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The goal of this research is to obtain the structure of lipid bilayers using low-angle scattering
with the q vector perpendicular to the bilayers. This requires obtaining the form factor F(h) for the
bilayer, which in turn requires correcting the intensity I(h) of the hth order peak by the structure
factor S(q), which is a nontrivial function for bilayers in noncrystalline arrays. In this paper the
classical theory of smectic liquid crystal scattering is first used to calculate detailed structure factors
for unoriented, powder averaged samples. These calculations suggest that the form factors used in
conventional biophysical determinations of electron densities require very large corrections. We then
show that the classical correlation function in turn requires correction. Our modified correlation
function yields much smaller corrections to the form factors. We also modify the standard finite-size
factor that is required to fit the peaks. This second modification changes the detailed shape of the
peaks while retaining nearly the same form factor corrections and the classical power law tails.

PACS number(s): 87.22.Bt, 87.64.Bx, 61.30.Cz, 61.10.Dp

I. INTRODUCTION

Accurate characterization of the structure of biomem-
branes is a major interest of the biophysical coxnmunity

[1—20]. This characterization includes the lipid bilayer
which forms the basic matrix of the membrane as well as
the intrinsic proteins which are responsible for xnost of
the biochemical functionality of membranes. This paper
focuses on the lipid bilayer, which ought to be easier to
characterize than complex biomembranes, but which con-
tinues to pose interesting challenges in biological physics.

The structure of lipid bilayers has been pursued using a
number of physical techniques [13—20]. One of the most
basic of these is x-ray diffraction [1—12]. A major goal
has been to deterxnine electron density profiles along the
normal to the bilayers. For phospholipids, the headgroup
is electron dense and so determination of the positions of
the electron density peaks in such profiles gives a good
indication of the thickness of a bilayer [2,8]. Compari-
son of such thicknesses for bilayers composed of different
lipids then gives a database for evaluating the physical
effects of different lipids in biomexnbranes. The widths
of the electron density peaks are related to the extent of
molecular disorder caused by Buctuations in the bilayer
[13,15].

The basic experixnental data that have gone into these
electron density profiles come &om low-angle diffraction
&om multilamellar arrays. In these arrays the mem-
branes are essentially stacked one upon the other with
water layers between, thereby forming a lyotropic smec-
tic liquid crystal. The low-angle scattering consists of
fairly sharp peaks that correspond to scattering vectors
perpendicular to the bilayers at the values qy, = 2mh/D
for the different orders h and with the Bragg repeat spac-
ing D that includes the thickness both of one bilayer and
of the water between two bilayers. Traditional analy-
ses [4—10] of these data have assnmed that the bilayer

form factor F(q) (which has sometimes been called the
structure factor or structure amplitude) evaluated at qh
is related to the integrated intensity I(h) measured for
the hth order peak by

1(~) = IF(~) I'/qa

where I/q&2 is the usual Lorentz factor. This determines
the form factors F(h) (for a particular value of D) except
for the phase factor which must be kl for symmetric
bilayers; determining phase factors has been the subject
of extensive study [4—7] and will not concern us further
here. Then, the electron density profile is given by

p(z) = ) F(h)cos(2mhz/D). (2)

where pI(z) is the electron density of a single isolated
bilayer. If the single bilayer structure is the same as the
bilayer structure in multilamellar vesicles, then the dis-
crete form factors F(h) in Eqs. (1) and (2) are the val-
ues of F(q) in Eq. (3) evaluated at qa ——27rh/D There.
is evidence that drying multilamellar arrays eventually
changes the quantitative bilayer dimensions by increas-

The goal of such studies has been to determine the
structure of a single bilayer in water, not the structure
of bilayers in multilamellar arrays As in prote. in crystal-
lography, where it is hoped, and sometimes shown, that
the structure of proteins in crystals is very similar to the
native structure, it is also hoped that the structure of
lipid bilayers determined via Eq. (2) is very similar to
that of the single bilayer. This hope seems reasonable
when the water space between bilayers is large. Then
the continuous form factor is given by
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ing the interlamellar forces [7,8,11]. How much drying is
required to change the structure is a matter of soxne dis-
pute [8,11];it is hoped that the theory in this paper may
help resolve this issue. However, this will be addressed
in another paper.

At issue in this paper is whether Eq. (1) is quantita-
tively accurate for determining the form factors F(h) that
are then used in Eq. (2) to obtain the electron density
p(z) for bilayers in multilamellar arrays. Equation (1)
is easily shown to be true when the bilayers are equally
spaced in a perfect one-dixnensional array along the z
axis because then the structure factor S(q) due to the
lattice consists of b functions (Bragg peaks) of equal mag-
nitude for each order h. However, when smectic disorder
is included, the classical scattering theory developed by
Caille [21] from the free energy of smectic liquid crys-
tals [22] clearly shows that the S(q) structure factor (of-
ten called the interference function) no longer has Bragg
peaks but broadened peaks with power law tails. These
power law tails have been well established experimentally
for a number of smectic systems [23—25] including lipid
bilayers [26]. This means that Eq. (1) must be replaced
by the more fundamental equation

(q) = s(q)lz(q)l (4)
the derivation of which is discussed in the Appendix. It
will be convenient to define a reduced structure factor
s(q) by explicitly factoring out the usual Lorentz correc-
tion. Then, Eq. (4) becomes

I(q) = s(q) I+(q) I'/q'. (5)

Experimentally, the I(q) peaks are narrow enough that
there is no difficulty distinguishing the different orders h
and the form factor F(q) is practically constant in the
narrow region of each of these central peaks. Therefore,
if the integrated areas for the hth order peaks of the S(q)
and s(q) functions are designated S(h) and s(h), respec-
tively, then to very good approximation I(h) is given by

I(h) = S(h) I+(h) I' = s(h) I+(h) I'/m,

and Bagchi [27]. This is a stochastic non-Hamiltonian
theory that only takes into account one of the degrees
of freedom relevant for smectic liquid crystals, but it is
not as fundaxnental as the Caille scattering theory. This
question was addressed qualitatively in the context of
Caille theory by Gunther et al. [28] when discussing the
absence of higher order peaks in liquid crystal data [23].
More recently Nallet et sl. [29] introduced a kind of hy-

brid model that looks like the paracrystalline theory, but
which uses some aspects of the Caille correlation func-
tion. Nallet et al. stated that "it is unfortunately not
easy to devise a ... coxnplete rigorous theory" that takes
into account all the features of the Caille theory. We
believe that the present paper provides this rigorous de-
velopment of a quantitative theory that can provide the
efFective correction factors 1/s(h), not only for lipid bi-
layers, but also for general smectic liquid crystals.

In the next section the classical scattering theory of
Caille and others is brie8y reviewed and it is shown that
the correction factor 1/s(h) can indeed be quite large
for values of the parameters indicated &om experimental
studies. This review shows that there are approxima-
tions in the classical theory that need to be addressed
before accepting the corrections predicted by the theory
as it now exists. Before doing this, however, we turn
in Sec. III to describe an accurate approximation that
enables us to perform fits to data &om powder samples
more efficiently as well as to obtain analytic results for
theoretical analysis. Then, in Sec. IV we improve the
Caille correlation function which results in considerably
different structure factor corrections than the classical
theory, as shown by detailed comparisons in Sec. V. In
Sec. VI we propose a modification in a different part of
the classical theory, due to Dutta and Sinha [30], regard-
ing the finite-size effect on the shape of the scattering
peaks. Detailed conclusions are summarized in Sec. VII.

II. CLASSICAL X-RAY SCATTERING THEORY

where the final equality defines the correction factor
1/s(h) that should be applied to I(h) in addition to the
Lorentz correction, q&~. The question now is whether s(h)
for the disordered lattice is nearly constant for the dif-
ferent orders of scattering centered near qh or whether
s(h) significantly varies with h so that the form factors
usually calculated from Eq. (1) must be corrected using
Eq. (6).

One way to address the question in the preceding para-
graph is to use the paracrystalline theory of Hosemann

I

N/2

This section gives a brief review of the classical the-
ory that provides xnuch of the basis for our developments
and refinements. Consider a sample consisting of N + 1
(Iq even) membranes contained in a cylinder of height L
along the z direction and with diameter L„. On average
each membrane is Hat with its normal along the z axis
of the cylinder, so the average membrane also occupies
a cylindrical volume of height D = L/N. The structure
factor (interference function) for scattering from a smec-
tic liquid crystal sample is given by

S(q) =
n, m= —N/2

eiq* —~)D $2rd2p~eiri r r Q(r, r~, B, m)
I~l I~'I&L-12

where G(r, r', n, m) is the scattering pair correlation
function for those pieces of membranes numbered n and
m whose lateral (in-plane) coordinates are r and r', re-
spectively. As suggested by de Gennes [22], the layer dis-
placement u, in the z direction only, sufficiently describes

I

the positional 8uctuations of smectic-A liquid crystals.
Therefore

~( &

) (
iq, [u(r, nD) — (r', rnDu)]) (8)

where ( ) is the thermal average. The pair correlation
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function takes into account the Buctuations in the cen-

tral positions of the membranes. Fluctuations in layer
thickness and in molecular conformation are included in
the bilayer form factor F(q) (see Appendix). Using the
standard harmonic approximation, translational symme-

try, and, following Caille, restricting the scattering vector
close to the hth order reBection lead to

( (
q e

—qg((~(r, z)—u(o, o)]'}/2r, zj —e

0.90

N
C)

lI

U
0.75 — '--..

Precise
Eq. 45

-0 o-0

Eq. 46
' Eq. 48

Eq. 12

Calculation of ([u(r, z) —u(0, 0)]2) in Eq. (9) depends
on the &ee energy of the smectic-A system, which has
been given by de Gennes [22] as

2000
z (A)

4000

F B (Bu'} K (c)2u 82u)
[

+—,+
V 2 ((9z& 2 (,Bx2 Bys&

(10)

([ ( ) — (o o)]')

where B is the bulk modulus for layer compression and K
is the modulus for layer curvature. Following de Gennes

[22], the equipartition theorem can be applied to each
Fourier component of this &ee energy. Assuming isotropy
in the z-y plane of each bilayer and symmetric bilayers,
it is straightforward to show that

FIG. 1. Numerical calculations of the correlation function

G(r, z) versus z for r = 40 L and for h = 1, for parameter

values gi ——0.03, D = 60 A, A = 12 A, L= 4 000k, , a = 4 A.

The solid curve labeled "precise" is calculated numerically

using Eqs. (9) and (11). The other curves were calculated

using various approximations as shorn in the Sgure legend.

where the subscript C denotes the classical theory, Ei is
the exponential integral function, p is Euler's constant,
and gh are the undulation parameters defined by Caille

4kT z / q„dq„[l —Jo(q„r) cos(q, z)]
(2&)2B L o q2 + A2q4

q, —0 where

2
gh

——yah, (13)

where the upper limit in the in-plane q„ integral is de-
termined by the in-plane spacing a between the lipid
molecules, the parameter A was defined by de Gennes

[22] to be gK/B, and Jo is the zeroth order Bessel func-
tion. It will be shown that a and A essentially drop
out of our final scattering equations, so it is not criti-
cal which values are used for illustration in the figures
in this paper. We have chosen a = 4 A., which is close
to the acyl chain packing distance; the average distance
between lipid molecules with two acyl chains is closer
to 6 A. We have also chosen A = 12 L from measure-
ments of the membrane rigidity KD 1 —2 x 10 ergs
[31,32] and from Wack and Webb's [26] measurement of
B = 1.9 x 10s ergs/cms for fiuid phase dilaurylphos-
phatidylcholine (DLPC) .

We have numerically evaluated Eq. (11),and hence the
correlation function in Eq. (9), to high accuracy for values
of the parameters that we are obtaining &om our current
experimental data and that are consistent with the values
found by others [26,31,32]. An example of this correlation
function is shown in Fig. 1 by the curve labeled "precise. "
In general such calculations are too time consuming for
final data analysis and the critical asymptotic behavior
is not so obvious, so approximations have been made.

Caille developed the theory [21] in the limit L ~ oo,
so he replaced the sum in Eq. (11)by an integral over q, .
He also extended the upper q, limit of this integral to oo,
which allowed him to obtain a closed form expression in
the limit z » a2/A,

(z&(r z) e 2ggp(~r/a) —2og e
—opEq(e /4Az)—

q2IT ~ & IT IT ~"'
8&+KB 2 gKDBDs&~ (14)

S(q) = f d R K(R)G(R)e'~~

where the factor JI(R) in the integrand is the finite-size
factor, and where for layered systems it is appropriate to
use

R=r+zz. (16)

Dutta and Sinha [30] proposed a one-parameter theory
involving a coherence length L that represents the aver-
age size of domains in the sample. Following the ideas of
Dutta and Sinha yields for II(r, z) the function [24,25]

A calculation of Gc (r, z) at r = 40 A. is shown in Fig.
1 for the same set of parameters as those used for the
calculation of the precise correlation function. The main
reason for the discrepancy comes from replacing the finite

q, cutoff m/D by oo in Eq. (11).Despite this discrepancy,
the main results of Caille regarding the asymptotic be-
havior of the correlation function and the power law tails
of the scattering peaks remain intact. This discrepancy
does, however, affect the relative magnitudes of the s(h)
factors in Eq. (6), which is the focus of this paper.

The final piece of the classical theory involves the
recognition that samples consist of domains with finite
sizes, but that not all the domains will have precisely
the same size. Generally, the structure factor S(q) for
(0, 0, h) peaks of oriented samples can be written as [33]
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FIG. 2. Normalized reduced structure factor s(q)/s{q), )
versus q —q), calculated from the classical formulas Eqs. (12),
(17), (18), and {5) for parameters D = 60 A, A = 12 A. ,

a = 4 A. , and L = 4000 L. The solid curve shows the peak
for the nonfiuctuating case (g = 0) for comparison. The other
curves show the Srst 6ve orders for g~ ——0.03. The correction
factors 1/s{q), ) have the values 1.41, 4.17, 20.4, 189, 2442 for
h = 1, . . . , 5, respectively.

H (r, .) =.—.l"'+ '»"
where the C subscript again designates classical.

Equations (12) and (17) are the basic formulas &om the
classical theory that are used to compute the structure
factor in the fundamental Eq. (15). When this is applied
to powder samples [24,25], the structure factor may be
written in the form

OO sin q r~+ z~
S(q) = d R H(R)G(R)e *v"' . (l8)

—OO

18

Figure 2 shows calculations for the reduced structure fac-
tors s(q) using Eqs. (12), (17), (18), and (5). This figure
clearly shows the well-known result that the power law
tails become more pronounced for the higher orders h of
reflection due to the quadratic dependence of the undu-

lation parameters gg on h.
More important for our study is the dramatic eKect of

smectic fluctuations on the peak intensity, s(qs). In Fig.
2 the s(q) curves have been normalized to 1 at q = qh

for all orders h. If there were no fluctuations, then the
factors s(qa) would all equal one. As shown in the cap-
tion to Fig. 2, however, the normalization factors I/s(qg)

increase strongly with h. In Sec. VI we will consider the
issue of increases in the peak widths with 6 and how this
affects I(h) with power law tails. Here let us only re-
mark that, when I(h) is measured in the usual way, the
increased width is a minor eH'ect compared to the de-
crease in the height s(qq) with h. Then, the correction
factors I/s(h) are numerically similar to the normaliza-
tion factors I/s(qg), so the large increase in I/s(qg) for
the higher orders in Fig. 2 suggests that neglect of Buc-
tuations would contribute a large error in determining
form factors for bilayer structure using Eq. (1). Since
these corrections are so large, it is important that the
theory be carefully examined to see whether such cor-
rections are quantitatively accurate, especially when the
results in Fig. 1 indicate that the Caille correlation func-
tions are quantitatively inaccurate. This motivates our
proposed modi6cations.

III. APPROXIMATE POWDER AVERAGE
FORMULA

We will fnst develop an approximate method for cal-
culating powder averages in this section. This is an es-
sential approximation that is key to our other theoretical
developments, as well as to performing numerical 6ts to
data.

We start &om Warren's powder pattern power theo-
rem [34] of x-ray scattering which simply states that the
scattering power P from a powder sample is

P oc — dq dqydq, S q, qy, q, q = dq qS q,

(19)

« «, I« I=.«.«.. q

q2 q2 q2
(20)

Substituting Eq. (20) into (19), and eliminating the in-

tegral over q on both sides, the expression for S(q) in Eq.
(19) becomes

where q = qz + qz + q, and the 1/q factor is from the

powder diffraction geometry. Changing the variable set

(q~, q„, q, ) m (q»q»q) for q, ) 0 and (q, q„, q, )
(q, q„, —q) for q, ( 0 yields

~(~) = fj «.«.
q2 +@2(q2 4mq q2 —q2 —q2

(21)

Substituting the integral form of the structure factor S(q) from Eq. (15) into Eq. (21) yields

1 3S(q) = d R H(R)G(R)e '~"'
dq~ dqy

4aq q2 +q2 (q2

e'v *+ ~" cos( q —q —q z)

—q
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I,etting q„= q2 + q„, one obtains

S(q) = — d R H(R)G(R)e
1

q

f q„Jp(q„r) cos(gq2 —qzz)
X dq„

gq2 q2

Equation (23) is still exactly equivalent to Eq. (18).
Equation (23) is by no means simpler than Eq. (18);

on the contrary, it is more complicated. However, Eq.
(23) is amenable to a useful approximation. To see this,
we notice that for relatively large scattering systems, the
(0, 0, h) peaks are fairly sharp. This means that qh

q )& q„ for h g 0, so it is reasonable to consider the
approximation

v'q' —q.' = q, (24)

in the cosine function in Eq. (23). Then, Iq, the integral
over q„ in Eq. (23), can be evaluated using Eq. 24 to yield

Iq —cos(qz) dq„" " = cos(qz) . (25)
q„Jp(q„r) sin(qr)

gq2 q2 r

Therefore Eq. (23) is simplified to

0

S(q) = d R H(R)G(R)e '~"' cos(qz) . (26)
—OO qT

The difference between Eq. (26) and Eq. (18) is the fac-
torization of the r dependence &om the z dependence in
the phase factors.

To investigate the accuracy of Eq. (26), we calculate
S(q) &om both Eq. (26) and Eq. (18) for the same set of
parameters as in Fig. (2), and display the two results in
Fig. 3. The approximate result &om Eq. (26) matches the
precise result quite well. The relative errors are generally
very small ( 1'%%up) for most of the q values, although in
the tail region near the ends of the curves shown in Fig.

3 the relative errors are as large as 10'%%. Nevertheless,
the absolute errors are much smaller than typical exper-
imental errors. The basic dHFerence is due to the fact
that the approximation is almost symmetrical about qh,

whereas the exact equation (18) has a slight asymmetry
with larger values for q ) qp, than for q ( qg.

To test the accuracy of Eq. (26) further, we next ex-
amine a case that can be calculated exactly, namely,
the case of nonfiuctuating bilayers, G(R) = 1, and

H(R) = e (" +' )/~ . The exact calculation &om Eq.
(18) yields

7l'I/ ( I (e e/, ) — I (e+e/, ) ) L qS(q)=, ~e '- +e
) 27'.

( 3 L2q21
X /FAN 1&

)
(28)

where the qFq function is the degenerate hypergeometric
function. Figure 4 shows the structure factors S(q) cal-
culated from Eq. (27) and Eq. (28), respectively: the two
curves differ by less than 0.1% in the range over which
the intensities decay four orders of magnitude.

Now that we have established the numerical accuracy
of Eq. (26), we can utilize the factorization of the r de-

pendent and z dependent phase factors. In particular,
the factor sin(qr) shows that the integral in the x-y plane
is very oscillatory. This suggests that the contributions
&om the large r region to the S(q) integral are much
smaller than those &om the small r region. In other
words, the S(q) integral is very insensitive to the value
of the integrand at large r. Therefore, when we calcu-
late the correlation function G(r, z) and finite-size factor
H(R) in the following sections, it will be possible to use
expansions in r.

s( )
— — '(e—e )'/ ~

— '(e+e /'/
) (2y)

qqa

as shown by Roux and Safinya [25]. For this same case,
Eq. (26) yields

1.0

0.8-

0.6-

~ 0.4-
CO

0.2-

0.0---
0.100 0.104

q(A )

Eq. 18-
Eq. 26

0.108

1 0-

0.8-

0.6-
CT
v) 0.4-

0.2-

0.0
0.100 0.104

q(A )

Eq. 27
' Eq. 28—

0.108

FIG. 3. Comparison of the reduced structure
factors s(q)/m L versus q calculated from Eqs. (18) (solid line)
and (26) (solid circles) for the flrst order (h = 1) peak for pa-
rameter values gq = 0.03, L = 4000 A, D = 60 A, A = 12 A. ,
a=4%..

FIG. 4. Comparison of the reduced structure fac-
tors s(q)/mL versus q calculated from Eq. (27) (solid
line) and Eq. (28) (solid circles) for parameter values
L=4 000k. , D=60A. , andri =0.
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0.8

0.7
C)
C)
C)

0.6-

~ 0.5'-

0.4-
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Eq. 12
. 29

400 800
r (A)

0.8

0.6

0.4

0.0
0. 100

Eq. 26
- .q 30

.L,.Z i

0. 104 0.108

q(A )

FIG. 5. Comparison of the r dependence of the correlation
functions for z = 1000 A. from Eq. (29) (dashed line) and Eq.
(12) (solid line) for the first order (h = 1) peak for parameter
values rli = 0.03, L = 4000 A, D = 60 L, A = 12 A, and
a=4

FIG. 6. Comparison of the reduced structure factors
8(q)/vrL versus q calculated from Eq. (26) (solid line) and
Eq. (30) (circles) for the first order peak (h = 1) for parame-
ter values rli = 0.03, L = 4000 A, D = 60 A, A = 12 A, and
a=4

To demonstrate the point argued in the preceding
paragraph, we approximate the classical correlation func-
tion Gc(r, z) in Eq. (12) by expanding the Fi function
in Eq. (12) with respect to r to obtain

g( z) =g. ( )+gi( ) '+&(")»
provided

(32)

Gc (r, z) = Gc (0, z) e """~ "'

—v)1, p (/
~ z

i) vyi, r /4Az —
g 0

o2

(29)

gi(z) &&

is true for most of the z values. Therefore the correlation
function G(r, z) can be approximated by

The r dependence of this approximation is compared in
Fig. 5 to the exact r dependence from Eq. (12). Next,
let us examine the efFect of using the expansion in Eq.
(29) for the calculation of S(q). Using Eq. (29) and the
classical finite-size factor II(R) from Eq. (17) in Eq. (26)
yields

S(q) = — dz Gc(0, z)e ' ~ e ' "'cos(qz)
4'
q

x dre """ "'e " sinqr. 30

G(«) = e-gl". l (31)

where g(r, z) can be expanded as

We have calculated S(q) using both Eq. (26) and Eq.
(30), and plotted the two results in Fig. 6. Despite the
inaccuracy of the approximation for the correlation func-
tion shown in Fig. 5, the two results for S(q) match al-
most perfectly.

In the preceding paragraph we have shown that, for
the calculation of S(q) using Eq. (26) and for the case
of a classical correlation function Gc (r, z), it is accurate
enough to expand with respect to r, and only keep terms
up to r . We note that this is mostly due to the oscil-
latory phase factor sin(qr), not because of the particular
functional form of G~(r, z). Therefore we anticipate that
the above conclusion should hold for more general cases,
that is, for any correlation function G(r, z) which can be
written in the form

G(«) —e
—go(~) e

—si (~)~' (34)

for the calculation of S(q), provided the conditions in
Eqs. (32) and (33) hold.

IV. REFINED CORRELATION FUNCTION
FOR FINITE-SIZE SAMPLES

To calculate the scattering correlation function for
finite-size samples, we start from the general formula in
Eq. (11), rather than just follow Caille. Replacing q, by
nor/L and defining AU(r, z), we write out the sum in Eq.
(11) explicitly as

Equation (35) is too complicated to express by closed
form analytical functions; it is also very time consuming
for numerical calculations. Therefore proper approxima-
tions should be considered.

In order to put the correlation function G(r, z) into the
form of Eq. (34), we expand the Bessel function Jo in Eq.
(35) to order r to obtain the approximation

AU(r, z)—:([u(r, z) —u(0, 0)] )
4kT

(2n)2B L

q dq„[1 —Jo(q„r) cos(nmz/L)]
(nz. /L)2 + A2q4

(35)
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q„dq„(l —[1 —(q„r)2/4] cos(nmz/L) )
( & ) (2 )2B L M (rl1r)2

(36)

We separate AU into two parts:

EU= b,U, +~U, ,

where

EU) ——b,U(0, z)

4kT vr . ~ q„dq [1 —cos(ns z/L)]
(2s)2B I o (ns/L)~ + A2q4

b, U2 ——b, U(r, z) —AU(0, z)

r2kT' 7r . ~ dq„qs cos(nvrz /L)
(2s)2B L ~ - (n7r/L)~ + A2q4

(39)

Evaluation of the q„ integral in Eq. (38) yields

4kT 1 .1 —cos(nxz/L) z ~A7rL t

AUg —— tan '
(27r) 2B 2A n,

~ na2)
(40)

4kT 7r .1 —cos(n7rz/L)

(2~)zB 4A

2rli . 1 —cos(nmz/L)
N

2 n
(41)

For small r, AU2(r, z) in Eq. (39) is small. Because the
integrand goes asymptotically as q,

2 in q, and goes as

q„ in q„, we replace the sum by an integral Rom 0 to
oo, and obtain

Since AmL/na2 = (As'D/a2)(N/n) )& 1, we can set
tan (As L/na2) —s /2, and obtain

The corresponding correlation function G~q is

G g q
—g cin(ms/D~2(F Zj = 6 (46)

where Cin(z) = f odt(1 —cost)/t is the cosine integral
function.

The accuracy of our approximate correlation functions
is shown in Fig. 1. The correlation function G~~ &om Eq.
(45) is fairly close to the exact correlation function, with
relative errors of about 2%. One point worth noticing is
that both the precise correlation function and Ggq &om
Eq. (45) decay more and more slowly as z + L, and
become Sat at z = L. The correlation function Gg2 &om
Eq. (46) is also rather close to the precise correlation
function. It, however, decays algebraically for all large z,
as a result of the infinite-size approximation.

An analytic comparison to the Caille correlation func-
tion Gc in Eq. (12) can now be made. The asymptotic
expansion for z/D large,

Cin(s z/D) p + 1n(mz/D),

can be employed in Eq. (46) to yield

(47)

GA2(r, z) —GAs ——e ""~(nz/D) ""e """~ "*. (48)

.1 —cos(nmz/L) )
GA1(r, z) = exp —ga ) e 4&* . (45)

m=0

Now, we can check the validity condition in Eq. (33) for

GAq(r, z). Here, we have gq(z) = qp, /(4Az). It is obvious
that gq(z) « 1/D for z )) D Th. erefore GAq(r, z) will

be sufficient for the calculation of S(q). When N = L/D
is large, the sum in Eq. (45) can be replaced by an inte-

gral, and thus the correlation function can be written in
a closed form which we call G~2.

(2s)2B A 4Az

Since Azs2/a &) 1 for z )D, we obtain

(42)

For comparison with other correlation functions,
GAs(r, z) is calculated using the same set of parame-
ters as our previous calculations, and plotted in Fig. 1.
Clearly, GAs(r, z) from Eq. (48) is nearly identical to GA2
from Eq. (46), which suggests that the expansion in Eq.
(47) is very accurate. For large z and small r, Gc in Eq.
(12) yields

kT vr r'
( )2 A A

Therefore, for r2 & 4Az, and z g 0, we obtain the ap-
proximation, designated by the subscript A1,

Gc(r, z) = e ""~(4s.Az/a ) ""e """~ "*. (49)

(50)

It can now be seen analytically that the Caille correlation
function is too small by using Eq. (49) and Eq. (48) to
calculate the ratio

44
2rli 1 —cos(nmz/L)

g~ 4Az)

This ratio is greater than 1 for lipid bilayers because D
(of order 60 A) and A (of order 12 A.) are greater than a
(of order 4 A) and gs is intrinsically positive. This shows
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that the classical correlation function G~ underestimates
the degree of order in smectic liquid crystal systems.

V. ANALYTICAL RESULTS USINC THE
CLASSICAL FINITE-SIZE FACTOR

S-(q) = x('+ )/2G„, (O, D)L (1 —rl„) f I. ItI'
) I

~1 —nh 1 L—'(q+ q~)'&
1+1

2
'

2 47r )
Although another form of the finite-size factor will be

proposed in the next section, we wish first to discuss the
structure factor S(q) using the classical finite-size factor
in Eq. (17). Although we believe that these expressions
are not the best for data fitting, they are illuminating in
semiquantitative discussions because closed form expres-
sions for S(q) from Eq. (26) can be obtained.

Let us write the correlation function G~s in Eq. (48)

Sq(q) is the standard "true" hth order peak. The "mir-
ror" peak centered at q = —qI„S (q), is extremely small
for positive q and thus can be neglected. For numerical
calculations we use the more accurate correlation func-
tion G~2 in Eq. (46), instead of G/is, in order to avoid
the weak divergence at z = O. In parallel with the above
derivation, we obtain

as

G~s (r, z) = G~s (0, D) (z/D) ""e

4x
S(q) = — dz e "" '"( '/ )e ' / cos(qi, z) cos(qz).

p

where G~s(O, D) = (me~) "" is the correlation function
at the position (O, D). Then, coinbining Eqs. (17), (26),
and (51), we obtain

4s G~s(0, D
S(q) = ' dz z ""e ~~ cos(qsz) cos(qz)

qD 'gh

OO 2'gg t'

x dr e 4&* e ~~ sin(qr).
G

(52)

Defining A = rig/4Az + vr/L2, we obtain

S(q) = 2mG~s(0, D)
dz z " 6 cos/ggz)D —na

G

q. l
x cos(qz) iFi 1) —, A ~

(
'2' 4A)

(53)

Since q2/4A = q2/(il&/Az + 4x/L2) ) 1 for z ) D, we

perform an asymptotic expansion of the qFq function,

3 -q2) 1/q2)
'

(
'2' 4A) 2(4A

(59)

Figure 7 shows five harmonic peaks using Eq. (59) and
the same values of the parameters I, D, and gg as in
Fig. 2. It is noteworthy that the other parameters, a
and A, that were required for Fig. 2, do not appear in
Eq. (59). The a parameter played only a minor role, as
would be expected, in the correlation function, and this
role was eliminated with little error in the G~q approxi-
mation developed in Sec. IV. The A parameter is associ-
ated with the r dependence. The general development in
Sec. III shows that the structure is rather insensitive to
the r dependence and the development in the preceding
paragraph supports this by the disappearance of the A

parameter.
The shape of the peaks in Eq. (57) is determined by the

iFi function because it has the only (q —qh) dependence.
By expanding the iEi function with respect to (q —qh, , )
for small (q —qq), one sees that the top of the peak is
Gaussian-like:

Then, Eq. (53) yields

4+G~s(0, D
S(q) = ' dz z ""e ' / cos(qsz) cos(qz).

q2D rlg—
(55)

Using the standard integral formula, we evaluate Eq. (55)
and obtain the following closed form:

1.0-

0.8-

0.6-U
M

0CT

0.2',

h =3
h=2 !

h=3-
h=4
h=5-

where

S(q) = S~(q)+ S-(q) (56) 0.0
- 0.004 0.000 0.004

q-qh (A )

S,(q) =

and

~('+»)»G„s(O, D)L &1 —gg l t'L~

)
f 1 —rig 1 I2(q —qI,)2~t-

x pe (5
2 2 47r

F1G. 7. Normalized reduced structure factor s(q)/s(qa),
calculated from Eq. (59), for parameters D
L = 4QQQ A. The solid curve shows the peak for the non-

Suctuating case (g = 0) for comparison. The other curves

shove the 6rst 6ve orders for gq
——0.03. The correction fac-

tors 1/s(qq) have the values 1.14, 1.67, 3.09, 6.78, 15.8 for

h = 1, . . . , 5, respectively.
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(1 ~~) '(q —«)' (~ ») '(e e-A) /4»
4m

(60)

For ~q
—q),

~
)) 1/L the tails of the peak decay alge-

braically:

S(q) ~ lq
—

qual
'+"". (61)

VI. NE%V FINITE-SIZE FACTOR

The simplest way to obtain a finite-size factor is to sup-
pose that all the domains have the same size and shape
[34,35]. As is well known, this choice predicts oscillations
in the tails of the structure factors which are seldom ob-
served experimentally. Dutta and Sinha [30] proposed
that Warren's approximation [36] takes into account "the

Notice that, as a result of powder averaging, the struc-
ture factor S(q) in Eq. (61) decays more slowly than the
well-known Caille structure factor for oriented samples.
Although the additional macroscopic disorder introduced
by powder samples retains algebraic decay of the peak
tails, it does change the exponents kom —2+ gg for ori-
ented samples to —1+ gh, for powder averaged samples.
This —1+gh decay exponent was discovered experimen-
tally [24,25], and was discussed theoretically [33].

Now, let us examine the peak heights s(q), ) as a func-
tion of h. In Eq. (57), the factor in the large square
brackets determines the peak height dependence on h,
since qFq ——1 at q = qp, . The factor 1/qz is the usual
Lorentz factor. The peak heights are further reduced,
mostly by the factor (L/D) "". This factor is clearly a
result of cooperative therxnal fluctuations because it de-
pends strongly on N = L/D. This latter property is
quite distinct Rom the usual Debye-Wailer factor, as is
the change in the shape of the peaks. There is also a
factor G~s(O, D) = (ze~) "",which describes the posi-
tional correlation between two adjacent bilayers, which
is rather similar to the Debye-Wailer factor [21,34].

Detailed comparison of Fig. 7 to Fig. 2, in which the
saxne values of the basic parameters were used, shows
that the shapes of the corresponding peaks are very sim-
ilar. However, the peak heights s(qg) in Fig. 2 decrease
much more rapidly as a function of h than those in Fig. 7.
This dramatic difFerence can be understood by recalling
that the classical correlation function Gc (r, z) [Eq. (12)]
was used in the calculations for Fig. 2, while the corre-
lation function G~z(r, z) [Eq. (46)] was used for Fig. 7.
Following the methodology of calculating S(q) in Sec. III,
only the asymptotic form of Gc (r, z) in Eq. (49) is neces-
sary for the calculations of S(q) in Fig. 2. As we discussed
in Sec. IV, and showed in Eq. (50), the ratio of these two
correlation functions is G~s/Gc = (47rAD/a )», which
numerically is 565"" for the given set of parameters. This
numerical factor is basically the ratio of the peak heights
s(qg) in Fig. 7 and Fig. 2. This comparison shows that
the modification of the correlation function presented in
Sec. IV has considerable numerical consequences for the
correction factors 1/s(h).

'smearing' due to superposition of many difFerent do-
mains. " This yields the classical finite-size factor in Eq.
(17). It should be noted, however, that this finite-size
factor has only one parameter L, which represents the
average domain size, so it is unclear how the average is
done. In contrast to these two methods, we propose an-
other method, which is partially inspired by Ref. [33]. We
start &om a single sharply edged doxnain, and then use a
size distribution function to perform a size average. In-
creasing the width of the distribution function eliminates
the oscillations in the tails of the structure factor.

A. Finite-sise factor for a single sise domain

pd(z, g, z) = e(L,-/2 —lal)o-(Ls/2 —lul)
N/2

x ) 6(z —nD),
n= —N/2

(62)

where 0 is the Heaviside step function. The correspond-
ing structure factor will be written So(q). As is well
known, S()(q) for the (0, 0, h) peak is given by

Se(q) = J deR pe(R)e'(e

(sin[N(q, —
qp, )D/2] sin(L q /2) sin(L„q„/2))

(, »n[(q. —q~)D/2] q- qv )
(63)

It was Warren [36] who suggested approximating struc-
ture factors such as the one in Eq. (63) by Gaussians with
the same integrated intensity. However, following [33] we
emphasize that there is a fundamental diH'erence between
a Gaussian peak and Eq. (63). The tails of Eq. (63) are,
of course, dominated by oscillations, but these will dis-
appear when a suitable distribution of domain sizes is
employed in Sec. VIC. It is therefore appropriate to
consider the amplitude of these oscillations; these only
decay as 1/(6q)2 in Eq. (63). Therefore the tails in Eq.
(63) are fundamentally difFerent from Gaussians, which

decay very rapidly as e
Using Warren's approximation, Dutta and Sinha ob-

tained the classical finite-size factor Hc(R) in Eq. (17).
This specific result follows by considering the general Eq.
(15) when G(R) = 1,

Se(q) = f d R H(R)e'(e e")' (64)

The finite-size factor may then generally be obtained by
Fourier transform,

In this subsection we calculate the finite-size factor
H(R) for a single sharply edged domain, which consists
of N + 1 membranes of size L x L„. Since H(R) should
not depend upon Buctuations, it is convenient to con-
sider the electron density function for a doxnain of non-
Huctuating sheets,
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H(R) = 1
d q So(q)e(2') s (65)

L„
S (q, z) = dxdy (L —x) (Ls —y)

0 0

H(R) = pg(R) * pd( —R). (66)

For the finite-size domain in Eq. (62), Eq. (66) yields

H(R) = D ) (N —lnl)b'(z —nD) (I. —Izl)

x O(L —I*I)(Ls —lyl) e(Ls —
ly I) (6»

In the continuum approximation nD m z, this becomes
(using L = ND)

Using Eq. (65), Eq. (63), and the Fourier folding theo-
rem, the exact H(R) can be expressed as the convolution

4~, 4 sin(qr)x e
qT

As we discussed in Sec. III, the rapidly oscillatory factor
sin(qr) determines that the S2 integral is very insensitive
to the values of the integrand in the large r region (r ))
4AZ). Therefore we can extend the upper integral limits
to oo, and make L~ L„—+ L„. This means that the
specific shapes of the domains are not important to S(q).
Then, Eq. (71) yields

OO ~/2
S2 (q, z) = rdr de (L„—r cos 8)(L„—r sin 8)

0 0

„.]4„,4 sin(qr)
qr

H(R) = (I —lzl)e(L —lzl)(L. —I~i)O(L. —I~l)
x (Ls —

lyl) O(Lw —lyl) (68)

Figure 8 compares the z variation of H(R) in Eq. (68)
with that of the classical H(R) in Eq. (17).

B. Structure factor for samples of single size
domains

OO

dr(zL2 —4rL„+ r2)
q 0

4Axe """~ "'sin(qr).

We furthermore evaluate Eq. (72) as

16~, (3S, (q, .) = —-(L,q)'q, ,S, 1, —,-q,

(72)

For the finite-size factor in Eq. (68), we now calculate
S(q) for samples consisting of domains of a single size.
Using Eqs. (26), (45), and (68), we obtain

(
+C.' iR

j

where

s(q) = j dz si(q, zIsq(q, z), (69) where (, = Azq2/ilg. Here we have two large quantities:
L,q N )) 1, and (, Az/Dzrlh )) 1 for z )& D. The
asymptotic expansions to the qFq functions,

Si(q, z) = 2G~i(0, z) cos(qgz) cos(qz)(L —z), (70)

and

—effective
single size

classical

( 3 l 4~~
1F1 3) ~ (& ~s

»mplify Eq. (73) to

(74)

S2(q, z) 1 —8n ~ (L„q) ( & e
q

-4000 0
z (A)

4000 i/2(L )
—2(—i

FIG. 8. Comparison of the z variations of the single do-
main finite-size factor (dashed line) in Eq. (68), the classical
(Gaussian) finite-size factor (dotted line) in Eq. (17), and our
efFective finite-size factor H, yy(z) (solid line) from Eq. (82)
for Lo ——4000 L, or, = 1200 A.

2mL2
2

q

upon neglecting terms like e ~* and (L„q) 2. Conse-
quently, Eq. (69) becomes
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I 2%I.'
S(q) = dz Sg(q, z)

0 g

~ s ~ ] ~ & ~ ~ s ~ & ~ ~ [ & r I ~ r I & s I
~

s I ~ & s r r & I
t

I & s ~ I s ~ r
~

r ~ s & I ~ s ( ~ e ~ r

2vrL
dz GA1(0) z)(L z)—

g2

x [cos(q —qa)z+cos(q+qi )z]. (76)
~ )00

Next, we neglect the part of the integral resulting from
the rapidly oscillating term cos(q + q&)z, which yields
very little intensity. Then, we arrive at

$ O
I I I I I I & & & & & I I l I I ~ & I I I & & i I i ~

2 3 4 5 6
27rI'

S(q) = " dz G~q(0, z)(L —z) cos(q —qa)z. (77)
o

Equation (77) shows that the structure factor S(q) can
be calculated by doing a one-dimensional integral over z.
Therefore the amount of calculation is greatly reduced,
and an extra effort can be made in developing a more
realistic model, as we will show in the next subsection.
The parameters a and A also do not appear in Eq. (77)
for the same reasons that they dropped out of Eq. (59)
in Sec. V.

Equation (77) can be further simplified by removing
two approximations in the preceding development. The
first approximation was made to Eq. (67) to obtain a
continuous finite-size factor in Eq. (68). The reasons for
this approximation were to obtain a continuous 6nite-size
factor H to compare to the classical H~, and to obtain
an integral formula, Eq. (77), for S(q). Retaining the
discrete finite-size factor in Eq. (67) yields S(q) in the
form of a sum

S(q) = " 1+2) 1 —— cos(qnD)
q k N)

xG~g(0, nD) . (?8)

The second approximation was made very early in the
derivation by replacing q, by qq in Eq. (9), following
Caille's original derivation. This requires that there be
a separate formula for each peak, each with its own rii, .
This approximation is not, however, critical in our deriva-
tion. It is primarily used in Eq. (22) to bring G(R) out
of the double integral over dq dq„. However, since G(R)
varies slowly with q„ the approximation in Eq. (24) ap-
plies and the q, dependence of G(R) can be replaced by
q. Then, Eq. (78) applies to all q. Figure 9 shows the
resulting S(q) for the same parameters as in Fig. (7). For
comparison, the result of Caille's approximation q = qg
in Eq. 78 is also shown in Fig. (9).

Figure (9) shows the reduction in peak heights s(qi, )
that has been emphasized in Figs. 2 and 7. Figure (9) also
illustrates the problem of obtaining simple values for the
1/s(h) correction factors that occur in Eq. (6). Clearly,
I(h) depends both upon the angular range over which
the data are integrated and upon whether one subtracts
a nonzero baseline. As was noted by Worthington and
McIntosh [5], and as we have verified by numerical in-
tegration, one can eliminate the correction factor 1/s(h)

FIG. g. The reduced structure factor s(q)/s(oo) give»y
the term in large square brackets in Eq. (78) for the same

parameters as in Fig. 7. The solid curve uses continuous q

dependence in the correlation functions and the dashed curve

(for h = 3 and h = 4 only) uses Caille's approximation.

altogether, i.e., make all s(h) nearly equal, by integrating

s(q) from q = qa —qq/2 to q = qp, + qq/2. To implement
this experimentally is not easy, however, because it pre-
sumes that there is no other source of scattering between
the peaks and that absolute intensity measurements can
be made accurately for q values with little scattering.
More importantly, it requires that the form factors I"(q)
do not vary much over these wide angular ranges, which
is clearly incorrect. In practice in biophysics, I(h) is mea-
sured over narrower q ranges and nonzero baselines are
subtracted. Then, the corrections s(h) are closer to the
peak heights s(qa). However, the theory in this paper
makes it possible to design more accurate experimental
protocols for obtaining the form factors F(h). Specifi-
cally, data may be taken near the peaks where they are
more reliable and where I'(q) does not change rapidly,
but over a wide enough q range to obtain the best fitted
s(q) near each of the peaks. Then, the theoretical curves
for S(q) can be integrated over the same q range as the
data to obtain the corrections s(h).

Equation (78) looks very similar to the equations of
paracrystalline theory and Eq. (9) of Nallet et aL [29].
Because paracrystalline theory uses an ad hoc correlation
function that decays with distance exponentially instead
of as a power law, it gives considerably different peak
shapes and peak heights than the theory of Wallet et al.
and the theory derived in this paper; paracrystalline the-
ory will not be considered further. Equation (9) of [29] is
for S(q, ) for oriented samples instead of S(q). Nallet et
OL point out that, when the Caille correlation function
is used, this gives ~hq

~

+"" power law tails instead of
the ~bq ~

+"" tails obtained by Caille. However, Roux
and Safinya [25] had shown that the power law tails for
powder samples should go as ~hq~

~+"". If one assumes
infinite domain size in the radial direction, the powder
average of their Eq. (9) yields the correct form. We do
not use this assumption nor does the diKculty of the in-
correct power law tails for oriented samples occur in our
derivation of Eq. (78).

It should also be noted that, because all domains have
one size, both Eq. (78) and Eq. (9) of Nallet et al. give
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oscillations in the tails, as can be seen in Fig. 9 for small q
values. These oscillations were removed by using a coarse
instrumental resolution function by Nallet et al. In our
theory these oscillations will be removed by averaging
over domain sizes as will be shown in the next subsection.

C. Average structure factor for multisize domain
samples

In the preceding subsection, we have presented the
method of calculating the structure factor S(q) for sam-

ples of single size domains. However, for real samples,
domains are likely to have a distribution of different sizes.
For the domain size distribution function, we choose

(79)

which is essentially a Gaussian distribution except that
P(L) = 0 for L ( 0. Next, we use this probability func-
tion to average the structure factor in Eq. (77), and ob-
tain the size averaged structure factor as

2 I, "
jo dLP(L) jo dzG~i(0, z)(I z) cos—(q —

qh, )z

j-dLP(L)

jo™dLe 'i ') ~ I jo dzG~i(0, z)(L z) cos(q ——q~)z

, '~, Qvr/2 o.
L, [1+C ((p)]

(80)

where (o ——Lo/(~2ol, ); 4(t) = ~ j due " is the error function; G~i(0, z) can be obtained from Eq. (45). Notice

that G~i(0, z) generally also depends on L.
For a sharp distribution, (o )) 1 and Lo/D )) 1, G~i can be replaced by G~2 in Eq. (46) which does not depend

upon L. Then Eq. (80) becomes

(S(q))= " dze "" '" o cos(q —qq)z H, ff(z),
O

(81)

where

(-')'~ oLe i' O) ~' ~+ (Lo —z) 11 —C[(z —Io)/(~2oL, )]) (82)

is the effective finite-size factor.
Figure 8 shows the new finite-size factor in Eq. (82).

Comparison with the z variation of the classical finite-size
factor Hc shows that H, yy(z) has longer tails and that
they are analytically different near z = 0. Comparison
with the finite-size factor for a single domain in Eq. (68)
shows that both have a sharp top at z = 0; this is due to
strictly periodic structure of the nonBuctuating system
in both models (i.e., the systems are perfectly ordered
within one domain). Having doxnains of different sizes
does not change the center of the finite-size factor, unless
crL, /Lo & 1. In contrast, having multisize domains smears
the region near ~z~ = L, when compared to single size
domains, as can be seen in Fig. 8.

For the nonfluctuating case (rl = 0) Fig. 10 compares
the structure factor So(q) from Eq. (80), when H, yy is
used, to the structure factor from Eq. (27), when H~ is
used. Even for this simple case, the two structure factors
are different at both the center and the tails. For the
central part, the new So(q) from Eq. (80) is sharper than
the classical So(q). The sharpness of the new So(q) to a
large extent depends on the magnitude of eL, . larger O.

L,

yields sharper So(q). Therefore, by varying Lo and oL„
the width of the top part and bottom part of the new

So(q) peak can be changed substantially.
Equation (80) is the final formula that describes our

1.0-

0.8-
C)

0.6-
C7
o 0 4

I ——Eq. 80
Eq. 27

0.2

0.0
-0.004 0.000

q-q„ (A )

0.004

FIG. 10. Comparison of reduced structure factors

so(q)/s'Lo calculated, using H, rr, from Eq. (80) (solid line)

and, using Ho, from Eq. (27) (dashed line). Parameter values

are Lo ——4000 A, D = 60 A, and crL, = 1200 A.

modifications to the classical theory. Figure 11 shows
the first five orders calculated from Eq. (80) for the same
set of parameters with Buctuations as in Figs. 2 and 7.
As shown already in Fig. 10 the shapes of these peaks
are quite different Rom those in Fig. 2 and Fig. 7, and
this will make a difference in detailed fitting to data.
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1.0-

0.8-

0.6-
(h

U 0 4

h=3
h=4

0.2----

0.0-
-0.004 0.000 0.004

q-qh (A )

FIG. 11. Normalized reduced structure factor s(q)/s(qq)
for five orders of scattering calculated f'rom Eq. (80).
rli ——0.03, D = 60 A. , 10 = 4000 A, ur, = 1200 A. . The
correction factors 1/s(qq) are 1.14, 1.70, 3.19, 7.18, 17.3 for
h = 1, . . . , 5 peaks, respectively.

However, the correction factors 1/s(Q) 1/s(qh) that
are required to obtain the form factors are similar in size
to those obtained in Fig. 7.

VII. CONCLUSIONS

The first result of this paper is to show (see Fig. 2) that
the classical scattering theory of Caille [21] requires very
large corrections 1/s(h) to the usual calculation of form
factors performed routinely in biophysics. This comes
about because the scattering at the peaks is very strongly
reduced as the scattering order h increases. Although the
tails in the scattering also become larger with larger h,
with eventual recovery of the intensity if the integration is
extended halfway to neighboring peaks [5], there are fun-
damental difficulties in performing this integration (see
Sec. VI). Integrating the intensity over any reasonable
angular range does not bring back the lost intensity.

The second result of this paper shows that the very
large correction given by the classical Caille theory is too
large, and a more appropriate calculation has been made
to obtain better corrections (Fig. 7). The primary rea-
son for the numerical discrepancy was the replacement
of the upper limit m/D by infinity in the calculation of
the mean square displacements required for the correla-
tion functions in the classical theory [Eq. (11) in Sec. II].
Although this approximation led to a useful closed form
solution, we also obtain a closed form approximation that
is much more accurate [Eq. (46)]. This improved approx-
imation also yields the power law tails first obtained by
the classical theory and amply demonstrated by experi-
ment. Since these power law tails were the primary focus
of earlier liquid crystal research [21,23—26], there is no
reason for concern for previous results. However, this
new result is important for future structural work that
requires form factors. In particular, the straightforward
application of the classical theory would have resulted in
larger errors than those incurred by the standard pro-
cedure employed in biophysics that assumes crystalline
stacking of the bilayers.

The third result of this paper is the development of an
approximation for calculating structure factors for pow-
der samples (Sec. III). This approximation was central
to obtaining the other results as well as to obtaining a
derivation of a formula proposed by Nallet et al. [29] that
extends the structure factor calculations to all q values

[Eq. (78)].
The fourth result of this paper is the derivation of an

alternative finite-size factor [Eq. (82)] to the classical one
given by Dutta and Sinha [30]. While the earlier ap-
proach is the best one-parameter approximation to the
finite-size effect, it does not reproduce the analytic fea-
tures that one might expect &om a reasonable distribu-
tion of domain sizes (Fig. 8). Although the distribution
of domain sizes is clearly a complicated issue, we believe
a Gaussian distribution of domain sizes yields a reason-
able approximation for the finite-size factor and we show
that the resulting formulas [Eqs. (80) and (81)] are still
workable. This modification to the classical theory does
not change the form factor corrections significantly, nor
does it aHect the power law tails. It primarily changes
the detailed central line shape. The new finite-size fac-
tor provides better fits to our data as will be shown in
detail in a subsequent publication. There, it will also
be shown how the form factor corrections 1/s(h) afFect
the interpretation of electron density profiles and lipid
bilayer structure.
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APPENDIX

p(R) = p-+ p-(r, z), (Al)

where p is the electron density of water and p (R) is
zero for ~z~ greater than D/2. The electron density of
the nth bilayer in a domain of N bilayers whose aver-
age normals are along the z axis can then be written as
p + p (r, z —nD —u (r)). The nth bilayer is centered
at nD on average, but with displacement Quctuations
u (r). On average (p„) = (p ) for all lateral positions r,
but instantaneous Quctuations require partial form fac-
tors I' (r, q, ) that depend upon r and n,

Equation (4) in the text is fairly well known, but it
involves some assumptions that involve the Buctuations
in the shape of individual bilayers that might be useful to
state. The following derivation follows Guinier [37], with
the form factors referring to atomic groups consisting of
bilayers. The electron density of a single bilayer with
midplane at z = 0 may be expressed in the minus-Quid
description of Worthington et al. [4],
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D/2
E„(r,q, ) = dz' p (r, z')cos(q, z').

—D/2

For the domain of N bilayers,

(A2)

p(R) = p + ) p„(r, z —nD —u„(r)).
n

Inserting this electron density into the basic x-ray scat-
tering formula,

(A3)

1(q) = ff d Rd R'(e'~'~ ~p(R)p(R')), (A4)

yields

1(q) = S(q) (E(q)) I'+ &[(IE(q)I') —I(E(q)) I'] (A5)

where S(q) is given by Eq. (7), subject to the follow-
ing assumptions. (i) It is assumed that Huctuations in
E„(r,q, ) are uncorrelated with r. This clearly breaks
down for small r due to in-plane structure, but this is
significant only for q„ in the wide-angle region. This as-

sumption allows the replacement of the partial form fac-
tors in Eq. (A2) with the spatially averaged form factors
E(q) in Eq. (A5). (ii) It is assumed that Huctuations in
E„(r,q, ) are uncorrelated with Huctuations in u„(r), so
that thermal averages of the form factors can be taken
independently of the thermal averages involved in the
structure factors. This should be a good approximation
for long wavelength Huctuations. (iii) It is assumed that
fluctuations in the form factors are uncorrelated between
different bilayers n and m. Nevertheless, Eq. (A5) still
contains a term for fiuctuations in the form factors in
addition to the term that appears in Eq. (4). This ad-
ditional term gives broad difFuse scattering that could
compete with the scattering from the S(q) structure fac-
tor far &om the lamellar peaks, but which should play
the role of a smooth background for the region near the
peaks, which is the region of primary concern in this pa-
per. Ignoring all the efI'ects of fluctuations in the bilayer
shape yields Eq. (4) and Eq. (7) which focus upon the
fluctuations in the central positions of the bilayers.
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