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I. INTRODUCTION

The experimental investigation of magnetized strongly
coupled plasmas poses a problem of providing a theoreti-
cal basis for consistent interpretation of upcoming re-
sults.

The diagnostics of magnetized plasmas via scheduled
experiments on its reflectivity will certainly require the
implementation of exact relations between optical [the
dielectric tensor f(to) =I+4sri &(to), the internal dynamic
conductivity tensor &(to), etc.] and thermodynamic
characteristics of magnetized dense plasmas.

The present paper contains two theoretical results
aimed at establishing such relations, at least in the experi-
mental sense.

First, a relatively methodological problem of calcula-
tion of reflection coefficients and other ellipsometry pa-
rameters of magnetized plasmas is treated. Second, the
internal conductivity tensor and the dielectric tensor of
strongly coupled cold plasmas are studied and construct-
ed on the basis of exact relations and sum rules.

falls onto a plasma magnetized by a constant and uniform
magnetic field Bo; the dielectric tensor of the plasma is f.
The Cartesian axes x and z are shown in Fig. 1; the in-
cidence plane coincides with the xz one. The xy plane is
the interface that is assumed to be flat and uniform. The
unit vectors e ' and e,

' (i =0, 1,2, 3) are parallel to the
components of the incident wave electric vector parallel
and orthogonal to the incidence plane, respectively. The
superscripts 0 and l denote the incident and reflected
waves, and 2 and 3 the refracted ones [2,3] (the plasma
birefringence).

Due to the complete homogeneity along the xy plane,
the dependence of the field equations' solutions on these
coordinates should be universal. Thus the directions of
propagation of all waves should be parallel to the xz
plane, and within our system of coordinates that would
mean that the wave vectors are restricted by the condi-
tion

II. REFLECTION
OF ELECTROMAGNETIC RADIATION

FROM A COLD MAGNETIZED PLASMA
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Consider the problem of the interaction of a mono-
chromatic plane wave of electromagnetic (laser) radiation
with a cold uniform magnetized plasma. The orientation
of the magnetic field with respect to the medium surface
is presumed to be arbitrary, i.e., no assumption is made
about the orientation of main axes of the plasma dielec-
tric tensor. The magnetic permeability is neglected,
which is physically motivated [1,2]. Basically it is not
difficult to take it into account, but that would compli-
cate the formulas even more. Besides, since the plasma is
assumed to be cold, the space dispersion is not included
in our consideration.

The incident monochromatic plane electromagnetic
wave of arbitrary polarization and frequency co comes
from a transparent medium with a permittivity Eo, and

FIG. 1. Geometric parameters of the incident, re6ected, and

refracted waves; see the text.
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In addition,

(2.1) Taking into account (2.3), Eqs. (2.4) are easily
simplified to

k, =k2 „=k3, =i~oV Sos'neo (2.2)
AE —grad div E+~&D=O, (2.5)

where yp is the angle of incidence and Kp co/c. Now the
above dependence on coordinates and time can be set as

exp[i( o&t —k„x —k, z ) ] . (2.3)

Some suSciently general matrix methods are
developed in [4] to solve problems about the reAection
and propagation of electromagnetic waves through aniso-
tropic optically inhomogeneous media. Following [4],
consider Maxwell's equations in the medium,

1 BH — 1 BDrotE= ——,rotH =— (2.4)
c Bt

' c Bt

E, = f —~oc,„E„+lroE, E +ik, (2.6)

with f =a&&E„—k„. In the same manner, one arrives at
the system of equations

where 6 is the Laplace operator. Applying the relation
D„=c.„Q (here e„are the Cartesian components of the
plasma dielectric tensor c,), one can eliminate the electri-
cal induction vector D to obtain the following expression
for the z component of the electric field vector E:

8 E„ BE, BE
x(exz+Ezx) —ikxexy +( xxf pexzez—x) .+(E.yf —&OezyEyz)Ey=o (2.7a)

f ik„ap—e, +ap(s „f—ape,„s„)E„+[(~os —k„)f—
~OE, E, )]E =0 . (2.7b)

The particular solutions are to be sought in the form of plane waves (2.3). Then appears the consistency condition for
Eqs. (2.7a) and (2.7b), i.e., Fresnel's equation

~yy &yz &xx Exz

k,~e„+k,3k„e[„,]+k,' ' k„'(e„+e„„)—~&'&
—

ihip
~zy zz Ezx ~zz

3 2+ kz l kx E[xz] + Okx (eyz exy + Ezy syx eyy E[xz] ) ]

+f '[s f—
I~OE,.E, ][(&ps k )f &oey e y] f '~o[eyxf ~oEzxeyz][e yf ~oE yE (2.8)

E ( ~ & —(f & ~ & yf & t & )E & ~ & )' —2 3

Here the following notations are introduced:

(2.9)

(2.10)

In Eq. (2.8) E[„,]
——s„,+E,„.One should now select two of

four roots of Eq. (2.8), i.e., those corresponding to the
waves decaying along its way inside the plasma. The fact
that such roots exist follows from the consideration that
within the frequency interval for which the medium is

transparent, i.e., when the tensor c is Hermitian, the
coefficients of Eq. (2.8) are real. Hence its roots are com-

plex pair conjugate or real. The non-Hermitian contribu-
tions to f standing for the decay would only change the
decay rate (if it is not too large).

Further, using Eqs. (2.7), one can find a relation be-

tween the x and y components of the electric field vector
of the wave [5]. In what follows, we will need

waves propagate along the magnetic field are they polar-
ized circularly.

Now consider the boundary conditions for the electric
and magnetic field vectors of the wave,

k(o)(E(o) E(1)
)

k(z)g(2)+k(3)E(3&
z 5 s z y Z

(2.1 1)

~e (E&o&+E&1))—p (E(2)+E&3))~p (E(2&+E&3))

iP (k &2&E &2&+ k &3)E &3)
)

where

Pi =&Okxezxf i P2=1rpkxezy f,P3=iKpezzf

Thus one arrives at a system of four equations with six
unknown quantities E ' E ' E E ), E, and
E . Having resolved this system with two more equa-
tions of relation [using Eqs. (2.9)], one can represent the
answer as

E &i& Pg (o& (2.12)

aild(k ' )'=k'+(k ' )' i =2, 3.
From these formulas it stems that in the case of an ar-

bitrary direction of propagation both types of waves in-
side the plasma (ordinary and extraordinary) are polar-
ized, generally speaking, elliptically. Only when the

where E ('& and X' ( & are matrices —columns of ampli-
tudes of components of the electric field vectors:

E(j) '

E(j) s
~
—01 (2.13)

S
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and P is the reflection coefficients' matrix:

R R,
R, R„

Its components are defined as

Rp~ =R]]jRp Rpg =R]2 jRp

Rsp R21/RO Rss R22/RO

Here

R„=a(y,b, +y2b2}(k, ' —k, 2
)

(k,—+k, b +k, b2)

X [&so+a(r2 —r i }l

R]2 = —2k, (y]b] +y2b2 ),
R, =2/spa(k, —k, ),
R22

——a(y, b, +yb22)( k& 2}—k,(3&)

—( k, +—k, b, +k, b2)

X [+so+a(y] —y2}],

Ro =a [k'"(r i
—r2}+ r]k,"'—r2k,"']

+/e (k, +k, b, +k, b }

and

(2.14)

(2.15)

(2.16} k(' =+Ko(sing)' (i=2,3}| c2c3=1 . (2.19)

Upon quite cumbersome but simple transformations,
one derives corresponding reflection coefBcients:

n1n2 —co
Rpp

= —Rss =
eo + 1l ]1l 2 ++ep( 1l ] +n 2 )

n2 n1
Rz, = —R,z =i+so

pe+n]n2+/ p(s]n+n2)

(2.20}

to the plasma gyrotropy.
In the general case under consideration this is not true,

and the e(p]) tensor should be obtained from Eq. (2.18)
by an orthogonal transformation to the initial coordinate
system (see, e.g., [5]}.Thus the components of this tensor
will be expressed in terms of ci, c)), g, and three angles of
Euler (in the case of plasmas) which define the magnetic
field orientation with respect to the selected system of
coordinates.

The transition Bo~0 to the case when the plasma be-
comes nongyrotropic is treated in Appendix A.

For the case of oblique incidence onto the magnetized
plasma, the magnetic field Bo being orthogonal to its sur-
face, the matrix of reflection coefBcients is determined by
Eqs. (2.15) and (A3). Still these expressions are too gen-
eral.

Now consider the case of normal incidence. Then
k„=0, and from Eqs. (Al} and (A2) one obtains

a =cosqo/(c 3 C2 ),
c;=f ' If ' (]=2 3)

y, =p2+c2(p] ipik, —),
r2 =p2+ C3(p] —'p3"' "»

(2.17)

Ey lg 0

b] —C3 l(C3 C2)i b2 C2 l(C2 C3)

The wave vector components k,(') (i =2,3) are to be
determined from the solution of Fresnel's Eq. (2.8), and
the z components of the vector k of the incident wave,

k, = —]rp+epcos]pp. Formulas (2.12)-(2.17) together
with Eq. (2.8) provide the general solution of the problem
on reflection of a monochromatic plane electromagnetic
wave from an anisotropic medium characterized by the
dielectric tensor f(co). Along with magnetized plasmas
one can also treat anisotropic metals, dielectrics, etc. , al-
ways when the spatial dispersion is insignificant.

As seen from Eqs. (2.15) and (2.16}, (R~,.R, %0), the
reflection coefficient is generally a nondiagonal matrix.
In a system of coordinates with the z axis parallel to the
external magnetic field, the f(co) matrix simplifies to

where n] 2 ——(s]kg)' are the refraction coefficients for
ordinary and extraordinary waves propagating along the
external magnetic field. The transition Bo~0 in this case
is trivial, since in this limiting case n, =n2 =v s.

Notice that the components of the dielectric tensor
enter into Eq. (2.20) only through combinations sing.
This is caused by the fact that in this particular case the
problem can be resolved in a difFerent, simpler way.

Observe that the Hermitian matrix g'in Eq. (2.18) is re-
ducible by simple unitary transformation to a diagonal
form [5] with eigenvalues n, 2, s1. Since in a collisional
plasma the dielectric tensor f of Eq. (2.18) is, generally,
non-Hermitian, it can always be represented as

f=E1+l f2,
where f& and f2 are the Hermitian matrices of the same
type. It can easily be seen that they commute, which is
the necessary and suScient condition of their simultane-
ous (in the same orthogonal basis and by the same unitary
transformation} diagonalization. Then one arrives at Eq.
(2.20) upon using the boundary conditions in the coordi-
nate system corresponding to the new basis, and Eq. (2.9)
for the x and y components of the electric field vector,
which is very simple in this particular case;

Eg Ky 0 (2.18) E„=+iE
0 0 c))

where ei and e.
it

are the transverse and longitudinal (with
respect to the external magnetic field} components of the
dielectric tensor, with g being the component of f(p]) due P11 Rpp /Rss & P12 Rps /Rss s P21 Rsp / ss (2.21)

Consider now [4] the relative reflection coefficients; the
latter characterize the variation of the state of polariza-
tion of the incident wave as a result of reflection,
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One also introduces the angles of polarization, 4; and

5;, of the reflecting system:

tan%o= IE I /IE~~ I, ho=arg(E( /E, ) (2.23b)

tan(%„exp(ib „)) =p„,
tan(q'12exp(i~12)) P12

tan( +21exp( ' ~21 ) ) P21

E~' /E, ' =exp(ib, , )/tan%, ,
(2.22)

where

&i =arg(E"'/E, "' } .

(2.24a)

(2.24b)

E( }/E,( =exp(ib, o}/tan%'o, (2.23a)

where

The latter definitions form the system of basic equa-
tions of ellipsometry. In addition, The angles %p, hp, %'„and 5, determine the states of

polarization of both incident and reflected waves com-
pletely. That is, the ratios of Eqs. (2.23) or (2.24) are real
if both waves are linearly polarized Then hp and 6,
are equal to 0 or m. The final relation between the magni-
tudes introduced beforehand,

exp(ib, , ) tan(%»exp(ib, »))(exp(iso)/tanipo) tan(%'izexp(ib i2})+
tan'0, 1+tan(%2iexp(ib2, ))(exp(iso)/tan%'o) 1+tan(%'2iexp(ib2, ))(exp(iso)/tan%'o)

(2.25)

is the theoretical basis of "zero" methods of experimental determination of angles of polarization of reflecting systems.
The angles of polarization alii, b, ii, Vi2, b, i2, F12„and b,2, can be measured, and one can utilize Eq. (2.21) along with

Eqs. (2.15)—(2.17) to determine optical and structural characteristics of a strongly coupled magnetized plasma with the
dielectric tensor e (I'6], see Sec. III). This approach is thus suggested as an effective method of diagnostics of such plas-
mas.

In conclusion, the total (i.e., when IE( }ISO, IE~ }I%0 longitudinal (IE IAO, IE, I=0) and transverse
(IE( )

I
=0, IE,( }

I %0 reflection coefficients are determined. These traditional characteristics are to be measured as the
ratios of time averaged intensities of reflected and incident waves;

R=IE'"I'/IE"'I' R~~=IE'"I'/IE,"'I' R, =IE"'I'/IE, '"'I'. (2.26)

(2.27)

(2.28)
I" in& col +solni nial

Inin 2+so+& E(on2+ni)l

Formulas (2.13) and (2.14) for R, R },and R i can be used to obtain

I'+ IR I' R = IR I'+ IR I'
R +yR, I'+ R, +yR„I'

1+ y

where y =E,~ }/Ez }. In particular, when the magnetic field is orthogonal to the plasma surface, and in the case of
normal incidence, upon using Eq. (2.20), one obtains

In, nz eo Q—eo(—nz n, )I
—+ In, nz —Eo+QEo(n2 n, )I'-—

21n i n2+ so+ +so(n2+ n 1 ) I

In the first case the incident wave was presumed to be
circularly polarized (IE( }I= IE,( I }, and in both longi-
tudinal and transverse cases the polarization was arbi-
trary. If Bp=0, the usual Fresnel's reQection coefticients
follow from Eqs. (2.28}.

In Sec. III the dielectric tensor e„„(oi)of cold magnet-
ized plasmas is constructed on the basis of exact relations
and sum rules.

III. CONDUCTIVITY AND DIELECTRIC
TENSOR OF STRONGLY COUPLED

MAGNETIZED PLASMAS

Consider the reflection of electromagnetic radiation of
frequency co by a strongly coupled magnetized plasma.

Let us suppose that the wavelength of both refracted
waves is much longer than the characteristic length of
the magnetized plasma system, i.e., I7],

where kI'} and kI' (i=2,3) are the projections of the
wave vector of the two refracted waves parallel and per-
pendicular to the external magnetic field direction, UT ~
is the average velocity of particles of species A, and
~H ~ =Zz e8p/pl g c is the cyclotron frequency of species
A with charges Z„e and masses m„, 8p being the field

strength of the external magnetic field, and c the vacuum
light velocity.

Inequalities (3.1) are to be satisfied for all plasma
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species. In this case one can neglect the spatial disper-
sion in the plasma system, and the internal conductivity
tensor o„„(co)describing the response of the system to the
Maxwellian field perturbation is given by the Kubo linear
response formula [8,9]:

2

cr„„(z)=g o„",(z)= g —' ' 5„5" +6„"„(z)
A, B A, B

(3.2)

Gas i f" (zt([Iw(t) Ia(0)))dt (3.3)

is the retarded current-current Green function, and I„'"
is the current operator of species A in the Heisenberg
representation,

where co z =(4nZ&e n„/mz )' is the plasma frequen-
cy of particles of species A, n A being the number density
of species A. 5" like 5„„ is the Kronecker delta,
z —ct)+l'g~ 'g 0'0~

ZAekI„"(t)=f dr i
2m A

(3.4)

Here %z (r, t ) and 0'z (r, t ) are the creation and annihilation operators of a particle of species A, A „ is the vector poten-
tial of the external magnetic field, A„=—Boy, A~ = A, =0, and p „ is the magnetic momentum operator of species A.

Hereafter our notations are as follows: A, B,C, . . . designate different plasma species; p, v=x,y, z are the Cartesian
indices. The matrix in the vector space o (co) [with the elements cr&„(co) from Eq. (3.2) where the summation over the
particle species is to be carried out] is called the conductivity tensor; the matrix P(co} in the species and vector space
[with the elements o "„(co)]is termed the conductivity matrix.

In Eq. (3.3}, [P,S]=PS M is th—e commutator of the Heisenberg operators R and S, the angular brackets ( )
denote averaging over the Hamiltonian

f dr V+ A(r) %'z(r) V—
2m A C

EZA 8
A(r) %„(r)

C

ZAZBe+ g fdrdr %tz(r)%ts(r ) +z(r)+z(r ) —g fdr +tz(r)p, „BO+z(r) .
A, B

(3.5)

The dielectric tensor employed in Fresnel's equations
of Sec. II is connected with the conductivity tensor by
the well-known relation

e„„(z)=5„„+ o„„(z) .4mi
(3.6)

z

The Green function G„"„(z)from Eq. (3.3) is analytic
in the upper complex half-plane. On the imaginary axis
at frequencies z=0„=2mnik&T (n =0, 1, . . .; T being
the temperature} it coincides with the Matsubara version
of Green's temperature function. There exists a well ela-
borated field perturbation theory for the temperature
Green's function [10] bounded, by its very nature, to
weakly coupled plasmas.

In this paper we suggest an alternative approach to the
determination of the Green's function G„"„(z)applicable
to strongly coupled plasmas. It is based on exact rela-
tions and sum rules, and uses the matrix version of the
Nevanlinna formula from the classical theory of mo-
ments.

Earlier we applied the approach based on exact rela-
tions and sum rules to the investigation of the conductivi-
ty tensor only. The longitudinal and transverse conduc-
tivity of strongly coupled unmagnetized plasmas were
studied in [11]and [12], respectively. The results of ap-
proach [11]were used to calculate the dynamical charac-
teristics of three-dimensional [13) and two-dimensional
[14] one-component plasmas (OCP's), binary ionic mix-

tures (BIM's) [15], and two-component plasmas (TCP's)
[16).

The dynamical properties of strongly coupled plasmas
have also been investigated within the quasilocalized
charges model [17] and the mean Seld theory (dynamical
[18] and static [19)},and the approach based on the rep-
resentation of the Green's function as continued fractions
[20], but the implementation of the classical method of
moments [13] proved to produce the best overall agree-
ment with the OCP molecular dynamics (MD) data [21].
In the case of multicomponent plasmas, however, the
agreement of results based on the application of the
method of moments to the conductivity tensor [15,16]
with the corresponding MD data [22] is less satisfactory.

A first step in the investigation of the dielectric tensor
of strongly coupled magnetized plasmas was made else-
where [6].

The aim of this section is to extend the results of Refs.
[11]and [6] to the investigation of the conductivity ma-
trix of magnetized multicomponent plasmas. The matrix
generalization of the classical theory of moments will be
applied to express the conductivity matrix in terms of
static correlations.

In contrast to the earlier approach [11—16], where only
the frequency moments of the conductivity tensor were
considered, here the contributions of each of the plasma
species are taken into account. This should result in a
better description of multicomponent plasmas. In the
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case of OCP's both approaches coincide.
One of the authors (J.O.) demonstrated recently [23]

that the inclusion of transverse photons into the system
Hamiltonian (first suggested by Kalman and Genga [24])
needs a careful application of the theory of moments in
order to avoid physically incorrect conclusions. There-
fore in Eq. (3.5) we have omitted contributions due to the
transverse photons, which were employed in our recent
papers [12,14].

Consider the frequency moments of the non-negative
Hermitian part of the conductivity matrix
oH(co)=o„" (co)+(o „„"(co)}(A,being the complex conju-
gate of the complex number A.),

M„=f co"o H(co)den, n =0, 1,2, 3 . (3.7)

On the basis of Kubo linear response theory, one obtains

O i 0

M =M'/2(~2+Q 2)Mol/2,

M =M' ( +coQ +Q co)M

where

(~1)„",=1~H „5"D„,, D„,= [[BoXe„]Xe„]i= 1
1p HA p p

e being the unit vector in direction v, and

Z, n,
(Q )„"„=co~Ac@ B g' " S„B(q)5 — S„c(q)5"

qc 9' Zing

Here the prime at the summation sign indicates that
q%0, SAB(q)=(nAnB V ) '(n "n --) is the partial static
structure factor of particles A and B, V is the plasma
volume, and n-" is the Fourier transform of the operator

q
of number densi~t of particles A.

Note that detQ =0.
It can be shown that higher order frequency moments

M„and n &4 diverge [11,25].
The matrix form of the Nevanlinna formula from the

classical theory of moments [26—28] expresses the con-
ductivity matrix P(z) [satisfying the sum rules Eqs. (3.8)]
via'the matrix function q(z) =7(z)Q, V(z) being analyti-
cal in the upper complex half-plane and there having a
positive definite anti-Hermitian part. In addition, the
function V(z ) should satisfy the limiting condition
lim, „(r(z)jz )=0 with the Hermitian part
liin, „V~=0 (0 being the zero matrix).

This matrix version of the Nevanlinna formula is given
by (see Appendix B)

o(z)= f de= —Ml'1 A(z)[8(z)] 'Mo
1Tl —cc cO Z 7T

(3.9)

where

3 (z) =zI+q(z),
a(z) =z'I zB, —Q'+—(zI ~, )q(z),

(3.10)

ii)AB
(

i)AB
(

i)AB ( i)AB

(qfr)AB(qadi)AB(qlt)AB(qadi)AB0

(3.11)

The prime at the matrix component designates that of the
matrix transformed in the new system of coordinates.

Keeping this in mind, one now regards the matrices
o'+(co) and 0 ~~(co) in the particle space with the elements

(
—

)
AB —

( AB+ AB)~

(
— )AB AB

II zz

(3.12)

With the analogous definitions for the matrices A, B,
Mo „q„co,„and Q (u=+,

II ), one finds from Eq. (3.9)
(T" =5" being the unit matrix in the particle space)

I being the unit matrix.
Equation (3.9) is the most general expression for the

analytical in the upper complex half-plane matrix func-
tion o (z) satisfying the sum rules Eqs. (3.8).

Due to the Onsager principle, within the system of
coordinates with the z axis parallel to the external mag-
netic field, the dielectric tensor (and the conductivity ten-
sor) has the form (2.18). This is possible only if in this
system of coordinates the function q(z) verifies

(- )
AB 1 y (M 1/2

) AC( J )CD((g )
—1)DE(M1/2 )EB

C, D, E

'" "y(z5"'+q+"')([z21 za, + —Q2++z—q+ —m, +q+] ')",
7T

(y )AB 1 yc D g (Ml/2)Ac( J )cD((J1 )
—1)DE(M1/2)EB

II 4~ » 0 II II II o II

(3.13a)

'" "X(z5"'+qii')(["i—Qii+zqii]
'

C

(3.13b)
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For the sake of simplicity we now examine a fully ion-
ized two-component plasma (TCP) consisting of electrons
wIth number density n„and ions with charges Ze and
number density n;. Due to the neutrality condition,
Zn;=n, . In the case of the TCP the matrices 0
(a=+,

~~
) simplify, and one has

magnetic field], one obtains

o «(z) =(o «)"+2(cr«)"+(o+)"
~ 2
l COp

z [z+ Spq«(z) ],4~B+
(3.19a)

~P, A~P B j.& (+JJ } ~p, A~PBL, JJ

2 AB 2 AB

with

k2
Li =

—,
' g S„(k), LJJ= g S„(k)

g~p k k%0

(3.14)

(3.15)

leap e{Z+MH i }(y«)"= ' ' [z+Spq«] —(o+)",

S„(k) being the partial electron-ion static structure fac-
tor, and ki (and kJJ) the projection of the vector k on the
direction perpendicular (parallel) to the external magnet-
ic field.

From Eq. (3.13a), for the transverse (with respect to
the external magnetic field} part of the conductivity ma-
trix (taking into account that detq«JJJJ=0), one now ob-
tains

(z) =(a JJ} +2(o JJ) +(ir

l COp

z[z+SpqJJ(z)] .
4~BII

(3.19b)

There is no phenomenological choice for the matrix
function q(z) which would give the unique conductivity
tensor &(z). As a first approximation, however, one can
set q(z} equal to its static value q{z)=q(0). The constant
matrix q(0) can be obtained from the components of the
static conductivity tensor o «o = ir «(co =0) and
o

JJ

o=0 JJ(co =0) only, since z =0 is a singular point for the
conductivity matrix, but a regular one for the conductivi-
ty tensor of a multicomponent plasma.

From Eqs. (3.18a) and (3.19a) there follows the ex-
istence of nonvanishing static values e+ p only if the fol-
lowing conditions are satisfied:

l(0«)"=(cr«)"= LjcoP, coP, (z+Q«),
7TZ

l'COp, (z+COH e )(0«)"= ' ' [z+Spq«] —(o«)" .
4n.Bp

(3.16a)
AH, coH;Spq«(oi=O) Licopg—«(co=0)=0 . (3.20)

Further introducing the notations ih«=Spq«(co=0) we
obtain the following expressions for the conductivity ten-
sor components 0 «(z }:

For the longitudinal part of the conductivity, from Eq.
(3.13b) we obtain

l COp eZ"
[z+SPqJJ] —(~JJ)

II

(3.16b)

lcr«(z)= co (z+ih«)

x [(z+o)H, )(z+o)H; )

Lj oip+ih «—[zk(coH, + AH; }]}

(3.21a)

ltd iZ
(0

JJ

' [z+Sp
II

Here the following notations are used:

spq =(q )"+(q )", (a=+, II),

g (- )ee P&e
(
— )ei (

— )ii P&~
(
— )ie

p, l COp e

(3.17)

B« = (z +coH, )(z+coH; )(z +Spq «) LJ cop (z+ Q—«),
(3.18a)

BJJ =z (z+SpqJJ LJJcoP(z+Q— (3.18b)

coP =cd, +cd, . The latter equation in (3.17) results from
the symmetry property of the conductivity matrix
(ir )"=(ir )"(iz=+, ()).

From Eqs. (3.16a}, (3.16b}, and (3.2}, for the three in-
dependent components of the conductivity tensor
o«(z)=cr„'„(z} io' (z) and aJJ(z)=o' (z) [o„' (z) are
the components of the conductivity tensor in the system
of coordinates with the z axis parallel to the external

~,', A&A(Bo)
~«, 0

A =e,i 1+~H, A&A(Bo)
'

(3.22}

A=e, s

Np A%A(BO)

4m

In the first order of the ratio Qm, im; the static conduc-
tivity is given by the electron conductivity only. Omit-
ting the ion terms in Eqs. (3.22} and comparing with Eqs.
(3.21a) and (3.21b) (with z =0), within the same accuracy

In a similar way, for the longitudinal (with respect to the
external magnetic field) component of the conductivity
tensor [QJJ(co=0}=0,iIi

JJ
=SpqJJ(co=0)], one obtains

co (z + ih
JJ

)

z (3.21b)4~ z Loi +ih z—
II p II

The "constants" h+ and hII are defined by the static
values of the conductivity components 0 + p and o

II
o. In

the simple impact approximation with the free path time
rA(Bo} for a particle of species A (depending generally
on the external magnetic field strength), the static values
of the conductivity components are given by
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one obtains

h+ —hi —(Lied& cdH ecdH; )r~(B0) Lied&'re(BO)

hler
=Lied ~, (BO),

(3.23)

ei(cd) = I—

COp

g(cd)=
N

c|(cd)= 1—

( cd+ ih i ) [cd +h i(i cd r, '
)]-

[[cd +hi(icd r, ')]——
cdH( c+dih )i]

cdH, (cd+ih i )

[[cd +hi(icd r, '—)] cdH, (—cd+ihi) ]

cop co+ lA
II

cd +h~i(icd —~, ') (3.24)

Equation (3.24) together with Eqs. (2.28) are the main
results of our paper. They describe the reflectivity
coeacient of a magnetized strongly coupled plasma with
a magnetic field perpendicular to the plasma surface and
in the case of normal incidence of the electromagnetic ra-
diation.

In the case of inclined incidence (the magnetic field be-
ing perpendicular to the surface of the plasma) one uses
Eqs. (2.15) and (A3) instead of Eqs. (2.28).

If, in addition, the magnetic field is not normal to the
plasma surface, the dielectric tensor should be obtained
from (2.18) and (3.24) by an orthogonal transformation to
the initial coordinate system (with the z axis normal to
the plasina surface). After that one uses Eqs. (2.15) and
(2.16) to obtain the reflectivity coefficients.

The quality of our approximation [Eqs. (3.24)] for the
dielectric tensor is limited by our knowledge of the quan-
tities Lx II' an

Parameters L~ and LII can be expressed by standard
methods of quantum field theory within the random
phase approximation (RPA) in terms of the polarization
operators II, and II; of electrons and ions. The electron-
ion structure factor S„.(k) is given by [10]

4~e kii T 11,(k)II;(k)
S„.(lc) =

Vn, k +4me [II,(k)+Zil;(k)]
(3.25)

where we took into account that co&; ((co in strongly
coupled plasmas for all available experimental values of
the magnetic field strength.

Equations (3.21) together with Eqs. (3.23) are the sim-
plest approximations giving an analytical expression in
the upper half-plane for the conductivity tensor o„,(z),
and interpolating between the static value of the conduc-
tivity tensor q„,(z =0) and the high-frequency sum rules
of the conductivity matrix c7„"„(z)[Eqs. (3.8)].

For 80=0, ~H, =~H; =0, and one obtains that the
conductivity tensor is described by the scalar function

o(z)=cree=0~~(z) and that cr(z) coincides with the corre-
sponding result in [11].

Equations (3.21) and (3.5) ensure that for the com-
ponents of the dielectric tensor in the system of coordi-
nates with the z axis parallel to the external magnetic
field [see Eq. (2.18)], and within the first order of the ra-
tio Qm, /m;, we have

In particular,

0' ( cd ((1e cd& )

2

, 1—
4~NB, , L

(L ' L' )+-
1eNp

(3.27}

2
Ct)p

0' (cd )%reed& )—
4m'~,

'1+ + ~ ~ ~

Knowing the relaxation time ~„ the relations in Eqs.
(3.27) define the parameters Li and L~~ measuring the
Hall and longitudinal conductivities at high and low fre-
quencies of the perturbing electric field.

The relaxation time r, (BO) (or the static conductivity
tensor) is obtained by direct measurement. They can also
be calculated by a method described in [31].

IV. CONCLUSION

Two closely related problems are resolved in this pa-
per. The reflectivity and other ellipsometric characteris-
tics of cold magnetized plasmas (including the case of
magnetic field inclined with respect to the plasma sur-
face) are expressed in terms of the dielectric tensor. Vari-
ous limiting cases are considered.

The dielectric tensor is further constructed within the
method of moments to satisfy all known exact relations
and sum rules. The matrix generalization of the Nevan-
linna formula is employed to include into consideration
multicomponent plasmas. The interactions between
different plasma species (like electron-electron,
ion-ion, and electron-ion interactions in the case of a
two-component plasma) are included on an equal basis.

Notice that in the case of a one-component plasma the
application of the Nevanlinna formula is virtually
equivalent to the introduction of the dynamic, or static
local field correction (picked up to satisfy the sum rules)
within the mean field theory.

To our knowledge in the two-component plasma there
is no easy option for inclusion of electron-ion field correc-

Equation (3.25) together with (3.15) define the parameters
L~ and LII in terms of the electron and ion polarization
operators. The expression of the polarization operators
within the RPA is well known [29].

The parameters L ~ and L
II

can also be investigated ex-
perimentally using the laser or the electron beam scatter-
ing experiments [30], or directly from the analysis of the
asymptotic behavior of the Hall coefFicient.

Neglecting the ion cyclotron frequency, it follows from
Eqs. (3.21) and (3.23) that in the system of coordinates
with the z axis parallel to the external magnetic field the
parameter

o,', (cd)o „'„(cd)

0„' (cd)

cL)p cl) + l 7 e L
II

cop co L J cop + l co Tp L J Q)p

H, ~+l~,L,~p ~ —LII~p+l~~, LII~p

(3.26)
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tions to the RPA polarization operators within the mean
field approach. On the other hand, the method of mo-
ments permits us to include electron-ion correlations as
well as electron-electron and ion-ion correlations.

The solution of the two problems considered in the pa-
per constitutes a basis for future experiments on
reflection of laser radiation by magnetized plasmas.

APPENDIX A

To consider the B0~0 transition one should know the
behavior of solutions of the Fresnel's equations (2.8) in
this limiting case. Though the latter are quite complicat-
ed, one can notice that, since generally the matrix f(cp) is
determined by the orthogonal transformation (which cer-
tainly is independent of the field}, it suffices to carry out
the proof of existence of the Bp~0 limit for a matrix of
the type given by Eq. (2.18). Thus it will be valid in a
general case as well.

1

2

E,)I+ E,i
k„ 2Kp

6))

(Ei(«pei —k„)—«~ )
II

1/2

(Al)

In this special case the coefficients c; (i=2, 3} of Eq.
(2.17) are

c;=[Ei—(k&'&) /K~p]/ig . (A2)

Further, upon carrying out all necessary transforma-
tions for the quantities determining the reflection
coefBcient, one finds

Hence in Eq. (2.8) onecan set E„,=E =E = —E, =O,
then the solution k, ' (i =2,3) is found immediately:

(k')=EK—k E, +Bj
z F-l p

II

R 22

g CIIKpc2C3cosf p
2 5

f(k +k )

g 6yKpc 2c3cos(qpp
2 5

f(k &2&+k&3&)2

k(p)+ z z p i. x
z

k +kz z

(2) (3) 2
( ) kz kz +Kpfg

k +kz z

Kpe (k& )' —(k ' )' K E —k'

f (k') —(k )' k +k'
—k„— «pE(( (k, ) —(k, ) «E —k

f (k&3&)2—(k&2&)2

lg g (0) 3 2 3R i2
—2 f ~z E((«p &2) (3)k, +k,

k&P)
z

R2i ——2igKp &2) (3)k, +k,

k, +k,
Kpe((

coslpp

(2& 3 (3) 3 2 2
(P) P i " (P) &2) (3)

(k&3 —(k(2))2 z k(2)+k(3) z z zk k +k k
z z z z

(A3)

(k (i ) )2 EK2 k 2+/2E+ (K2E k2)1/2K(g

Fp

ik„
c, = i)(,ki(K E) ' (K E —k )' i=2, 3 .

2EKpg

(A5)

(A6)

Hence the product c2C3 for small values of the magnetic
field behaves like

(c2c3)=1—K„/(Kpe)+O(8p) . (A7)

where k, ' and c; (i=2,3) are obtained from Eqs. (Al)
and (A2).

Assume now that the following limiting relations are
valid for the dielectric tensor components (at least they
are applicable to ideal plasmas):

E(((Bp~0)—E Ei(Bp~0) —E+6 (A4)

where 5(Bp~O) tends to zero as Bp, and g(Bp—+0) as Bp.
In Eq. (A4} E is the isotropic plasma permeability, and
only leading terms of the Bp—+0 expansion are pointed
out. Then from Eqs. (Al) and (A2) it follows that, when
Bp—+0,

Now, utilizing Eqs. (A5) and (A7), it is easy to carry
out the transition Bp ~0 in formulas (A3}, also taking
into account that

lim k&2&= liin k & & =k ———(«2E —k2)ii2
z ~ ~ z z 0 xB~P B~P

In this manner one derives well-known Fresnel's formulas
[32,2].

APPENDIX B

Suppose that the non-negative Hermitian matrix func-
tion o H(co) is uniformly continuous and possesses
sufficient smoothness (e.g., that it satisfies the Lipshitz
condition), and that additionally

M, =f coo~(co)de(00, =0, 1,2, 3 .

Inequalities (B1) are substantiated by Eqs. (3.8).
Due to the Riesz-Herglotz theorem [26] the matrix

function o(z), being analytical in the upper complex
half-plane Imz )0 and there having a non-negative
definite Hermitian part o H(z }is representable as
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1 aH(co }
o (z) =ao —i a,z+ dco,

7Tl —oo CO Z
(82)

where ao has a non-negative Hermitian part, and a, is a
non-negative Hermitian matrix.

The constant matrices ao and n1 are to be determined
from the asymptotic behavior of the matrix function
o(co} at ~co~~ac. They describe a possible polarization
of atoms and ions in nonhydrogen plasmas at

~
co

~
~ ~ .

The *'in6nite" value of the frequency must be understood
as a value much greater than the plasma frequency but
much less than the excitation frequency of atoms and
ions. Since only the long-wavelength limiting case is in-

vestigated, the plasma species can be regarded as point-
like particles, and hence the polarizability at high fre-
quencies decreases as ~ and both ao=a, =0. Thus the
conductivity matrix satis6es the Kramers-Kronig relation

I
zI

k 1I

0

Mo

0

0

0 0

0 0
bk

Mk-2 Mk-3 Mo 0

'V

&k=

Mk

Mk+1

k —1
yk = (Mk &+ZMk 2+ ' ' +Z Mp)

(86)

o(z)= . I dco .
Kl —oo Ct) Z

(83)

V'

bk

z I (84)

Qo(z) =0,
Qk(z) = —(M2k Bk Sk,Bk )

' —( Bk Sk»I )—

The problem is to establish the matrix function P(z)
satisfying the sum rules (3.8), and specifying the represen-
tation (83). The explicit expression can be obtained by
the Nevanlinna-type formula of the matrix problem of
moments [28].

The latter one makes it possible to construct the matrix
function P(z) (being analytical in the upper complex
half-plane and there having a non-negative definite Her-
mitian part) in terms of its first 2v+ 1 ( v=0, 1, . . . ) fre-

quency moments.
Denote by [Pk(co)} and [Qk(co)}, k =0, 1, . . . , v, the

system of orthogonal matrix polynomials with the weight
function o H(co). The polynomials [Pk(co) } (and

[Qk(co) }) are defined by the Srst 2v+1 moments as fol-

lows [28]:

Po(z)=M

Pk(z)=(M2t, Bk Sk iBk) —'
( Bk Sk 'i, I)—

In formulas (84)—(86), (A, B) is the block-matrix line

and (z ) the block-matrix column, where A and B are, in
V'

general, block matrices as well; A * is the Hermitian con-
jugate of A. Note that the matrices in (84)—(86) are gen-
erally not commutable.

Let R be the set of all non-negative definite matrix
functions of limited variation disco) such that

j co

disco)

—I coVJH(co)dco —M~

r =0, 1, . . . , 2v .

Kovalishina proved [28] that there is a univalent
correspondence between the R, matrix functions and the
matrix functions t „(z} being analytical in the upper com-
plex half-plane, and there having a positive anti-
Hermitian part such that the matrix z t„(z) for z
converges to zero.

This correspondence is set up by the generalization of
the Nevanlinna formula [26-28]:

= a, z — zt, z

&& [y „(z)—5„(z )t, (z) ]

and

'V

~k-1=

X
Ck —1

3'k

Mo M1 . . . Mk

M1 M2 - Mk

Mk —1 Mk M 2k —2

(85)
In particular, among the functions t„(z) there (for a given
v) is only one matrix function T,(z) satisfying the equali-

ty

d coaH (co)j = [a„(z) /3 (z) T (z)]—
67 Z

X[y (z) —5 (z)T,,(z)]

The matrices a, P, y„and 5„are defined by the polyno-
mials P„(z) and Qk(z) as follows:

'a (z} P (z)
'

y (z) 5,(z)

Qk*(z )Pk(0) Qk*(z )Qk(0)

0 I k~p Pk (z)Pk(0) —PI—*, (z)Qk(0)
(810)
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Here z is the complex conjugate of z.
In our case v= 1; and from Eqs. (3.8), (84)—(86), and

(810}one obtains

matrix only. In order to obtain a representation for our
case as well, one rewrites Eq. (812) in the following
manner:

a (z}=I—zMO 0 Mo toi,&i z — z

P (z}=zM' 0 M

y, (z)=—Mo z+z(zI —co&)Mo 0 Mp co&,

5,(z}=I z—(zI co—, }Me ' 0 Mo
'

(811)

P(z) = M—' [zI+7(z)Q 2]

X[z I zP—o, —0 +(zI a),—)r(z)0 ] 'Mo

(813}

X [y,(z) —5,(z)T, (z)] (812}

Note, however, that in our case the matrix 0 =(0 }
—2 2 —1

does not exist, since detQ =0. This is due to the fact
that representation (89) [with the particular case (812)] is

given for strongly positive definite sequences of frequency
moments [M, I, r=0, 1, . . . , 2v only, i.e., the sequences
for which for all k (v the matrices (M2k Bk Sk,—Bk }
are strongly positive definite. In our case for k=1 we
define (Mz B&Su 'B—, =Me 0 Mu ) a non-negative

Using Eq. (89} for v=1 and taking into account the
Kramers-Kronig relation Eq. (83), one arrives at the fol-

lowing representation of the conductivity matrix:

P(z)= ——[a,(z) —P, (z }F,(z)]

where we introduced the matrix function
V(z}=—[Mo T&(z}M0 —

t0&] ', which is analytical in
the upper complex half-plane and there having a positive
definite anti-Hermitian part such that in the upper half-
plane the matrix z Qrz} for z ~ oo converges to zero.

Taking into account that the matrices Mo and co, are
commutable, one easily proves that for all positive
definite matrices 0 2 the right-hand side of Eqs. (812}and
(813}coincide. The right-hand side of Eq. (813), howev-
er, also exists for non-negative matrices with detQ =0.
Therefore, Eq. (813) is the general solution for the con-
ductivity matrix satisfying the frequency moments [M„],
r =0, 1,2. If, in addition, the Hermitian part of the ma-
trix Qrz} for z-+e& converges to zero, the conductivity
matrix defined by Eq. (813) also satisfies the frequency
moment M3.
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