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DNA electrophoretic collisions with single obstacles
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We analyze the electrophoretic collision between an obstacle, such as a gel fiber, and a large diffusing

polyelectrolyte. This type of collision may be considered as the basic unit of elementary sieving behind

all electrophoretic separation methods. The polymer first hooks around an obstacle and must escape us-

ing a simple "pulley" process which requires a molecular-size-dependent time. We demonstrate, using

both analytical and simulation results, that simple isolated collisions cannot lead to separation due to

large diffusion effects generated by the process (in spite of the stacking phenomenon).

PACS number(s): 87.15.—v, 82.45.+z, 36.20.Cw, 36.20.Ey

INTRODUCTION

Electrophoresis is the commonly used method for
separating polyelectrolytes, such as DNA, according to
molecular size (as in the human genome project [1]}.
Since polyelectrolytes in solution behave like free-
draining coils, one must use gel electrophoresis for sepa-
ration. There, the gel is believed to act like a molecular
sieve, discriminating on the basis of molecular size [2].
Recently, regular arrays of microlithographically con-
structed cylindrical posts [3], entangled [4] and unentan-
gled [5] polymer solutions, as well as various porous sys-
tems [6] have been used as electrophoretic sieving media.

Theoretical studies of gel electrophoresis have usually
been based on the reptation concept [7—9], on the so-
called Ogston sieving model [10], and on simulations
[11,12]. Of foremost importance is the effect of DNA-gel
fiber collisions on the mobility, diffusion, and conforma-
tion of the DNA. A complete understanding of gel elec-
trophoresis requires a theory which can explain the inter-
relation among these elements. When DNA collides
simultaneously with many gel fibers, such an understand-
ing is almost inextricable. The reptation concept uses a
mean-field-like approach to these DNA-fiber interactions.
This is clearly an oversimplification, although it permits
an analytical treatment [13]. Obukhov and Rubinstein
[14] have, however, demonstrated that multiple interac-
tions may indeed change the qualitative nature of the
drift.

Our aim is to (i} conduct a diagnostic of a collision be-
tween a DNA chain and an isolated obstacle, (ii} develop
a simple quantitative model of the collision, and (iii)
determine if such isolated events yield effective separa-
tion. We do not consider DNA-obstacle frictional in-
teractions [15]; however, unlike a similar study [16], we
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treat both electrophoretic mobility and diffusion, since
the resolution of electrophoretic molecular bands is
affected by both of these transport properties.

SIMULATION METHOD

The electrophoretic collision between a Rouse-like
bead-spring free-draining polyelectrolyte and a circular
obstacle was simulated using a two-dimensional (2D)
Brownian dynamics algorithm. The molecule is first
guided down a narrow channel (such as a pathway within
a gel matrix} towards a circular obstacle (or gel fiber} un-

der the in6uence of an applied electric field E. Figure 1

contains snapshots of a molecule as it migrates down the
channel. Our depiction of the collision process is much
like those of recent experiments [3,17,18]. The chain is
composed of M beads, each of charge q and friction
coefficient g, connected via M —1 massless anharmonic
springs whose maximal extension L serves as a unit
length. In 2D, the entropic force F, „„(hr) between the
two ends of a spring of extension hr is given through in-
version of the equation b,r(f, ) = t}in [ID (f, ) ]/t}f„whereI„is the modified Sessel function of order v,

f, =F,~„„sa/(k+T) is the scaled spring force, and
a =L /N is the Kuhn length of the N freely jointed poly-
mer segments comprising each spring [19]. The channel
walls and the circular obstacle (both hard cores} have
soft-core potentials extending beyond their boundaries
over a distance a /L =0.02—0.05. The equation of
motion for each bead is solved numerically using a small
but self adjusting time incr-ement br following a tech-
nique we developed [20]. In the absence of collisions,
chains follow the typical Rouse dynamics of free-draining
coils. Excluded volume, hydrodynamics, and Coulombic
repulsion between beads. are not considered. The time.
unit is ~L =gL /(2ktt T) and the dimensionless electric
field intensity is e=qEL/(2k~T). The obstacle radius

R,b, =L/2 was' chosen so as to keep the springs from
moving through the obstacle.
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FIG. 2. The mean position of the center of mass along the
tube axis, (y(t}), vs time t for a population of 867 molecules.
The conditions are as described in Fig. 1. The molecules begin
at position y(0)=0 with the obstacle centered at position
y =15. The collision retards the molecule, which is equivalent
to a free-drift of duration (or distance) 3.39, as shown.

FIG. 1. Simulation snapshots of the collision between a
charged bead-spring polymer and a circular obstacle. The obs-
tacle diameter and the maximum spring extension are both
equal to 1, the tube width is 2, its length is 11, the scaled field is
c.= 1, and the molecular size is M = 15 beads. (a) t =62/12: the
random-walk chain drifts towards the obstacle. (b) t =97/12:
the molecule collides with the obstacle and starts deforming.
This leads to stacking. (c) t =167/12: the molecule adopts a
U-shaped conformation about the obstacle which acts like a pul-
ley. (d) t =219/12: the tug-of-war between the two arms re-
sults in cannibalization of the short one. (e) t =245/12: the
chain is now free but strongly oriented. The distance between
the center of mass of the chain and the obstacle's center is ap-
proximately half the end-to-end distance. (f) t =284/12: the
chain now slowly relaxes back to a random-walk conformation
while swiftly drifting away from the obstacle.

SIMULATION RESULTS

We analyzed numerous chain properties in order to
yield a complete diagnostic of the collision. Figures 2—4
indicate how the mean (longitudinal) position of
the center of mass (c.m. ), (y ( t }), its variance
(hy (t)) =(y (t)}—(y(t}), the mean square end-to-
end distances of the chain, (h (t) ) and (h„(t)), and the
variance of the motion in the transverse direction,
(hx (t) ) = (x (t) ) —(x(t) ), vary with time. These
averages were generated over an ensemble of 867 mole-
cules, each starting (with differing initial conformations)
from a distance of 15L from the center of the obstacle.
Since the field intensity was a=1.0, the free-drift velocity
is Vo=c.=1.0 in our scaled units, irrespective of the
molecular size M. It is indeed because of this free-
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FIG. 3. Mean square end-to-end distance vs time t. In the
(y) direction parallel to the tube axis, the end-to-end distance
and the radius of gyration (not shown) undergo a small decrease
(the stacking efFect) followed by a large increase. In the (x)
transverse direction, a large increase is also observed but lasts
for a shorter period of time (about 10 time units).

draining behavior that one must use the sieving proper-
ties of a separation medium in order to separate DNA
molecules according to molecular size [1,2]. Figure 2
shows that the collision [Figs. 1(b)—1(d)] leads to a loss of
about ~«„,d„;,„=3.4 time units. Figure 3 indicates that
(h„(t))increases during the collision; this is due to the
chain forming a pulley [Figs. 1(c)—1(d)] around the obsta-
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FIG. 4. Variance of the position of the
center of mass vs time t. In the (x) transverse
direction, the variance first saturates (because
of confinement), and then rises through a max-
imum with a time width of about 10 units. In
the (y) parallel direction, the variance first de-
creases (again the stacking effect), but then in-
creases more than an order of magnitude be-
fore finally recovering normal behavior after
the collision.
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cle with max[(h„(t)}'~ ]=0.83=2R,b„=1.0. We also
note that the onset of collision occurs at t =13 and ter-
minates at t =25. In the parallel direction, the end-to-
end distance goes through a "stacking" phase between
t=13 and t=15 where the chain is compressed, a
stretching phase between t =15 and t =22 where (h (t) )
more than doubles, and finally a relaxation phase extend-
ing to a time t =45. The Rouse time for this chain is
7 Rp =3.5 in the parallel direction; therefore, the long
relaxation tail is due mostly to chains requiring more
time to escape from the obstacle [Figs. 1(c)-1(e}].The
molecular orientations displayed in Figs. 1(c)—1(e) and
Fig. 3 have been observed experimentally [3,17,18,21].
Figure 4 displays the variance for the position of the c.m.
in both directions. In the transverse (x) direction, it first
increases very quickly and saturates at time t =8 because
the chain is confined within a narrow tube: it then goes
through a large maximum [with +(M (t)) =0.54
=R,b„,as expected] during the collision. The variance
of y (t) displays normal free-drift (Rouse) difFusion
behavior before [Fig. 1(a}) and after [Fig. 1(f}] the col-
lision. There is also a stacking effect at time t =15: the
small dip is due to the faster-moving chains hitting the
obstacle first, thus allowing slower-moving chains time to
catch up [see Fig. 1(b)]. However, Fig. 4 indicates a ca-
tastrophic increase of the spatial dispersion following the
stacking phase. Normal diffusion behavior is recovered
for times t &45, which coincides with the time where
normal end-to-end distances h» are recovered (Fig. 3).
The large increase of the spatial dispersion is due to the
first molecules escaping and free-drifting far ahead of the
last molecules to escape. The dispersion of escape times
thus leads to a large increase in band broadening (spatial
dispersion).

A SIMPLE MODEL

Two factors are of foremost importance for any elec-
trophoretic system used to separate polydisperse mole-
cules: the molecular-size dependent retardation due to
the sieving properties of the collisions between the mi-
grating molecules and the separation matrix, and the net
dispersion (diffusion) of the molecules due to these col-
lisions. One seeks to maximize the former and to mini-
mize the latter. In this section, we present a simple semi-
quantitative model of an isolated collision in the large
field and large molecular size limit.

The simplest nontrivial polyelectrolyte-matrix interac-
tion is shown schematically in Fig. 1. The chain forms a
pulley where each arm first attains maximum extension
before unravelling begins. Initially let the arms have n1
and n2 springs, with n I+n2 =M —1=M »1. The
essential features describing the dynamics of such pro-
cesses are but slightly affected by the choice of distribu-
tion function for the initial value of the impact parameter
rn =

~
n I

—n2 ~, as we will demonstrate.
If we assume that the coil's center-of-mass is centered

over the obstacle, then the way in which the polymer coil
unravels and adopts a pulleylike conformation (just after
the onset of collision) may be viewed as a random pro-
cess. The initial distribution function of m is then given
by the Gaussian function

pG(nt) —[2/(~~)] /2 Imel2M

Alternatively, if the collision itself is seen as the random
event, occurring with equal likelihood anywhere along
the chain, then the appropriate distribution function for
m would be uniform over the interval 0 to M:
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pU(m) =1/M . (2)

A,, =b,r, = f—dj hr j = in[ID(2zE/N)]
1 ~ . . qEa N
z 0 k~ T 2ze.

If all events result in a collision, then these two distribu-
tions represent two extreme limits with &m &G-M'
and &m &„-M.

We may estimate the mean-spring extension A,
„

for a
branch comprised of one fixed end and z springs, using
the force law for the springs b, r(f):

where y =0.5772. . . is Euler's constant, while, using Eq.
(2), we have

& +escape & U +pu»ey ' (8)

The two results differ only by a logarithmic factor
(-lnM). Thus the corresponding values are (for E= 1,
N =5, and M=15) &r„„,&U=7. 6 and &r„„p,&U=4. 0.
Using Eqs. (1)—(5},we yield the mean net collision times

&r,.ii&G=r,.ii„+&r--,.&G

in(4nzE/N .
)

4z E/N
(3)

= —,'[2+y+in(2M)]r „„,
„

As we can see, in the large field and large molecular size
limit, the second term is merely a correction factor that
vanishes for z~oo or c.~ao. For simplicity, we assume
that the mean spring extension during the whole collision
process is given by A,, ~zz..

ln(2n ME/N )

2ME/N
(4)

With M = 15, N =5, and c.= 1, as in our simulations, we
yield A, =0.51, in qualitative agreement, with Fig. 1,
which shows that during the collision [Figs. 1(c)—1(e)] the
springs reach approximately 50% of their maximum ex-
tension (the diameter of the obstacle is 1.0).

When the pulley is formed [Fig. 1(c)], the spring stress
is maximal and the long arm cannibalizes the short one.
The pulley formation time is approximately the time re-
quired for the last bead of either arm to free-drift, with
velocity V0=c, to its final position within the pulley.
Thus, the time to reach full extension may be taken as ap-
Proximately rp„»,y=MA/(2E, )wh,ere MA, /2 is the mean
arm length and A, is the mean spring extension. In view
of Eq. (4), we may thus express the mean pulley time as

MA, M ln(2@ME/N )

2E 2E 2ME/N

With M = 15, N =5, and c= 1, as used in our simulations,
we yield A, =0.51 (as noted before} with a corresponding
escaPe time 7p&lley 3.8. This Pulley formation time is in
good agreement with the time required for & h„&to attain
its maximum value (see Fig. 3).

The escape time from the pulley conformation is found
simply by solving the equation of motion for an inextensi-
ble rope (assuming that the springs keep their mean ex-
tension A. during the process) on a pulley in the presence
of a force qE on each element (bead) [16,20,22]:

M
1 m +pu»eym

We note that this time diverges for m =0. A solution in-
cluding the effects of Brownian motion does not show
this divergence [16]. However, Brownian motion compli-
cates matters unnecessarily, as this divergence carries lit-
tle weight when averaged over the distribution functions
for m. Indeed, using Eq. (1), we find that

& r„«,&G =
—,
' [y+ln(2M)]r „ll,y,

& +co» & U 2 pulley ' (10)

For our simulations (using E= 1 and N =5) for M = 15
bead chains, we have &r„»&G=11.4 and &r„„&U=7.6
both values agreeing qualitatively with Figs. 3 and 4, with
a mean collision time (measured using data for the x
direction, for which Rouse relaxation does not play a
role) of about & w„il& = 10.

The retardation time due to collision is ~„»minus the
time ~0 required to free-drift over the same distance
[which is approximately MA, /2; see Fig. 1(e)] in absence
of the obstacle

MA,
~0 +pu»ey '

2E

rarer»arion & G & +escape & G 7 d & rerardarion & U
= &vases~& U=3. 8, while the simulations yield r„„,d„;,„

=3.4 (see Fig. 2). The uniform ensemble yields the best
results in part because some of the M = 15 bead chains do
not form complete pulley conformations and quickly slide
off the obstacle to the side. In such cases, giving confor-
mations with large values of m equal weight inevitably
reduces the overall value of the mean escape time. The
retardation time increases almost linearly with size M for
large M (simulations with M=10—40 agree with this
scaling [20]).

From Eqs. (1)—(6) we yield the escape time variances

& ~~escape & G & ~escape & G & +escape & G

pulley ~ (12)

and

& ~~escape & U ~pu»ey

~0 ~ g' ~ M'A. '2
3 escape & ' escape 2

' pulley 82' (14)

Hence the variance of escape times is little affected by the
nature of the collision process, both scaling roughly as
M and differing functionally only by a numerical
coefficient ~ /8. The molecules therefore unhook over a
wide range of escape times, the escape time being a func-
tion of the initial value of m at the time of formation of
the pulley. These temporal variances lead to correspond-
ing spatial variances of the molecules:
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Under our simulation conditions, this yields
&by ) =10, in good agreement with our simulation
results, which show an increase of about 9 during the col-
lision (Fig. 4). Of course, this spatial dispersion is much
larger than what would be expected from normal Rouse
dynamics (i.e., from what is observed in the absence of
such collisions). Hence the variance of escape times is the
major cause of spatial dispersion (the Rouse diffusion
coefficient decreases as 1/M). Remarkably, we find that
the spatial variance is, in fact, a weak function of electric
field (via A, ) but is a strongly increasing function of molec-
ular size.

DISCUSSION

and

&yretardation) G

t)M lnM

( & ~yretardation )G )

~&yretardation ) U

M

( & ~yretardation ) U)

1

M

It is therefore the nonspecificity of the collision process
that renders it useless for separation. However, multiple,
simultaneous collisions, like those occurring in gels, lead

We have presented data for the high-field collision of a
M =15 bead Rouse chain with a large obstacle in a nar-
row channel. The diagnostic of the collision indicates
that the escape process is not specific enough to lead to
efficient electrophoretic separation: the large range of es-

cape times leads to a catastrophic increase of molecular
difFusion (band broadening). Even though the distance
lost during the collision &y„~,d,„,„)= Vo &r„„,d„;,„)
= Vo& ~ ) is a strong function of the molecular size M
[i.e., &y„~,d,„,„)G-M lnM for the Gaussian distribu-
tion Eq. (1) and &y„„,d,t,.o„)U-M for the uniform distri-
bution Eq. (2)], the fact that its standard deviation

hy„t d„;,„=&hy~,~)'~ -M also increases with M
makes it impossible to use such single isolated collisions
as a means of separation. Moreover, the resolution factor
[23] (By„n„d,„,„/BM) /(by„„,d„;,„)vanishes for large M;
i.e.,

to different physics. For low fields, the reptation concept
may be adapted to account for 6uctuations of the chain
[9]. In the high field limit, chains take on self-similar
conformations [14] and multiple loops compete for
growth. Diffusion is not well understood under such con-
ditions; unfortunately, it is indeed diffusion that limits the
efBciency of electrophoresis-based sequencing systems
[23].

We have also discussed the problem from the dual
viewpoints of the Gaussian and the uniform distributions.
Both have their strengths: the Gaussian distribution is
more representative in the cases where the tube acts as a
lens and keeps the center-of-mass relatively centered (fo-
cused) over the obstacle before the collision; the unravel-

ing may then be taken as a random process. On the other
hand, if the tube is not too narrow, the position of the
obstacle, upon impact, along the polyelectrolytic coil may
be taken as a random process; some coils in fact do not
form U shapes in our system and, therefore, they escape
quite rapidly. Evidently, in the situation studied here,
there is a melding of the two viewpoints and our results
seem to corroborate this fact. Our main goal has been
merely to speculate on the dynamics with, admittedly,
simplified models and to deduce the proper scaling forms.
Interestingly, the choice of distribution is of little conse-
quence with regard to the scaling forms.

In the near future, we wi11 investigate situations where
the polymer chains become entropically trapped for low
fields in inhomogeneous environments [24]. Here, one re-
quires a minimum field intensity to deform the molecule
and force it through the narrow openings [20,25]. In the
limit where the radius of gyration is comparable to the
pore or channel size, and for low field intensity, the dy-
namics is governed by entropic and sieving effects which
cannot be described by the model presented here. Al-
though these efFects have been reported [20,24,25], they
may not be important under normal sequencing condi-
tions.
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