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Transverse laser cooling induced through disyeraion at an rf cavity
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We propose a possible scheme to realize three-dimensional laser cooling of stored and circulating ion
beams in a storage ring. The idea is based on creating a linear synchrobetatron coupling such that the
longitudinal laser cooling efFect can be extended to transverse degrees of freedom through the coupling.
The idea of indirect transverse laser cooling was recently studied, employing a so-called coupling cauity
as a source of the forced coupling. In the present paper, we theoretically explore the possibility of using
natural dispersion of a ring as an alternative coupling source, setting an ordinary rf cavity at a position
with nonzero dispersion. It is found that the effect of the dispersion-induced coupling is essentially
equivalent to that of the coupling cavity, and that the coupling can be considerably enhanced under reso-
nance conditions. The cooling rates of longitudinal and transverse modes are evaluated. An approxi-
mate formula is derived to estimate an optimum value of dispersion at the cavity location. The validity
of the present theoretical predictions is confirmed by tracking simulations that demonstrate efFective
transverse laser cooling.

PACS number(s): 29.20.Dh, 29.27.Fh

I. INTRODUCTION

To date, several techniques have been available to cool
down the temperatures of stored and circulating beams of
particles. Electron cooling [l] and stochastic cooling [2]
are the well-known and well-established methods which
have been widely employed to provide stored beams with
very small emittances. These two techniques work fairly
efFectively in all three degrees of freedom, reducing beam
temperatures typically to the 10'-10 -K range. On the
other hand, there exists a third promising method known
as laser cooling [3], which is the result of velocity-
selective photon-momentum transfer from a laser beam
to a moving atom or ion. The effectiveness of this rnecha-
nism has already been experimentally demonstrated [4],
achieving longitudinal temperatures in the mK range, the
lowest ever reported, with a stored beam of 100-keV Li+
ions [5]. The laser cooling of a circulating beam, howev-
er, is limited to longitudinal motion. No efFective damp-
ing of transverse emittances has so far been accom-
plished, in contrast with its successful operation upon
longitudinal momentum spread. In fact, in the above-
rnentioned experiment, the transverse temperature of the
laser-cooled Li+ beam was about 10 times higher than
the longitudinal temperature.

Recently, a method has been proposed to realize three-
dimensional laser cooling in a storage ring [6]. The idea
is based on forcibly developing a synchrobetatron cou-
pling; that is, somehow opening up a path which con-
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nects the longitudinal degree of freedom directly with the
transverse ones such that the longitudinal damping ac-
tion due to the laser cooling mechanism can be
transferred into transverse directions. For this purpose,
in the previous work, a so-called coupling cauity excited
in the TM»p mode was introduced. The longitudinal
electric field of the mode has a linear transverse-
coordinate dependence which makes it possible to obtain
an eScient coupling between longitudinal and transverse
motions. It has been found that, to enhance the coupling,
it was necessary to drive the operating point of a storage
ring onto a difference resonance. This idea, however, in-
volves a diSculty in designing the coupling cavity itself
when the energy of laser-cooled ions is very small. For a
low-energy beam, a rather small operating frequency
must be chosen because of some beam-dynamical reasons,
but the cavity dimension may then become impracticably
large due to its operating mode. The difFiculty can be
overcome by using a specially designed cavity which
might be a reentrant type with lumped irnpedances sup-
plied by a coil.

In this paper, we explore an alternative scheme for
three-dimensional laser cooling. The basic idea is the
same as before, that is, developing a forced coupling be-
tween longitudinal and transverse motion under a reso-
nance condition, but here the natural dispersion of a ring
is considered as the coupling source. It is, in principle,
always possible to induce a synchrobetatron coupling by
setting some time-dependent or horizontal-coordinate-
dependent potential at a position with nonzero disper-
sion. An rf cavity is again utilized for this purpose. The
operating mode, however, is not a special one like TM2&p
but a coaxial or TMpip mode which has long been em-

ployed for ordinary accelerating cavities. Therefore, we
do not have to worry about the cavity size problem even
if the required rf frequency is low. The use of a coaxial-
mode structure allows us to design a cavity of modest di-
mension.
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Compared to the idea of the coupling cavity, the
significance of the present scheme is its simplicity. Clear-

ly, there is no component we must newly devise, while, in

the previous idea, the design of the coupling cavity is not
so straightforward and is left for future work. All we

need to do under the present scheme is to design a proper
lattice satisfying the theoretically required conditions,
and then to install an ordinary rf cavity at a position hav-

ing a.finite dispersion. Provided that the existing rings

employed for laser cooling experiments, i.e., TSR in Ger-
many [4] and ASTRID in Denmark [5,7], are sufficiently
tunable and have a free section with nonzero dispersion,
it is only necessary to set an additional cavity in the sec-
tion or, simply, to bring the existing accelerating cavity
to that section. As demonstrated below, the magnitude
of dispersion at the cavity position is not essentially im-

portant, because cooling rates of longitudinal and trans-
verse motions can be controlled with the strength of a
skew quadrupole introduced to give a horizontal-vertical
coupling.

In principle, the dispersive-coupling scheme enables us
to cool transverse beam temperatures down to the same
level as longitudinal temperature. In the ASTRID ring, a
longitudinal temperature of 1 mK has already been
achieved, so we can reasonably anticipate the same order
of temperatures simultaneously in both horizontal and
vertical directions. If this kind of ultracold beam be-
comes available, we might then consider some important
applications of such a beam. First, analogous to electron
cooling, the laser-cooled beam could be used to cool
another beam to an extremely low temperature. Second,
the achievable level of beam temperature should theoreti-
cally be suScient to observe beam crystallization [8].

The paper is organized as follows. In Sec. II, we give
the linearized equations of motion derived from the Ham-
iltonian including the potentials of an rf cavity and a pure
skew quadrupole. Then a simple model is presented to
incorporate the laser-cooling effect. The coupling caused
by the skew quadrupole is investigated in Sec. III, switch-
ing off the rf cavity. In Sec. IV, we first confirm the
effectiveness of the longitudinal-horizontal coupling in-

duced through dispersion at the rf cavity, leading to re-
sults similar to those obtained in the previous work [6].
The three-dimensional effect is then studied, and an op-
timum operating point is theoretically predicted. In Sec.
V, tracking results are given, demonstrating the validity
of the present theoretical predictions. The effect of finite
dispersion at the skew-quadrupole position as well as that
of the finite dispersion derivative at the cavity are briefly
discussed in Sec. VI. We then summarize the main re-
sults of the paper in Sec. VII.

II. EQUATIONS OF MOTION

A. Linearized equations without laser cooling efFect

H4= ,'(P—„+P„)+,'[K—„(s)x+K~(s)y ]

r,
+y x — @' 5(s —s)

qVb
sin f ——(gp„—g'x )+gb 5~(s —sb ),

poco

(2.1)

where the additional phase variable has been defined as

gb w—ith the synchronous phase fb. The iona sus-

ceptible to laser cooling are heavy particles for which the
synchrotron radiation loss is negligible, so it is unneces-

sary to accelerate to compensate for energy loss. The rf
cavity is then introduced here for two reasons: creating a
longitudinal-horizontal coupling, and forcing particles to
execute synchrotron oscillations as an origin of the reso-
nance needed to enhance the coupling [9]. In addition,
the energy of stored heavy ions is, in general, below tran-
sition, i.e., go&0, and gb must then be positive in the

definition adopted here. Accordingly, to make the rf
bucket as large as possible, we choose the synchronous
phase g» =»r/2 in the following. We also assume

throughout this paper, in the numerical work, that
go= —0.947 and 2n.R =40 m, corresponding to the
ASTRID ring parameters.

Scaling the canonical variable and changing the in-

dependent variable to 8=s/R, Eq. (2.1) results in the
Hamiltonian

H= '(p„+v„x')+—,'(p +v'y )—goW

+I'»(x —
g» W}y5~(8 8»}-

hqVb
cos(g+gbx gbp„)5p(8 —8» ), —

po oc
(2.2)

where the dot denotes differentiation with respect to 8,
g—:g(8=8 )/R, gb

=»}(8=8»)/R, —gb
=»}(8=8»)/—R,

and the hats on the variables have been dropped. Here
the betatron motions have been smoothed introducing
the one-turn tunes, v„ in the horizontal direction and v~

in the vertical direction. Note that all the canonical vari-
ables have now become dimensionless due to the scaling
performed. Neglecting the higher order terms in Eq.
(2.2), we reach the linearized Hamiltonian equations of
motion

2ngbv L
x =p„+ (f+gbx gbp„)5 (8 8—

» }, —
0

(2.3)

(2.4)

P„=—v„x —I y5 (8—8 )

2»rgbv L+ (p+gbx gbp„)5 (8 —8»), —
0

Since a single rf cavity and a single skew quadrupole
turn out to be sufhcient to achieve our final goal, we sim-

ply set Nb = 1 =N in the Hamiltonian (A7) given in Ap-
pendix A to obtain

P»
= —v y —I

» (x —
g» W)5~ (8—

8» ),
j=—

g W —r, g,y5, (8—8 ),

(2.5}

(2.6)

(2.7)
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27TV gW= (p+ gbx —gbp„)5p(8 —8b ),
0

(2.&)

where vL —=hq~fo~ Vb/2npopoc corresponds to the one-
turn averaged tune of the synchrotron motion. A more
accurate value of the longitudinal tune vL is evaluated
under a thin lens approximation, and can be related to
the averaged tune as

cos(2 trvL ) = 1 271 v L (2.9)

Specifically, vL gives roughly the same value as vL when
the tune is small.

Provided that the phase spread of a stored beam is
suf6ciently small, we are well justified in starting with the
linearized equations given above, since the terms gbx and

gbp„mostly take quite small values in our applications
[10]. Although the laser cooling mechanism itself does
not require us to bunch an initial continuous beam, it
may be better to bunch it first to get into the simple linear
regime. For this purpose, the rf cavity originally intend-
ed for generating a synchrobetatron coupling can be em-

ployed without any severe nonlinear effect setting in. In
fact, an rf cavity sitting at a position where gb =2.72 m

has been used in the ASTRID ring to bunch a beam of
100-keV Mg+ ions [11]. Further, tracking simulations
indicate that an initial phase spread of even more than
100' is acceptable, so the beam is not necessarily well
bunched. We recall this problem in Sec. V, linking it to
beam-size growths due to an initial emittance unbalance.

B. Model

We are now in a position to incorporate the effect of
laser cooling into the equations of motion. Because of
I.iouville's theorem, damping of phase-space volume, i.e.,
cooling, is not possible as far as the given motion is deriv-
able from a Hamiltonian. We must, therefore, take into
account something additional which enables us to have a
dissipative process like cooling. In our model, the cool-
ing effect is expressed as a simple frictional force. Noting
the fact that laser cooling operates only in the longitudi-
nal direction, the damping term is added to Eq. (2.8),
yielding

2&V LW= (g+gbx —gbp„)5~(8 8b)——A We(8,„„8,„,),
0

(2.10)

where 8,„,and 8,„, represent the 6 coordinates of the en-
trance and exit of the cooling section respectively, and
e(8,„„8,„,) is the periodic step function defined by

1 for 8,„,~8~8,„,
e 8,8 0 for other regions.

To obtain a damping motion, the constant A must be al-
ways positive. The value of A can be determined by com-
paring simulation results with actual experimental data.

Let us construct the transfer matrix of a laser cooling
section. Equation (2.10) together with Eq. (2.7) results in
either /+A/=0 or W+AW=O for 8,„„~8~8,„,.
Clearly, these equations have a damping solution when
A&0. Since the betatron oscillations are completely
decoupled in the section, the damping matrix can be writ-
ten as

cos( v„8& ) sin( v„8~ ) /v„
—v„sin( v„8D ) cos( v„8D )

Mn(8g) ) = 0

0

0

cos(v 8D } sin(vy8D)/vy
—v sin(v 8n ) cos(v 8D )

0

0

1 [e —1]go/A

(2.11)

where 8D =0,„,—6,„,. This matrix is, of course, not sym-

plectic.
Equations (2.3)—(2.8) indicate that a coupling between

the longitudinal and horizontal motions can be induced
through the dispersion gb and/or its derivative gb at the
cavity position. Specifically, we do not have to make jb
and gb nonzero simultaneously. Thus we simply assume
gb=0 in the following discussions. From a practical
point of view, this simplification is quite reasonable, be-
cause most storage rings have straight sections with a flat
dispersion, and that is the region where rf cavities are
usually installed. In fact, the two storage rings, ASTRID
and TSR, belong to the case. Moreover, if a finite value
of gb is employed, the cavity must then be set at the exact
design position. The use of a flat dispersion allows us to

x+v 1—(kb&L }'

(kb&L }'= —
g v W — 1 — 1—

b L

xry5(8 —8 ),
y+v,'y = —(x —

g, W)r, 5, (8—8, ),
(2.12)

(2.13}

avoid this extra effort.
Finally, for later reference, we give the approximate

equations of the synchrobetatron motion studied here,
averaging the damping term and longitudinal kick at the
cavity over one turn. Under the assumption gb =0, Eqs.
(2.3)—(2.7) and (2.10) lead to
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W+A,„W+vi W

&b~i v„x+ 1 — I y5(8 —8) (2.14)

where A,„denotes the averaged damping constant. Note
that we have replaced vL by vL to reduce the discrepancy
between the real and averaged synchrotron frequencies.

III. COUPLING THROUGH SKEW QUADRUPOLE

It is clear from the equations of motion that, even if
the rf cavity is switched off, we still have synchrobetatron
coupling, provided g %0. In this section, we briefiy dis-
cuss the effect, checking whether the coupling caused by
a skew quadrupole can be helpful to achieve transverse
laser cooling. Without any averaging procedure, the
equations of motion are written as

x+dx = —r yn (8—8 ),
y'+v y= —I (x —

g W)5~(8 —8q),

W+ A Ws(8,„„8,„,) =0 .

(3.1)

(3.2)

(3.3)

Equation (3.3) can be solved readily, leading to a damping
solution independent of any transverse parameters. In-
versely speaking, this suggests that the betatron motions
are not afFected by the longitudinal motion and, there-
fore, we will observe no cooling in the transverse direc-
tions. In fact, if the longitudinal damping motion could
induce a transverse damping efFect through the coupling
terms, the longitudinal damping rate must then be
influenced by some transverse parameters.

This observation can be proven by evaluating the ei-
genvalues of the coupled motion. Applying, for simplici-
ty, a thin lens approximation to the damping matrjx in
Eq. (2.11), and then calculating the one-turn matrix Mi,
we find, from the characteristic equation det(Mi —AI)
=0

(A, —1)(A,—e )f(A)=0, (3.4)

IV. THREE-DIMENSIONAL COOLING SCHKMK

We found in Sec. III that the dispersion gq cannot be a
source for transverse momentum cooling. The skew

where AD—:A8n, and f(A, ) is a fourth-order algebraic
equation involving neither g nor A. While the root
A, =e obviously corresponds to longitudinal mode,
the cooling rates of transverse modes are evaluated from
the equation f(A, )=0 whose roots are totally independent
of the parameter A characterizing damping motion. It
can therefore be concluded that transverse damping is
not achievable by means of the coupling originating from
the skew quadrupole potential.

quadrupole, therefore, is introduced only for the purpose
of coupling the horizontal motion to the vertical motion.
Thus, for simplicity, we set pe=0 in this section. The
efFect of g on cooling rates is briefiy discussed in Sec. VI,
showing that a finite g~ causes no remarkable change to
the results presented below.

2 (gbvi)'x+v 1— x= gbvi W—, (4.1)

b(v„vi )
W+A,„W+vi W= x .

0
(4.2)

These equations are essentially equivalent to those dis-
cussed in Ref. [6], while the kick force at the cavity here
has been averaged over one turn. Similar damping prop-
erties can then be expected. Following the results of the
previous work, the transverse-emittance damping in-
duced through the dispersive coupling should be most
enhanced under the condition of a difference resonance

1/2
(gbvi )

v„ 1— —
vL =integer .

0
(4.3)

Noting that (gbvi ) l~(0~ &&1, Eq. (4.3) can be simplified,
to a good approximation, as v —

vL =integer.
In our case, the best way to evaluate the damping rates

is to use the matrix method. Because the kick force at
the cavity is linearized here, we can easily construct the
corresponding transfer matrix Mb as given in Appendix
B. Using Mb and the drift matrix Mo together with the
damping matrix in Eq. (2.11), a one-turn matrix can be
represented as

M2—=M0(82}MbM0(8, }M~(8ii ), (4.4)

where, setting the origin of the 8 coordinate at the center
of the cooling section, 19, and 82 are defined by
8, =8b —8D/2 and 8&=2@.—(8,+8~). Neglecting the
vertical motion, which is decoupled right now, the equa-
tion det(M2 —

A,I)=0 yields the dispersion relation

A. Longitudinal-horizontal coupling

I.et us now turn on the rf cavity. Unless there exist
vertical bending magnets, dispersion-induced coupling
occurs only between the longitudinal and horizontal
directions. Since the skew quadrupole coupling has
turned out to be useless in obtaining transverse cooling
effect, the most important key is whether or not the cou-
pling generated by the cavity dispersion gb can provide
sufBciently high cooling rates in the longitudinal and hor-
izontal directions simultaneously. Thus we first try to in-
vestigate these two motions, neglecting the vertical beta-
tron oscillation.

From Eqs. (2.12) and (2.14), the starting equations read

1
A, +——2 cosp

21rv v i gb
X

1 ——(A, —e )sing =0, (4.5)

—A D

&+ —2cospi+(1 —e )(1 2nv2i8, )—
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where p =2~v, pL =2~vL, and the thin lens approxi-
mation has again been applied to the damping matrix.
The damping rates numerically evaluated from the ma-
trix M2 are shown in Fig. 1. Here g& represents disper-
sion at the rf cavity, i.e., rib =—g(0=8b), and v is the
eigentune satisfying the relation A, =e' . The behavior
of Im(v) as a function of the dispersion gb is quite similar
to the previous results in Ref. [6], where Im(v) has been
plotted as a function of the field strength of the coupling
cavity. As mentioned above, the most efFective cooling
situation, where the horizontal damping rate becomes
roughly equal to the longitudinal damping rate, is provid-
ed when the operating point is on resonance. Obviously,
Fig. 1(c) is the case. We see that, except for the region

qb (0.25 m, both damping rates stay close to each other
around a constant level.

Considering practical applications, we are interested in
the smaller gb region. We then approximately solve Eq.
(4.5), employing perturbation analysis with respect to gb
Assuming the resonance condition in Eq. (4.3) and again
writing k=e', the imaginary parts of the first-order
solutions to Eq. (4.5) can be given by

where, in order to let the tunes satisfy the simplified reso-
nance condition v„—vs=integer, we have set p =pp
and pL =go —2n~ (n = integer}. Here v, denotes the
eigentune of the horizontal mode, while v2 corresponds to
the longitudinal mode.

Some examples of Im(v) under the resonance condition
are illustrated in Fig. 2. The dotted curves are obtained
from Eqs. (4.6) and (4.7},yielding good agreements in the
small-gb region. Analogous to the results in Ref. [6], the
damping rates of both modes are rapidly saturated at the
level AD /8~, which is exactly half the longitudinal damp-
ing rate without the coupling. Further, unless the disper-
sion gb is too large, all damping rates remain positive
and, accordingly, we can always more or less, observe a
cooling efFect in both directions. Of particular impor-
tance is the minimum dispersion value g desirable to
achieve the damping rates close to the saturation level.

is readily estimated by equating Eqs. (4.6) and (4.7),
resulting in

Vx V L, gb
lm(v, } —AD

1 e

sinpp

Oi

2m

(4.6)

1 —(1—cospo) 1—
2m.

sin@0
(4.8)

AD
Im( v2 ) = —Im( v, ), (4.7)

—
AD

where we have used the approximation e =1—AD.
gives an approximate value of the minimum disper-

sion at the cavity required for efficient horizontal laser
cooling.
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FIG. 1. Imaginary part of the
eigentunes describing longitudi-
nal and transverse motions as a
function of the dispersion gb at
the rf cavity position. The hor-
izontal tune v„ is chosen to be
v„=2.17 in all cases. The cavity
is set at the location opposite
to the laser damping section,
which has the cooling rate
A& /2~ =0.01. In all figures
presented in this paper, we use
the slip factor go

= —O. 947,
roughly corresponding to the re-
cent ASTRID experiments for
100-keV Mg+ ions. In addi-
tion, we assume the circumfer-
ence of the storage ring to be 40
m, the same as in the ASTRID
ring.
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FIG. 2. The same as Fig. 1,
but now the tunes are chosen in
each case such that the
resonance condition v„—vL

=integer is satisfied. The solid
curves are obtained from solving
the 4X4 determinant, while the
dotted curves result from Eqs.
(4.6) and (4.7).
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Equation (4.8) also allows us to predict the preferable
position for instating the cavity. The value of 8& minim-
izing q is evaluated as

m 1 AD Po
1 — 1 —Az+ cosec

2m AD 2 2

2 1/2 '

(4.9)

Equation (4.9) implies that 8 always takes a value close
to ~ except for the region cosp0=1, because we usually
have AD &&1. Thus, to make g smallest, the cavity
should be set at the position opposite to the laser-cooling
section.

B. Three-dimensional laser cooling

M3=MqM& . (4.10)

Taking det(M3 —
A,I)=0 yields, after considerable alge-

bra, the dispersion relation

We now proceed to three-dimensional analysis. In or-
der to evaluate the damping rates of the three modes, we
first try to obtain a dispersion relation based on the gen-
eral 6X6 matrices given in Appendix B and Eq. (2.11).
Since the damping rates are not so sensitive to the loca-
tion of the skew quadrupole having a modest value of I q,
we simply multiply Mz by Mq to introduce the one-turn
matrix

—A D

A, + —2cospL+(1 —e )(1 2mv18, )—
1 1

A, +— 2 cosp A, +— 2 cosp
r',

sinp„sinp
vx vy

2~v„v L, gb —AD
1 ——(A, —e )

0

1 I cos(v„8,}cos(v„8z}
A, +——2 cosy sing„— sing =0, (4.11)

v v y 7

x y

where p =2~v„, and we have used the thin MD.
Without the quadrupole coupling, i.e., I =0, the vertical
mode is, of course, decoupled, and Eq. (4.11) is reduced
to Eq. (4.5). Similarly to Sec. IV A, the damping rates of
all modes can be found by evaluating the eigenvalue k.
Figure 3 shows some typical features of the damping-rate

curves plotted as a function of the dispersion gb.
As pointed out already, the resonance condition in Eq.

(4.3) is required to increase the horizontal damping rate.
Here, in addition to the longitudinal-horizontal coupling,
we must consider a coupling between the two transverse
motions. Comparing the coupling terms in Eqs. (4.1) and
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FIG. 3. Imaginary part of the
eigentunes evaluated from the
6X 6 one-turn transfer matrix vs

the dispersion gb at the cavity
position. The origin of the 8
coordinate is again taken at the
center of the laser cooling sec-
tion, which has the cooling rate
AD/2m =0.01. The RF cavity
sits at 8b =m, the position oppo-
site to the cooling section, while
the quadrupole location is

8~ =3~/2. The quadrupole cou-
pling constant is fixed at
I =0.1. Only case (b) satisfies
the two resonance conditions
given in Eqs. (4.3) and (4.12)
simultaneously. Note that, in

cases (a) and (c), one of the two
transverse modes is nearly
decoupled, having an imaginary
part almost equal to zero.

1/2
(gbvL )

v 1—
X

—v =integer, (4.12)

which can be approximated as v —v = integer. Pro-
vided that the resonance conditions in Eqs. (4.3) and
(4.12) are satisfied simultaneously, it is actually possible
to establish an ideal situation as seen in Fig. 3(b), where

(4.2) with those in Eqs. (2.12) and (2.13), it is readily
recognized that, under the averaging approximation with

g =0, the skew-quadrupole potential yields an effect
mathematically equivalent to the linearized dispersive
coupling at a rf cavity. An enhanced coupling between
the horizontal and vertical motions is, therefore, antici-
pated under the condition

the damping-rate curves of the three modes intersect
roughly at a single point. The optimum dispersion of the
example is gb =0.6 m.

If one of the two conditions is completely failed, three-
dimensional cooling is no longer achievable, as suggested
in Fig. 3(c), where Im(v) of the vertical mode is almost
equal to zero. Figure 3(a) shows a situation where both
conditions are missed. Needless to say, the damping
rates of both transverse modes are too small to accom-
plish eScient transverse cooling even if the coupling is
strengthened. It should also be noted that, in all cases,
we do not have a negative damping rate which leads to
exponential emittance growth.

Writing p po py po 2 m nd pL po 2

(m, n=integer) on the assumption of the two resonance
conditions, Eq. (4.11) becomes

D

A, + —(1+e )cospo
1

A, +— 2 cospo
r',

sin po
v~ vy

~vx V L Pb

ko
1 ——() —e )sinpo A. + ——2 cospo—

I' (1+cospo) =0.
2v v,,

Here we have set 8, =m, since, as mentioned in Sec. IV A, this cavity location is most preferable to reduce the required

minimum value of the dispersion gb. ~e see that the longitudinal mode is nearly decoupled in the region gb && 1, while

the two transverse modes almost degenerate. As before, Eq. (4.13) can be approximately solved by treating the term

proportional to gb as a perturbation applied to the nonperturbed decoupled motions. After some algebra, the first-order

solutions of the transverse damping rates are found to be

VxV LgbI (v)=
l. +

Qv„v,

Po I
qtan +

2+V.v,

r AD I
cotpo tanh

2 2v vysinhAD

(4.14)
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AD
Im(vo) = (4.15)

Equating Eqs. (4.14) and (4.15) gives an approximate for-
mula for the optimum dispersion

Vo
AL, + cot

67Tvx + L v~ v& 2
(4.16)

where we have dropped some small terms, assuming that

AD « 1 and I'~/Qv„v && 1. Although the value of ri,&,

predicted by Eq. (4.16) may not always be sufficiently ac-
curate because of the first-order approximation, it per-
mits us to make an initial estimate of the optimum
dispersion.

In Fig. 4, we show several examples of damping rates
with the parameters simultaneously satisfying the two
resonance conditions. The dotted curves are obtained
from Eqs. (4.14), while the broken line parallel to the

We now have enough information to estimate the op-
timum dispersion values g, , It is unnecessary to know

the explicit functional form of the longitudinal-mode
curve if we notice the fact that the sum of the three
damping rates should always be equal to the maximum
achievable damping rate A~/4n. , the same as the longitu-

dinal one without the coupling. Under the two resonance
conditions, the damping-rate curves generally show a
property similar to Fig. 3(b); i.e., the curves of two trans-
verse modes grow initially as gb, staying close to each
other, and eventually intersect the longitudinal-model
curve at roughly the same point. The maximum damping
rate is then distributed almost equally to all three modes.
Therefore, at the optimum point, the three modes should
be given one-third of the maximum rate, namely

abscissa indicates the level in Eq. (4.15). The validity of
Eqs. (4.14), (4.15},and (4.16} has been confirmed beauti-

fully in the present examples.
Equation (4.16) also provides important insight into

the parameter dependence of the optimum operating
point. In particular, the equation indicates the controlla-
bility of g, , by means of the skew-quadrupole strength
I q. Thus, even if the actual dispersion deviates from its
design value, it is straightforward to recover an optimum
operating situation, compensating for the error. All we

need in the case is simply to increase or decrease the
skew-quadrupole gradient.

V. TRACKING RESULTS

We now show tracking results, confirming the validity
of the theoretical predictions given so far. Apart from
the laser cooling section, the particle motion governed by
the nonlinear Hamiltonian in Eq. (2.2}is simulated in the
tracking code employed here. To incorporate the laser
cooling effect, the matrix in Eq. (2.11}is used.

Damping rates are related substantially to the product
of A and 8D, i.e., AD, rather than A itself. The value of
A~ reflecting actual experimental results cannot be
uniquely determined because it strongly depends on the
initial state of a stored beam [12j. The fundamental
feature of the damping-rate curves in Fig. 4 is, however,
not affected even if a different value of Az is chosen.
Only the magnitudes of the damping rates are changed,
maintaining the similar figures. Thus the value of AD is
not essential to how transverse damping rates are
enhanced, although cooling time is indeed altered de-
pending on AD. In the present paper, we assume that
A=0. 2 and 8D/2n. =0.05, representing a cooling section
of 2-m length.
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FIG. 4. The same as Fig. 3,
but the longitudinal and hor-
izontal tunes here are set at
values identical to those adopted
in Fig. 2. In addition, the verti-
cal tune is chosen such that
the resonance condition v vy

=integer is satisfied. The dotted
curves represent the first-order
theoretical solutions given in
Eqs. (4.14), yielding close agree-
ments with the numerical results
in all cases. It is shown, as
expected, that three curves
always intersect at the level
Im(v) =AD /12m.
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First of all, let us consider the parameters adopted in
Fig. 3, checking whether the dispersion relation enables
us to predict correctly the damping properties of the
three motions. The corresponding simulation results are
shown in Fig. 5. In all cases, the dispersion qb is fixed at
0.6 m, which agrees approximately with the optimum
value indicated in Fig. 3(b). Equation (4.16) actually
gives q, ,=0.57 m. It is obvious that the results are in
accord with the expectations drawn from Fig. 3.

It is practically important to know how much error
around the resonance conditions is allowable to keep the
damping rates of all three motions sufficiently high. We
do not have to pay much attention to dispersion error,
since the shift of the optimum operating point due to the
error is adjustable with the skew-quadrupole gradient, as
pointed out in Sec. IV. As an example, here we investi-
gate the case given in Fig. 4(a), slightly changing the
transverse tunes around the values shown. The damping
rates are plotted in Fig. 6 as a function of the longitudinal
tune vL. Specifically, Fig. 6(a) indicates that the op-
timum vL is 0.12. Slight shifts are now applied to the
transverse tunes, fixing gb at 1 m. The deviation
~v„—v~~ ~0.004 appears to be permissible to ensure a
high level of damping rate for all modes. In the cases in
Figs. 6(c) and 6(e), where ~v„—v

~

=0.006, Im(v) of one
mode seems too small, while it still remains positive.
These figures also suggest that the rigorous tuning of vL
is not necessary. . The vL error of, say, +0.002, looks ac-
ceptable [13].

The tracking results corresponding to Figs. 6(a) —6(d)
are shown in Fig. 7. We observe that even the case in
Fig. 7(c) is fine, while the vertical damping is a little slow,
as expected. Notice that, in these simulations, initial pa-
rameters different from those used in Fig. 5 have been

adopted. When assuming a 100-keV Mg ion and the
harmonic number h =26, the initial parameters employed
represent a beam having a transverse radius of -5 mm, a
divergence of -Oo 8 mrad, and a momentum spread of
about 5p/po-4X10 . These values are even larger
than those of the actual beams injected into ASTRID.
As for the initial phase spread 5P, we have taken
6g-25', but a much larger phase spread is allowable.

Phase-space configurations are illustrated in Fig. 8,
starting with the parameters identical to Fig. 7(a) except
for a phase spread that is twice as large. The initial emit-
tances of all three directions have been remarkable
compressed after 300 turns. It has been confirmed, in ad-
ditional simulations, that a total phase spread greater
than 100' is still acceptable, and that the theoretical pre-
dictions based on the present linear approach hold quite
valid even for such a beame

Compared to Fig. 5(b), much more significant initial
growths of transverse emittances are observed in Fig. 7.
This is due to the larger initial phase spread assumed.
Figure 9 demonstrates emittance oscillations when the
longitudinal emittance is initially ten times greater than
the transverse emittances. Since the operating point
must be set on or close to the coupling resonances to
enhance transverse cooling rates, a considerable amoont
of emittance exchange takes place whenever there exists
an emittance imbalance. Although a circulating beam is,
in principle, stable on a difFerence resonance, even such a
resonance might be avoided between longitudinal and
transverse motions in most high-energy synchrotrons, be-
cause the longitudinal emittance of an accelerated beam
is usually much higher than the transverse emittances
and, as a result, a rapid increase of the transverse beam
size occurs, leading to a beam loss.
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FIG. 5 Tracking results i e
the solutions of the nonlinear
equations derived from the
Hamiltonian in Eq. (2.2), in
which 500 particles are followed
and, from them, longitudinal
(solid line) and transverse (brooo

ken lines) rms emittances are
evaluated. The employed pa-
rameters in each figure are iden-
tical to those in Fig. 3, but the
dispersion is fixed at gb =0.6 m,
approximately corresponding to
the optimum value indicated in
Fig. 3(b). Initially, particles are
randomly distributed inside the
three phase-space circles whose
scaled radius is 0.1. (See Fig. 8.)
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FIG 6 Imaginary part of the
eigentunes evaluated from the
6X6 one-turn transfer matrix vs
the longitudinal tune vL. The
horizontal tune v„and the verti-
cal tune v~ are varied around the
values shown in case (a), fixing
the dispersion qb at 1.0 m which
is approximately equal to g,pt.
Other parameters, except for the
tunes, are identical to those in
Fig. 3. Case (a) represents the
best case, where v„and v~ satis-
fy the resonance condition.
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achieved when vi =0.12.
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In our ease, the beam-size growth due to resonant
emittance transfer is avoidable simply by precooling the
longitudinal temperature with a laser cooler. During the
precooling process, the longitudinal tune is set at an ofF-

resonance value by supplying proper rf power to the cavi-
ty. Once the beam is bunched and precooled to a longitu-
dinal emittance comparable to the transverse values, we
then adjust the tune so as to generate a synchrobetatron
resonance for three-dimensional cooling, increasing or
decreasing the rf power.

Even if emittance oseillations with large amplitudes
arise, as seen in Fig. 9, the emittances, after 400 turns,
have reached a level more than 100 times smaller than
their initial values. It is interesting to note that the longi-
tudinal emittance always takes its minima around the
timing when the sum of the transverse emittances comes
to its maxima. This implies the existence of a constant of
motion in the absence of the laser-cooling term.

VI, EFI'KCI'S OF gq and gg

Here we briefiy explore the effects of finite g~ and g&,
neglected so far. Let us first assume a nonzero gz, which

is of practical importance because we often have infinite
dispersion everywhere along the circumference of a
storage ring. In fact, the dispersion functions of both
ASTRID and TSR never vanish. Further, provided that
the value of g suitable for three-dimensional cooling is
uniquely determined, or strongly dependent upon other
ring parameters, a rigorous restriction might be imposed
on lattice design. Fortunately, Fig. 10 eliminates this
concern. In the figure, the dispersion gb at the cavity is
fixed at 1 m, approximately equal to the optimum value
indicated in Fig. 4(a). It is seen that the damping rates
are almost unchanged, even if the value of the dispersion
g~ =R g is varied over a wide range.

The effect of dg&/ds =—gz is now investigated, neglect-
ing g . Figure 11, employing the same parameters as
Fig. 4(a), illustrates the gb dependence of damping rates
with various values of the derivative drab/ds. No notice-
able change is observed when d gb /ds takes a small value.
However, as the derivative becomes larger, the three
modes tend to.be split up and, eventually, completely
spread out as seen in the cases in Figs. 11(c)and 11(d). A
large value of

drab/ds

must therefore be avoided to make
sure of a sufBciently high cooling rate in each mode.
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It is interesting to note that, apart from constant
coefficients, the mathematical roles of g~ and g~ to the
horizontal canonical variables are symmetric, as is clear
from the Hamiltonian (2.2). Consequently, plotting
Im(v) as a function of the derivative drab lds, we obtain
figures quite similar to Fig. 11. Analogous to the pattern
illustrated in Fig. 11, the damping-rate curves are gradu-
ally split out with the increasing gb.

VII. SUMMARY

It has been shown that the dispersion-induced coupling
at an rf cavity is a possible way to extend the longitudinal
laser cooling effect to transverse degrees of freedom,
based on the idea of enhanced synchrobetatron coupling.
We have found that the dispersive coupling, under a
linear approximation, is mathematically equivalent to the
coupling generated by a coupling-cavity potential, but the
present scheme has turned out to be more useful when
considering practical applications. In fact, the scheme
can be applied, without any difficulty, to very low-energy
beams, while design of a coupling cavity is not so easy for
such a beam. In addition, the previous scheme requires
us to provide two different rf cavities; i.e., a coupling cav-
ity operating in the TMz&Q mode, and an ordinary bunch-
ing cavity for the purpose of creating an rf bucket. A sin-
gle ordinary cavity introduced here plays the roles not
only of the coupling cavity but also of the bunching cavi-
ty. Further, the synchrotron oscillation induced by the
cavity field is beneficial to simplifying the laser cooling
system. It has been experimentally proven in the AS-
TRID ring that ions executing synchrotron oscillations
can be cooled with only one laser as efficiently as with
two lasers, copropagating and counterpropagating with
the stored beams [11].

The rf cavity can also be utilized, with a laser cooler
turned on, for preventing undesirable nonlinear effects as
well as a large amount of emittance transfer from longitu-
dinal to transverse directions. After the precooling pro-
cess, the longitudinal phase space of an initial continuous
beam is compressed, achieving a small ernittance with a
small phase spread. Consequently, we can make a simple
linear regime set in.

Until corning close to an ultracold beam state, the
linear analysis described in the paper holds very well.
Space-charge force will not affect the present results be-
cause the stored beams employed so far for laser cooling
experiments have a very low intensity. However, once an
ultralow temperature is reached, the beams move into a
space-charge-dominated state. EfFects of intrabeam
scattering and so on, which are generally negligible for a
low-intensity beam with a normal temperature, become
important [14].

The space-charge-dominated state of a low-intensity ul-
tracold beam may be considered as a first stage toward a
crystalline beam. Theoretically, a crystalline beam forms
a continuous structure [15],while a laser-cooled beam ob-
tained under the present scheme has been bunched.
However, it is an easy matter to debunch the beam, as we
have an rf cavity already set on the ring. A procedure to
observe a beam crystallization may, therefore, be as fol-
lows. First of al1, turn on a laser cooling system as well
as an rf cavity without the condition in Eq. (4.3) satis5ed.
After the beam is bunched and longitudinally precooled
to some degree, adjust the rf power supplied to the cavity
such that the longitudinal tune satisfies the resonance
condition. We now also turn on a skew-quadrupole mag-
net and increase the field strength up to the optimum lev-
el theoretically predicted. After a temperature in the mK
range is achieved, turn off the laser, and switch the syn-
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chronous phase to a debunching one. During the de-
bunching process, we may hopefully transform the beam
plasma to a liquid state or, eventually, to a crystalline
state.
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and A = ( A„, A, A, ) represents the total vector poten-
tial of the system. %e now install rf cavities at the posi-
tions s =sb" (n =1,2, . . . , Nb ) and skew quadrupoles at
s =s~"' (n =1,2, . . . , N ), where s is the distance along
the reference particle orbit. The vector potential of the
nth rf cavity is given by

FIG. 10. Dependence of damping rates on the dispersion g,
at the skew quadrupole position. The same parameters as em-

ployed in Fig. 4(a) have been assumed fixing the dispersion gb at
1.0 m.

tiona11y the potential of pure skew-quadrupole magnets.
Let us consider a storage ring of the average radius R.

Our starting point is the general Hamiltonian of the form

where Vb"' and p'b"' (n =1,2, . . . , Nb) are, respectively,
the voltage amplitude and initial phase of the nth cavity.
From a practical point of view, all the cavities have been
assumed to be identical, writing the common rf angular
frequency as co. Taking the distance s as the independent
variab1e, instead of time, and considering only dipole and
quadrupole magnets installed on the ring, the Hamiltoni-
an H, can be approximate, together with Eqs. (A2), as

2 2
x Px +5'y

&2 = S+(I0
—S» +- —

p 2p

H =c
1

(p, —qA, )

z +(p„—qA„)'
(1+x /p)

+ [K„(s)x +K (s)y2]
2

+(p —qA ) +rnoc

1/2

(Al)

X p(nj
+poxy g ' 5 (s —s'"')

R

where mo and q, respectively, are the rest mass and
charge state of ions, p is the local curvature of the ring,

'b
Vb" sin(cot+pb"')5 (s —sb"'),

n=1
(A3)
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FIG. 11. The same as Fig. 10,

but Im(v) is now plotted as a
function of the dispersion
Finite values of the dispersion
derivative at the cavity position
have been assumed, neglecting
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where I' n' is the coupling strength of the nth skew quad-
rupole, K„( )(s) is related to the quadrupole filed strength,
5~(s) denotes the periodic delta function whose periodici-
ty is the ring circumference 2~R, and the total momen-
tum p is expressed as p = [(W/c) —m oc ]'~ with the to-
tal particle energy 8'. In the following analysis, quanti-
ties with the subscript 0 are used to represent those corre-
sponding to the reference particle.

We now introduce the canonical transformation from
the variables (x,y, t;p„,p~,

—b, W= W —Wo', s) to
(x,y, t;p„,p~,

—b, W;s) yielded by the generating function

F, =p„x— b, W +p~y
po oc

I I

+ xb W — 2(EW)
&oc 2po«oc)'

(A4)

where rI(s) is the dispersion function of the ring, P and y
are the usual relativistic parameters, and the prime
stands for the derivative with respect to s. After applying
this transformation to Eq. (A3), we scale the canonical
momenta to obtain

Oc OC }'O P O n =1
J

Nb

g Vb"'sin cot (q—p„—ri'x )+(t)'b"' 5&(s —sb"') .
PON « =1 POC

(A5)

The Hamiltonian H3 is further transformed with the generating function

b
(1)

F2=xp„+yp„+ to t
OC

+y(b" k. (A6}

The use of I'z leads to the Hamiltonian

Hq= ,'(P„+P~)+—2) [K„(s)x +—K (s)y ]—
N I (n)

+y x — @' g 5 (s —s'"')
n=1

Nb

g Vb"'sin p ——(1)p„—1)'x )+4(b") 5 (s —sb(") ),
&0~ n=i

where h is the harmonic number of the cavities, go is the so-called phase slip factor defined as go=—a —1/yo with the
momentum compaction a, and

(y(n) —
(

(n) S(1))+y(n) y(1)h

R
(A8)

APPENDIX B: TRANSFER MATRICES

Here, we give explicit expressions of the transfer matrices employed in the paper. Based on Eqs. (2.3)—(2.8}, the
transfer matrix at an rf cavity located at a position with nonzero dispersion can be represented as

Mb=
0

Agb

0
—Agb 0

1+Agbgb —A(b

Agb 1 —Agbgb 0

0 I

Agb 0

Agb 0

0
1 0
A 1

(B1)

where A =2n v L /go, and I and 0, resp—ectively, denote the 2 X 2 unit matrix and zero matrix. Similarly, the pure skew-
quadrupole matrix M and the drift matrix Mo can be given as
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0 0
—I 0

0 0
—r, 0 0

0 0
o g, r,

0 0

Mo(8c) =

cos(v„8o) sin(v„8o)/v„
—v„sin(v„8&) cos(v 80)

0

0

cos(
v~ 8o) sin( v 8O) /v

—v sin(v 8o) cos(v 80)

0

0

0

—ko80

0 1

(B3)

where 80 is the angular extent of a drift space. Needless to say, all these matrices are symplectic.
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