequences imply re-
dundancy and reduce the information content of DNA.
This effect is quantified in our paper with the aid of
word entropies. However, the combinatorial explosion
of the number of possible words with their lengths pro-
hibits the direct estimation of entropies of long words
even &om the longest DNA sequences available. Al-

though sophisticated finite sample corrections have been
developed [12—16], no reliable estimations are possible so
far for word lengths n ) 12 [17]. In this paper we cir-
cumvent finite sample effects by studying hypothetical
processes corresponding to (in principle) infinite strings.
Our model, which will be formulated in Sec. III, consists
of a "sea" of random symbols with interspersed repeats
that are characterized by their lengths and probability of
occurrence.

In Sec. IX we discuss also the role of repeats for long-
range correlations which have been detected in DNA se-
quences with the aid of mutual information [12,16,18],
correlation functions [19,20], and spectra [21,22].

II. THE ENTROPY CONCEPT

In sequence analysis, the study of correlation functions
and spectra implies a soxnewhat arbitrary identification
of symbols with real numbers (see [23] for a discussion
of this point). Moreover, correlation coefficients mea-
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sure only linear dependeaces. By contrast, information-
theoretical quantities such as those discussed below de-
tect any statistical dependences. In this section we in-
troduce information-theoretical measures that are widely
used in linguistics and nonlinear dynaxnics [24—29].

Symbol sequences are composed of A "letters"
Aq, Aq, ..., Ap. Their corresponding probabilities of oc-
currence are denoted by p, (i = 1,2, .. . , A). Then, the
eatropy

thors study the correspoading decay rate for chaotic
maps [32].

For Markov chains with memory m, the asymptotic
value h is already reached for n = m, i.e.,

h =h +g —— . ——h.

In summary, the entropy h quanti6es the information
content per symbol and the decay of the h„measures
correlations within the sequence.

III. MODEL

gives the (average) information of a single symbol. Anal-
ogously, the n-word entropy H„ is de6ned for the proba-
bilities p(" of "words" 8,.":

H„= ) —p,. log~ p,.
(&) (&)

(2)

h„= H„+g —H„. (3)

They indicate the inforxnation contained in the (n+I) th
letter, presuming the n previous letters are known. We
note that h„can be rewritten as the average logarithm
of the conditional probability that a certain letter A~

follows a word 8;":

Here () denotes the average over all (n+ 1)-tuples (8,",
A, ).

The asymptotic information gain was termed entropy
of the source" [24]

h= lim h„.
n-+ oo

The s»mmation has to be carried out over all words with
nonvanishing probability. The maximum number of pos-
sible n-words is A". In our paper, we always choose A = 4
referring to the four nucleotides A, C, G, and T. All
logarithms are taken to base 2 and thus the entropies
are measured in bits. Consequently, a sequence of four
independent equidistributed letters gives word entropies
H = 2n.

The difFerential entropies h„are a closely related mea-
sure:

Hcodon = (8)

Several authors estimated eatropies up to H5 kom vari-
ous mostly nonrepetitive DNA sequences. Their estima-
tions of h4 ——H5 —H4 are close to 2 bits as well:

Frequencies and lengths of repeats vary in a wide
range. There are rather short words of a few bases which
appear millions of times (simple-sequence DNA) and very
long strings of several thousand nucleotides may appear
only twice (e.g. , duplicated genes) [3—6]. Our model is
suKciently general to allow adaptation to observed &e-
quency and length distributions of repeats.

The basic assumption of our model is to distinguish
between nonrepetitive DNA, which is close to a random
successioa of letters, and interspersed repeats with a cer-
taia length aad probability of occurrence. It may sound
strange to classify nonrepetitive DNA as quasirandom
since there are many structures detectable [2] such as
an alternation of protein coding sequences (exons) and
intervening sequences (introns), promotor sequences, ri-
bosome binding sites, etc. Moreover, characteristic dis-
tributions of 3-words (codons) can be found within ex-
ons [33]. However, the effect of these structures on en-
tropies is relatively small. As an example we discuss
the codon usage table of protein coding sequences [34].
The characteristic uneven distribution of codons in ex-
ons is one of the most striking signals in DNA sequences
[35,12] and is widely used to identify protein coding re-
gions [33]. Even though there are remarkable devia-
tions from an equidistribution [three stop codons are ab-
sent and p(CGA) = 0.004 is, e.g. , much smaller than
p(CTG) = 0.033], the corresponding entropy is close to
its maximum value of 6.0 bits:

~EMC = ) (~ra h)
n=O

(6)

as the "efFective measure complexity" [28] and some au-

It plays a central role in coding theory [30,31] and is inti-
mately related to the Kolmogorov entropy in dynamical
systems theory [27].

Besides the limit h, the convergence of the h„contains
valuable information [8,28,32] since it quantifies memory
eHects within the string. Grassberger introduced, for ex-
ample, the s»m

h4 ——1.94

h4 ——1.93

h4 ——1.92

(rabbit liver [8]),
(viral DNA [9]),
(mammalian genes [10]),

h4 ——1.92

h4 ——1.97

h4 ——1.95

(bacteria [10]),
(Rous Sarcoma virus [12]),
(yeast chroxnosome III [14]).

In these cases, the analyzed sequences contain a large
amount of genes and only a few repeats. For exam-

ple, words with a length of n & 20 that appear at least
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twice constitute less than 4'%%uo of the yeast chromosome
III. These examples illustrate that the base composition
of DNA is close to a random one and that short-range
correlations only weakly reduce the entropy.

In order to keep our model simple, we approximate
nonrepetitive DNA by a Bernoulli process of indepen-
dent equidistributed letters. Hence we concentrate on
the lowering of the entropy due to interspersed repeats.
As mentioned in the Introduction, repeats may consti-
tute more than 50'%%uo of the DNA of higher organisms

[3—6]. The various families of SINES and LINES have
characteristic lengths ranging &om about a hundred to
several thousand bases.

In our model, we introduce repeats as follows. A repeat
R~ (p~, l~) is characterized by its relative frequency of oc-
currence p~ and its length l~. Here p~ is the probability to
find the first symbol of the repeat R~ at an arbitrary site
of the sequence. In other words, p~ is the expected num-

ber of copies divided by the length of the whole sequence.
Consequently, the product p~l~ is the &action of the total
sequence covered by copies of the repeat R~. The copies
of the repeats are assumed to be randomly distributed
within the sequence. Then the mean distance between
the start of two copies of R~ is d~ = —.Furthermore,

p~

we assume that there are no specific statistical features
within the repeating sequence, i.e., the strings R~ have a
random composition of independent letters. Calculations
of the entropy Hq for repeats gave the values [36]

Hq ——1.97 (Alu repeats)

Hq ——1.91 (non-Alu repeats),

indicating that the symbol composition is not too far
&om being random in many cases.

In this way, a process is defined that contains in-
terspersed repeats characterized by their &equency and
length in a "random sea" of letters. Such a process can
be considered as a generator of infinitely long sequences
and hence finite sample efFects do not have to be con-
sidered. However, in order to compare analytical results

I

with numerical simulations, we construct also finite real-
izations of the above process in the following way. First,
a random string of length I (1 —p~l~) is generated. Then
a repeat of length l~ is inserted at p~L random positions.
This procedure has some analogy to the "transpositions
of sequences, " which is assumed to be a relevant mecha-
nism for the spreading of repeats.

Despite drastic simplifications the constructed process
exhibits statistically relevant features of eukaryotic DNA
sequences. It will be shown below that the eHect of re-
peats on entropies can be understood very clearly with
the aid of our hypothetical model.

IV. CALCULATION OF WORD DISTRIBUTIONS

In this section we discuss, for simplicity, processes with
but a single type of repeat R(p, l). The corresponding
results for the case of several repeats can be obtained
through superposition afterwards.

As discussed in Sec. II, the calculation of entropies
H„ is based on the probability distributions of n-words.
In order to obtain these distributions we distinguish be-
tween three possible cases: (a) an n word i-s located
within the random sea, (b) the n-word lies partially in
the repeat and has an overlap of k ( n letters with a re-

peat, and (c) the word lies completely within the repeat.
The task now is to find out how many of the A" words
belong to each of these classes. Moreover, the probabil-
ities of words with an overlap k have to be estimated.
We introduce the following notations: Z(k) denotes the
number of words with an overlap k. Note that Z(0) and

Z(n) correspond to the classes (a) and (c), respectively.

Furthermore, we calculate the probability P&(S,")of an.
n-word having an overlap k.

In order to derive expressions for Z(k) and Pg(S;" ),
we first consider a part of our hypothetical string consist-
ing of just one repeat (small letters in the sketch below)
and a following random part (capital letters). The length

of this part is denoted by d and hence the number of ran-

dom symbols is d —l. The notations are visualized in the
following sketch:

n=5, %=3 l=8

. . .AGAT CTcgg actta TATG cggactta CTCAGGA cgg. . . .

Considering all words of length n starting in this cho-
sen part, we find d —l —n+ I words completely within
the random string [i.e., with k = 0, class (a)], l —n+ 1
words within the repeat [k = n, class(c)], and two words
overlapping by k (0 ( k ( n) letters (note that words
starting near the end of the random subsequence have
an overlap with the next repeat).

From these preliminaries, we can now deduce the over-
all &action of n words with overlap k. It was argued in
Sec. III that a given probability p of a repeat corresponds
to a mean distance d = —between the start of two copies.P
Hence the average length of the random subsequences is

The &action of words with overlap k is

P(k) =—2
d

(k = 1,2, ..., n —1) (12)

and of those completely within the repeat

I

d —l. Replacing the specific length d in the above ex-

ample by the average value d, we obtain the &action of
words within the random sea

d —l —n+1
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(13)

(„) F(0) d —l —n+ 1
A" d A" (15)

n-words occurring in the repeat once have an additional
probability p to appear

Per construction, the fractions are normalized
n

) F(k) =1.
k=O

We have learned how the probability is distributed among
the different classes with overlaps k C [0, n].

In order to obtain the probabilities of speci6c words,
we have to study how many words share the correspond-
ing amount of probability F(k). Obviously, within the
random sea, all A" words appear. Hence any word can
be found with a basic rate of

At this point, we want to emphasize that the above ex-
pression is not exact, but it is a reasonable approxima-
tion for suKciently large n. Our implicit assumption
was that words 8,- within the repeat and with a cer-
tain overlap k ( n are all diferent. This ansatz would
fail, for example, if a word appeared twice within the re-

peat. Then its probability would be higher than P (S,")-
and, moreover, the numbers Z(k) would be affected. For
A" )) l, this observation is not very likely. However, cer-
tain kinds of repeats such as retroposons contain such
"repeats within repeats" (e.g. , "long terminal repeats").
In some cases even hierarchies of words can be found
[3,23]. Our model should be refined in such a situation.

Moreover, we assume that copies of repeats are sufB-
ciently far apart so that n-words have an overlap only
with one single copy. It will be shown in the follow-

ing section that our theoretical predictions are in excel-
lent agreement with simulations despite these approxi-
mations.

(16)

Considering overlapping words, there are A" " diferent
words that can have an overlap of n —k letters with
the random sea (the other k letters are fixed as part of
the repeat R) and therefore these A" " words share the
probability p

(17)

Now we know the probabilities of words with a certain
overlap. It remains to count the number of words with
these probabilities Ps(S,

" ). There are obviously i n+1-
words of length n within a repeat, i.e.,

As already discussed, the number of words with overlap
k is

V. COMPARISON WITH NUMERICAL
SIMULATIONS

As described in Sec. III, we Brst generate a long ran-
dom string of independent equidistributed symbols with
length L(l —pl). Then repetitive sequences of length /

are inserted at pl randomly chosen positions.
As a 6rst feature of such a process, we compare rank-

ordered distributions of n-words. For this purpose the
frequencies of all A words are counted and the words
are arranged according to their frequency of occurrence.
Such "ordered histograms" are widely used in linguis-
tics [37]. Our theoretical consideration in the preceding
section predicts a staircaselike rank-ordered distribution.
There should be a pedestal at a level of P(0)L and a
plateau of a height P(n)L due to the Z(n) words within
the repeats. Words with overlaps k form the steps of the
staircase from the pedestal to the plateau.

Figure 1 shows fairly good agreement between the the-

Z(k) = 2A" ".
The factor 2 reflects the fact that each repeat has overlap-
ping words at its beginning and at its end. The number
of the remaining words that appear only in the random
sea can be obtained from normalization

100000

10000
empirical curve
theoretical curve

n

) Z(k) = A".
k=o

(2o)

0
C

1000

Inserting the results above, we obtain 100

(21)
~ ~

10 100
rank

1000 10000

Using these expressions, the entropy H„can be calcu-
lated

H„= ) —Z(k)Ps(S("})log2 Pi, (S("}).
k=O

FIG. 1. Rank-ordered statistics of 8-words from a sequence
of I = 10 letters with 2DOOO interspersed repeats of length
l = 50. Full line (staircase), theoretical predictions accord-
ing to Z(k) and P(k) in Sec. IV; dotted line, rank-ordered
histogram from a realization.
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~Hsys
2Lln2

(23)

gives a first approximation of the systematic underesti-
mation of entropies. Hence, for L = 10~, we can trust
the estimations of H„ for n & 9. In Fig. 2, we corrected
the entropy estimations by the term in Eq. (23). Figure 2

visualizes the excellent agreement of the theoretical en-
tropies and those &om a simulated process.

The characteristic features of the curve h„versus n
is a decrease &om h = 2 to h„1.8 at about n =
5. It will be discussed in the following section how the
asymptotic value (about 1.8 bit in the above case) and
the crossover to this value can be predicted by rather
simple calculations.

VI. DERIVATION OF A SIMPLIFIED
ENTROPY FORMULA

In this section, we derive simplified expressions for the
differential entropies h„, allowing an easy interpretation
and generalization. We recall that h„measures the mean

oretical curve and the distribution &om the simulations.
The rounding of the steps is caused by finite sample ef-

fects [16]. The rank-ordered histogram exhibits an in-

teresting feature: The decay &om the plateau to the
pedestal obeys a power law i ("Zipf's law"), i being
the rank of the word. This is due to the fact that the
height of steps decays proportional to A" ",whereas the
number of words per step increases as A" ". Thus, as
also discussed in [38] for another random process, fairly
simple mechanisms can generate Zipf-like word distribu-
tions.

Now we turn to the comparison of word entropies H„
from Eq. (22) with estimations from simulations. Even
for long realizations, we have to care about systematic
errors due to finite sample effects. It was shown in [12,16]
that

l„) (d-L —n) A" 1"("1'")= (d-i-. +I) ~-+ =X (25)

That means that all continuations Az are equally proba-
ble and hence no prediction better than guessing is pos-
sible. The corresponding uncertainty thereupon is 2 bits.
For words within the repeat, we obtain the following for-

mula for the "correct" continuation with p &) &„..

p(A, 18,(")) =
(a—t—n)+

(a—t—n+i)&+
(26)

In this case, the next letter is almost surely predictable.
Our simulation in Fig. 3 visualizes the switch of the con-
ditional probabilities &om 4 to 1 when a repeat is de-

tected.
We note in passing that such plots may be exploited

to identify repeats in sequences. Figure 3 is simply ob-
tained by counting words of length n+1 without a priori
assumptions. All words that are much more &equent
than random words of the same length become visible

uncertainty about the (n + 1)th symbol if the preceding
n letters are known. Quantitatively, h„can be obtained
&om the mean logarithm of the conditional probability

p(At18,.
"

) [see Eq. (4)]. The average has to be carried

out over all words 8," (t' = 1, 2, ..., A ) and continuations

by the (n+I) th letter At (j = 1, 2, ..., A). The conditional
probabilities are just a ratio of the corresponding word

probabilities:

8(~+a)
&(At 18,""') =

p. (g( ))
(24)

Here the double index ij refers to the corresponding (n+
1)-word composed of the n-word 8, and the letter At.(n)

Explicit expressions for these probabilities are available

&om the considerations in Sec. IV: If a word 8,(n+X)

appears within the random sea, we obtain

2.1

1.0

2.0

observed values
calculated values---- simphfied formula 0.8

CL
O

1.9
C5

LnI
13

1.8
t Ai

1.7
0 4 5 6

block length [bp]

10

FIG. 2. DifFerential entropies h from a realization (x)
(L = 10, A = 4, p = 0.002, and l = 50) and from Eq. (22)
(full line). The dashed line corresponds to Eq. (33) in Sec.
VI.
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by such plots. Moreover, the method is robust against
"mutations" as demonstrated in Fig. 4.

Figure 4 illustrates also the n dependence of the tran-
sition probabilities. For small n, even within a repeat, no
definite prediction about the next letter is possible since
p is not larger than &„. Consequently, there should be a
crossover at n, given by

(27)

leading to

log2-

log2 A
(28)

Hence we have a crit, ical word length n, for a given proba-
bility p which can be interpreted as the number of letters
necessary to identify the repeat. For n (& n„ the re-
peat looks like a random text, whereas for n )) n, the
repeat can be easily recognized with the aid of condi-
tional probabilities. For p = Moo, we find, for example,
n, 5.8, which explains that the repeats are hardly vis-
ible for n = 3 in Fig. 4.

Similar considerations are valid for the beginning of a
repetitive sequence. It is intuitively clear that the first
letter cannot be predicted &om the preceding n-word.
For words with overlap k with the repeat, we found

This threshold means that the repeat has been recognized
for

log2—1

k&k. = ~ =n. .
log2 A

(31)

log, p(A,
~
S,l"i) = 0. (32)

Since the differential entropy h„can easily be obtained
by averaging the logarithm of these conditional proba-
bilities, the values h„can be approximated as weighted
sums of 2 bits in the case of unpredictable and 0 bits for
predictable symbols:

h„= 2 [1 —p(l —k, )O(n —k, ), ]

Consequently, the first k letters of a repeat are taken
as unpredictable. Again, the quantity k, = n appears
since it represents the critical number of letters required
to identify a repeat with a given frequency of occurrence
p.

Using this threshold k, we can divide all letters of the
process under consideration into two classes: All letters
in the random sea together with the first k, letters of each
copy of a repeat R(p, l) are assumed to be unpredictable.
The other letters within the repetitive sequences are pre-
dictable, i.e. , we set

p + d —t —n

(g ~g( ))
prt —lc Pn

(29)
1 for z)0
0 forz&0, (33)

The k dependence of this expression resembles a Fermi
function: There is a stepwise increase of the conditional
probabilities &om

&
to 1 for increasing k. For &„~, ))

&„, the conditional probability approaches 1. Thus we
can define (somewhat arbitrarily) a critical k, from

p 1
Pn-A:, Pn

' (30)
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FIG. 4. Sa,me as in Fig. 3, but all copies of the repeat are
mutated at 30 randomly chosen sites. n = 3, 5, and 7 (from
top to bottom).

1 1
k, = —log2 — for A = 4.

2 p

The value p(l —k, ) is just the fraction of predictable
letters which approaches the total fraction of repeats pl
for l )) k, . The 0 function reHects the fact that the
repetitive sequences are "recognizable" only for n & k, .

Formula (33) gives the lowering of the h„ for large n
and, moreover, the approximate value k, of a decrease of
the entropies 6„. The dashed line in Fig. 2 derived from
the above formula is indeed a reasonable approximation
of the actual decay of the entropies.

In the Appendix, we give another derivation of the
entropy of the source h = lim„~ 6„,which is in accor-
dance with Eq. (33). Equation (33) essentially predicts
the following: For a given repeat R(p, l), the differential
entropies h„decay at n =

2 log2 —Rom 2 to about 2 —pl

bits. In order to demonstrate the relevance of these rules,
we present several results from simulations and analyt-
ical calculations in Figs. 5 and 6. Figure 5 shows the
entropy decay for fixed probability p, but with fractions
of repeats pl from 1% to 40%%uo. There is indeed a decay
of the entropies at around n = k —5 to values some-

what above 2 —pl. Figure 6 illustrates that the crossover
n depends logarithmically on the probability p. The
predicted critical values k, for the curves in Fig. 6 are at
about n = 3.3, 5.0, and 6.6. As expected, the decay of h

is shifted due to the variation of p. We underscore that
Figs. 5 and 6 demonstrate again the excellent agreement
of estimated and calculated entropies for n & 8.
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1 —e to find the original symbol of the consensus repet-
itive sequence at any site of the repeat. Consequently,

the probability to find the "right" word 8,- is modified

to

P(n) = p(l —e)" + F(0)
(34)

Now the related conditional probability reads, for suffi-

ciently large n,

, +i (v ) ~)

1.1
0

I

4 5 6
block length [bp]

10

FIG. 5. Entropies from realizations (L = 10 ) of processes
with dispersed repeats R (p = 0.001 and l = 10, 50, 200, 400)
(x) and from Eq. (22) (full lines). As in Fig. 2, the length
correction (23) was applied.

b, h„~ = —(1 —s) log2 (1 —e) —e log2 —.3' (36)

Hence the probability to find the right continuation is
1 —e (as intuitively expected) and any of the other con-
tinuations is found with probability 3. Hence the entropy
contribution (uncertainty) of a letter within the repeat is

not zero, but

UII. GENERALIZATIONS

So far, we mostly studied processes with dispersed
identical copies of a single type of repeat. In this sec-
tion, we will argue that most of our results also apply to
more general situations such as "mutated" repeats and
ensembles of several repeats.

Up to now, we have regarded the copies of a repeat
as identical. However, in reality, they are quite similar,
but not identical. For example, Alu repeats exhibit 87Pp

homology to a consensus sequence [3]. In Fig. 4 we have
demonstrated that 10/o mutations have only minor ef-
fects on conditional probabilities. The modifications of
our entropy calculations can be treated as follows. Let
us assume that a &action e of a repeat is mutated at
random to another symbol. Then we have a probability

For e = 0.1, this yields, for example, about 0.6 bit. In
this way, the entropy decay is somewhat reduced due to
mutations. Figure 7 shows the effect of random muta-
tions on differential entropies.

The model of randomly dispersed copies of repeats is
certainly valid for LINES and SINES (long and short in-

terspersed elements). Besides the dispersed repeats, di-

verse tandemly repeated sequences are also known [1—6].
For example, human DNA exhibits very long series of
CCCTAACCCTAACCCTAA. .. in the telomere region
of chromosomes [6]. Another type of tandem repeats
are clustered segments encoding histones or RNAs. Sea
urchin DNA contains, e.g. , nearly 1000 tandemly re-
peated copies of histone genes with a length of about
6300 bases [6]. Our model could easily be adapted to
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FIG. 6. Entropies from simulated processes (x), (L = 10 )
and &om Eq. (22) (full lines) with a fixed &action of re-
peats pl = 30%; frogg. left to right p = 0.01, p = 0.001, and
p = 0.0001.

FIG. 7. Entropies of simulated processes with I = 10,
p = 0.004, and l = 50. Each copy of the repeat was ran-
domly "mutated" at 5, 2, and 0 sites (from top to bottom).
Since "neutral mutations" were allowed, i.e., a symbol could
be "mutated" to itself, the efFective mutation rates e were
7.5% and 3%, respectively. The thin lines mark the approxi-
mated theoretical values h„according to Eqs. (33) and (36).
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such situations of tandem repeats. The number of over-
lapping words to nonrepetitive DNA would decrease in
such cases. For short repeats such as CCCTAA, the as-
sumption of a random base composition of repeats has to
be modified. However, such specific models are not the
aim of this paper.

As a generalization of single repeats R(p, l) we will now
discuss ensembles R~(pz, l~). As long as overlaps and
insertions of repeats into repeats can be neglected, the
decay of the entropies can be estimated by superposition
&om Eq. (33)

= 2 [1 —) p~(l, —k,~)8(n —k,~)],

1 1
k ~

= —log2—
2 p~

with A = 4.

li„& 2 1 —) p~l~.

2 'W

(38)

The n dependence, i.e., the decay to the entropy of the
source h, is encoded in the 0 function. Very frequent
repeats are taken into account even for small n, whereas
seldom repeats govern the decay of the h„ for larger n.

Since k,z
= n,z depends logarithmically on the fre-

quency of a certain repeat R~, a relatively fast decay
of the difFerential entropies is observed. Hence long re-
peats do not induce automatically long-range correla-
tions. This point will be discussed further in Sec. IX.

Figure 8 is obtained &om a process with a short, but
frequent repeat Ri(0.02, 10) and another rare, but long
repeat R2(0.001, 200). The entropies display a superpo-
sition of a decay at around k, q 2.8 and k,2 = 5. The
full line is again derived from Eq. (22). The dashed line
refers to the simplified formula (33).

The total &action of repeats provides again an upper
bound of the sum in Eq. (37) giving

VIII. APPLICATION TG SPECIFIC DNA
SEQUENCES

In this section, we present some preliminary results
concerning the role of repeats in real DNA sequences.
As a first example, we discuss sea urchin DNA. Mea-
surements of the reassociation kinetics of single strand
to double strand DNA indicate that repeats constitute
about 50% of the whole DNA [3]. A reasonable fit of the
experimental curves is obtained by the assumption of two
kinds of repeats: 19%%uo of the DNA appear about 160 times
and 27% about 10 times [3]. The whole genome contains
about 8.6 x 10 base pairs (bp), i.e. , pi = 1.9 x 10 and
p2 = 1.2 x 10 . From our approach, we would expect a
stepwise decay of the entropies h„at around n = k, z

—11
and n = k,2 = 13 (comparable to the two steps in Fig. 8).
The asymptotic value h can be as low as 1 bit if the re-
peats are relatively long [see Eq. (38)]. This example
illustrates that an understanding of the role of repeats
allows one to draw several conclusions &om rather lim-
ited experimental knowledge.

In Fig. 9 the detection of repeats with the aid of con-
ditional probabilities is exemplified for the DNA of the
Epstein-Barr virus. For the displayed part of the DNA se-
quence, transitions towards increased probabilities can be
seen at 7421 and 12 001 bp, where repetitive regions start
according to the documentation. The detection of such
peculiarities of conditional probabilities implies changes
of the entropy of the source. In the following, we discuss
entropy estimations of real DNA sequences even though
dramatic finite sample efFects have to be taken into ac-
count for n ) 6. Figure 10 shows entropies of two long
DNA sequences: the yeast chromosome III (315338 bp)
and the genome of the Epstein-Barr virus (172281 bp).
The yeast DNA contains relatively few repeats (the words
with length l & 20 appearing twice constitute about 4%
of the DNA). In contrast, the documented repetitive re-
gions in the viral DNA occupy 25.3% of the whole se-
quence (there are, for example, 12 copies of a subsequence
of a length l = 3072).
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FIG. 8. Difkrential entropies for a superposition of two
types of repeats.

FIG. 9. Conditional probabilities for a part of the Ep-
stein-Barr virus DNA indicating repeat regions.
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For A = 4 this condition leads to

(39)

Several classes of repetitive sequences such as tandem
repeats, SINES, and LINES are well documented [1—6].
According to our statistical approach, we may de6ne re-

peats fairly generally: Any subsequence appearing much
more frequently than expected from the base composi-
tion may be called "repeat" if it is not merely part of a
longer repeat. In the framework of our model, one has
to require for a repeat

1.5
0

I

3 4 5
block length [bp]

FIG. 10. Estimated entropies for the yeast chromosome III
(x) and the Epstein-Barr virus (o) using finite sample correc-
tions discussed in Refs. [14,16,17].

From our theoretical considerations, we would predict
a moderate decay for the yeast DNA due to repeats (at
most 0.08 bit) at n = k, = —

2 log2 sis2sss
—8.6. A

drastic decay by about 0.5 bit at n = —
2 log2 y7228y

6.9 is expected for the virus DNA.
Direct estimations of the entropies h„ from word fre-

quencies are seriously afFected by 6nite sample eHects
(note that 4io 10s combinations of length 10 are possi-
ble). However, due to sophisticated finite length correc-
tions [14,16,17] some estimations are available (see [17]
for details). The corrected values are consistent with our
predictions: There is nearly no decay of the yeast en-
tropies and a sharp decay of the entropies for the Epstein-
Barr virus at around n = 7.

Our models can be easily updated to reflect the statis-
tical properties of DNA sequences more accurately. For
example, the real base, codon, and dicodon usage may be
approximated by Markov processes of 6fth order. More-
over, specific properties of repeats (e.g., enlarged AT con-
tent or tandemly repeated copies) may be included in
further studies.

IX. SUMMARY AND DISCUSSION

The information content of biosequences can be quan-
ti6ed by word entropies. However, the direct calculation
of higher-order entropies is limited by the 6nite length of
available sequences. Therefore, we constructed stochas-
tic processes that reflect essential features of DNA. In
a similar spirit, Young and Crutchfield [39] recently
constructed appropriate "e-machines" for the estimation
of entropies and Li developed "expansion-modi6cation
models" as generators of long-range correlations [18].

The basic assiiuiptions of our model are that (a) DNA
outside repeat regions is close to a Bernoulli process,
which is substantiated in Sec. III by precise estimations
of low-order entropies [8—10,12,14], and (b) in addition
to nonrepetitive DNA, relatively long copies of "repeats"
R~ constitute a signi6cant fraction of eukaryotic DNA.

1 1
l && log2 = kc.

2 p
(40)

If Eq. (39) holds, the discussed conditional probabilities
tend toward one (see Fig. 3) and consequently entropies
are reduced due to the repeat.

We note that words of a length of l = 20 that appear
but twice in the whole human genome (about 3.5 x 10s
nucleotides) already fulfill this requirement:

2 (11"))3.5 x 10s k4)
(41)

The above general de6nition of repeats also includes,
for example, multiple copies of genes and long repeti-
tive words within pseudogenes. This appears reasonable
since such repetitions reduce the information content h
as well.

It was shown that for our model, introduced in Sec. III,
fairly accurate formulas could be derived for the word dis-
tributions and the entropies H . Such constructed pro-
cesses with nontrivial structure (the rank order statistics
exhibits a plateau and a power-law decay to a pedestal)
may also serve as test cases for 6nite sample corrections
[12—14,23].

A simpli6ed formula for the diHerential entropies h„
has been derived by analyzing conditional probabilities.
This approach revealed much insight into the decay prop-
erties of the entropies h„. The main conclusions are the
following.

(a) As intuitively expected, the reduction of the en-

tropy of the source h is intimately related to the total
fraction of all repeats [see Eq. (38)].

(b) Since the first k~& ——
2 log2 —letters of a repeat2 pj

are hardly predictable, we can improve the lower bound
in Eq. (38). For repeats of the Alu family RA~„(p =
4ooo, l —300) we obtain, for example, k,A~u - 6, i.e., the
rest can be considered as predictable.

(c) Another result concerns the decay of the entropies
h„ to their limit h. Repetitive subsequences R~(p~, l~)
can be detected for n & k,~

=
2 log2 —and hence the

Pj
corresponding decay of the h„ is found at n = k ~.

It was argued in Sec. VII that repeats do not lead
to long tails of the h decay. This can be illustrated as
follows: Even if a word appears only twice in the whole
human genome (p = 6 x 10 ) the corresponding decay
is located around k, = 13.7. Hence the asymptotic value
h is reached for relatively small n.
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Consequently, randomly distributed repeats do not
seem to be candidates to introduce long correlations in
biosequences. However, it has been reported that repeats
might be distributed in a nonrandom manner [7]. In the
case of "short-period interspersions" repeats of length
300 alternate with intervening nonrepetitive sequences of
about 1000 bases [3]. In this way repeats might induce
long correlations.

Moreover, repeats may contribute to long correlations
in DNA sequences due to a substructure. LINES often
contain "long terminal repeats" at their ends. Keeping in
mind that more than 20000 LINES extending over sev-
eral kilobases exist in genomes, such "repeats within re-
peats" may induce detectable long correlations over thou-
sands of bases as found empirically [19,21,22, 16].

Summarizing, we emphasize that the direct statistical
analysis of biosequences can pro6t &om careful studies
of appropriate model processes as demonstrated in this
paper.
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letters A, C, G, and T and randomly dispersed repeats
R(p, l). Overlaps of copies of R(p, l) are neglected. Such
a process can be considered as a Bernoulli process with
the A = 5 symbols A, C, G, T, and R and their proba-
bilities
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(Al)

Consequently, the entropy of the source is given by

&=5 1h"= = ) — logz —plogz p —2+ plog2 —.
4 4 pi=1

(A2)

In order to get the mean information per letter of the
original string with A = 4 letters we have to renormalize
the above entropy by dividing it by the mean number of
nucleotides per symbol of the process with A = 5 [40]:
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2 1 —p 1 ——log2—
1 —p+ pl i 2 p)

(A3)

APPENDIX: AN ALTERNATIVE CALCULATION
OF THE ENTROPY

An approximate formula for the entropy of the source 6
is derived for a process with independent equidistributed

In this way, an alternative estimation of the decrease of
the entropy of the source due to repeats is calculated,
which is in perfect harmony with Eq. (33).
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