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We consider a modification of the Doi-Edwards [The Theory of Polymer Dynamics (Clarendon,
Oxford, 1986)] and Curtiss-Bird [Dynamics of Polymeric Liquids, Vol. 9, Kinetic Theory (Wiley
Interscience, New York, 1987), 2nd ed.] models for polymer melts in which the effect of constraint
release or partially anisotropic Brownian motion is introduced through a stochastic force in the time-
evolution equation for the orientation of inner chain segments. A thermodynamically consistent
expression for the stress tensor is proposed. In the linear viscoelastic regime, the results for the
moduh are very sinai&ar to those predicted by double reptation. In the novHinear viscoelastic regime,
the model describes the rheological behavior in an objective manner. The shear-rate dependence
of the viscosity obtained from the mocMed reptation model is more realistic than the Doi-Edwards
prediction.

PACS number(s): 61.25.Hq, 47.50.+d, 61.41.+e, 62.10.+s

I. INTRODUCTION

Concentrated polymer solutions and polymer melts
constitute extremely complex many-particle systems.
For that reason, it is unquestionably important to make
both ingenious and far-reaching ass»mptions in describ-
ing the dynamics of polymers in such undiluted systems.
A widely and successfully applied class of molecular mod-
els for the polymer dynamics in concentrated solutions
and melts relies on the notion of reptational motion [1].
The first reptation theory for the rheology of undiluted
polymers was developed by Doi and Edwards [2]. The
Doi-Edwards model is based on the assumption that each
polymer in a highly entangled system moves ("reptates")
in a tube formed by other polymers. A systematic kinetic
theory for polymer melts has been developed by Curtiss
and Bird [3]. In their derivation of a difFusion equation for
the polymer dynamics, Curtiss and Bird use anisotropic
friction tensors to describe the hindrance of sideway mo-
tions of the polymers in concentrated systems. These
anisotropic friction tensors express essentially the same
physical idea as the constraining tube in the Doi-Edwards
model.

In this paper, we introduce a modified reptation model
which accounts for the efFect of constraint release (Doi-
Edwards picture) or partially anisotropic Brownian mo-
tion (Curtiss-Bird picture). The formulation of the model
is based exclusively on simplicity and various consistency
criteria (fluctuation-dissipation theorem, material objec-
tivity, thermodynamic consistency). While the proposed
dynamics has been considered before, the expression for
the stress tensor deviates from that previously suggested.
After introducing the model and discussing the basic as-
sumptions we derive a memory-integral expression for
the stress tensor &om which we obtain the linear vis-
coelastic behavior and the zero-shear-rate viscosity. The
relaxation modulus is very similar to the one obtained
from the idea of double reptation so that the modified

model may be regarded as an extension of double rep-
tation into the regime of nonlinear viscoelasticity. As
an example of a nonlinear viscoelastic property, we dis-
cuss high-precision simulation results for the shear-rate-
dependent viscosity and its asymptotic behavior at high
shear rates. Furthermore, it is shown how polydisperse
melts can be modeled.

II. FORMULATION OF THE MODEL

The variables used in the Doi-Edwards and Curtiss-
Bird models to characterize polymer configurations are a
unit vector U and a real number S in the interval [0, 1].
The unit vector U describes the direction of the polymer
chain at the position S within the chain, where the la-
bel S varies &om 0 to 1 in going from one chain end to
the other. The reptation dynamics is usually formulated
in terms of a difFusion equation for the configurational
distribution function. We here rely on a stochastic for-
mulation of reptation dynamics in which U and S are
stochastic processes, where these time-dependent random
variables can be determined from stochastic difFerential
equations supplemented by suitable initial and boundary
conditions [4,5].

In the following, a modified version of the Doi-Edwards
and Curtiss-Bird models is defined through modified
time-evolution equations for Uq and Sq. The simplest
modification of the traditional reptation models is ob-
tained by adding a stochastic term to the usually deter-
ministic difFerential equation for Uq. Then, the process
U satisfies the stochastic difFerential equation

dUg ——(b —UgU)) sc(t) . Ugdt+ dWg
(3A)'~2

3A
U, dt,
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dSg —— dW,', (2)

where W' is another Wiener process which is independent
of R'.

The only coupling between the two processes U and
S arises through the boundary conditions. Whenever
the process S reaches one of the boundaries of its range,
U no longer follows the How field but rather is chosen
as a randomly oriented unit vector; 0 and 1 constitute

where m(t) is the transposed velocity-gradient tensor, A is
a characteristic time constant, namely the so-called dis-
engagement or reptation time, e is a real number related
to the reptation coefficient e' of Ref. [3], and Wi repre-
sents a three-dimensional Wiener process. As a Gaussian
stochastic process, the Wiener process is completely char-
acterized by its first and second moments, (Wi) = 0,
(WiWi ) = min(t, t') 6 [6,7]. The term m(t) . Ui in
Eq. (1), which occurs also in the traditional reptation
models, expresses the fact that the vector Uq tends to
follow the Bow field. A randomizing effect, which is ex-
pressed in terms of the Wiener process, is superimposed.
The transverse projection operator (6 —UiUi) is intro-
duced such that the dynamics preserves the property of
being a unit vector. Since the stochastic diHerential equa-
tion (1) involves multiplicative noise (i.e., dWi is multi-
plied by a configuration-dependent term), its interpreta-
tion is delicate. We here adopt the Ito interpretation of
Eq. (1) [6,7]. In Ito calculus, the additional deterministic
contribution in the second line of Eq. (1) is necessary in
order to preserve the length of Uq.

Equation (1) is the time-evolution equation for a rigid
dumbbell with time constant A'~ = A/(m2e2) [6]. The
usual deterministic diH'erential equation for U is recov-
ered for e = 0. The remaining dynamical equations
are chosen exactly as in the original Doi-Edwards and
Curtiss-Bird models. In other words, the process S is
the solution of the following stochastic diH'erential equa-
tion,

relecting boundaries for the process S.
A physical interpretation of the dynamics of U and

S has been offered in previous papers [4,5]. A better
understanding of the mathematical implications of the
stochastic differential equations of motion can be gained
through time-discretized approximations which are the
starting point of siinulation algorithms [6] (see below).
On the level of diH'usion equations, the idea of introduc-
ing noise into the time-evolution equation for U has been
suggested previously. Indeed, after a suitable redefini-
tion of parameters, the stochastic diH'erential equations
formulated here are equivalent to the diHusion equation
(19.3-26) of Ref. [3]. In the spirit of the Curtiss-Bird
model, the new term involving e results &om a superpo-
sition of the equilibration-in-momentum-space and rep-
tation assumptions for the Brownian forces on a chain in
a concentrated system. In the spirit of the Doi-Edwards
model, this term may be regarded as a constraint re-
lease mechanism which allows configurational relaxation
to take place not only at the chain ends (for other de-
scriptions of constraint release, see Ref. [8] and the ref-
erences given on p. 238 and p. 282 of Ref. [2]). Since
the release of constraints occurs through the reptational
motion of surrounding chains forming a tube, and hence
occurs on the same time scale as the reptation of a probe
chain, the parameter e should be a number of order one.
In particular, we assume e to be independent of molec-
ular weight. For polymers which are long enough to be
massively entangled we then expect ~ to be a universal
number.

In the absence of Bow, Uq and S~ are uniform random
variables on the unit sphere and on the interval [0, 1], re-
spectively. In other words, Uq and S& are distributed ac-
cording to the Boltzmann distribution; this remark may
be regarded as a verification of the Buctuation-dissipation
theorem.

While the reptation dynamics formulated above has
previously been introduced in an equivalent form in
Ref. [3], the stress tensor expression considered here,

1
~(&) = N««k«T —8 —(U~Uc) —~) «(&): (Sc(1—S~) UcU~U~U~) —P& «(t): (U~U) UiU~) ),3

deviates significantly from the one of Ref. [3]. In Eq. (3),
N is the number of segments in each polymer molecule,
n„ is the number density of polymers, k~ is Boltzmann's
constant, and T is the absolute temperature. Further-
more, ~ is the link tension coeKcient of the Curtiss-Bird
model (0 & e & 1) and e is another dimensionless param-
eter.

In Ref. [3] the anisotropic term 2Nn„kgb T n e-
x (Si(l—S&) Ui Uq) appears in the stress tensor instead of
the term above involving R. Such a contribution, however,
is inconsistent with a very general, systematic formula-
tion of the time-evolution equations for nonequilibrium
systems developed by Jongschaap [9,10] (this problem

does not occur for the original Curtiss-Bird model for
which c = 0). On the'other hand, additional terms pro-
portional to rc(t) are not ruled out by Jongschaap's for-
malism. Although the validity of Jongschaap's formalism

may be questioned we here adopt it as a thermodynamic
consistency criterion. We hence keep the term propor-
tional to the link tension coeKcient e of the Curtiss-Bird
model, and we add a simple new term proportional to
8 such that for i = 2/(m'2e2) the stress tensor contribu-
tion of rigid dumbbells with dynamics given by Eq. (1) is
recovered. Note that stress tensor contributions propor-
tional to m(t) lead to a violation of the stress-optical law,
and that the coefBcients e and 8 should hence be small.



50 MODIFIED REPTATION MODEL 4893

For the link-tension coefficient e, dynamic viscosity mea-
surements indeed suggest that e should be small [3], and
it has been argued theoretically that e should be of the
order of 1/N [5]. Experimental or theoretical estimates of
the small paraxneter R still need to be determined. Since
the presence of the noise term in Eq. (1) is expected to
reduce the decay of the viscosity with shear rate and to
avoid the large recoil effects of the Doi-Edwards model,

I

small values of e and R should be sufficient for predicting
realistic xnaterial behavior.

III. LINEAR VISCOELASTICITY

We next formulate the stress tensor in the form of a
memory-integral expression,

1 t I'(i .a )
w(t) = Nn„RENT —8 — dt' y(t —t') UqUq + ev(t —t') + ep(t —t') A~(t): U&UqU&Uq

3 tl
(4)

where

(t)
8 ) — t/A

n=1
n odd

(5)

n=1
n odd

(6)

G(t) = Nn~k&TA —(e + 6F)b(t) + —v(t) e '
45 10

(7)

The relaxation times following from Eq. (7) are of the
form

and ( )~~ denotes an average for rigid dumbbells which
were at equilibrium for times previous to t' and have been
exposed to the How after t' [the time constant for these
dumbbells is A'~ = A/(z2e2)]. Note that the expression
(4) is a rather formal result because the evaluation of the
rigid dumbbell averages ( )~, is nontrivial. The impor-
tance of rigid dumbbell results for a modified reptation
model with the same dynaxnics as considered here has
previously been emphasized in Ref. [3].

Equation (4) is a convenient starting point for evalu-
ating the relaxation modulus G(t). Due to the presence
of the prefactor tc(t), the fourth moments of Uq can be
replaced by their equilibrium values, and the linear vis-
coelastic limit of the second moments of rigid dumbbells
can be found in Ref. [3] (from the results of Sec. 14.5
of Ref. [3], even the second-order memory-integral ex-
pansion can be constructed in a rigorous manner). One
obtains for the relaxation modulus

I

taneous contribution to the modulus G(t) of the original
Doi-Edwards model obtained for e = R = 0 is multiplied
by G(t)/G(0). A similar additional factor is here given by
the time dependence of the relaxation modulus for rigid
duxnbbells with a comparable relaxation time, which is
exp( —e2z 2t/A). The success of double reptation suggests
that a more realistic linear viscoelastic behavior should
also result for the present modification of the original
reptation models. While the idea of double reptation is
limited to linear viscoelasticity, the model introduced in
this paper allows the prediction of the rheological behav-
ior also in the nonlinear regime.

The success of the double reptation idea is truly spec-
tacular when it is applied to polydisperse melts [8]. In
that case, the time constants A in Eqs. (1) and (2) should
be sampled independently according to suitable probabil-
ity distributions. The time constant A of the surrounding
chains occurring in Eq. (1) must be sampled according
to the mass fraction of chains with the corresponding
molecular weight [see Eqs. (19.3-25) of Ref. [3] for this
correspondence between molecular weight and time con-
stant]. The time constant A of the reptating probe chain
in Eq. (2) must be selected randomly according to the
number &action of chains with the corresponding molec-
ular weight [notice that the selected molecular weight
of the probe chain enters through the factor N in the
stress tensor expression (3), too]. This simple procedure
results in a rather involved mixing rule for nonlinear rhe-
ological properties due to the coupling of the time con-
stants of molecules with different molecular weights in
the stochastic differential equations of motion. The mix-
ing rule given here differs crucially &om the one implied
by Eq. (19.3-26) of Ref. [3], which corresponds to having
equal time constants A in Eqs. (1) and (2).

1 + 2

n +e ' 1+~ x (8) IV. VISCOSITY FUNCTION

For increasing e, the first relaxation time becomes less
dominating, and the spectrum hence becomes more re-
alistic. Note that the expression (7) for the relaxation
modulus is closely related to the idea of double repta-
tion which accounts for the fact that a constraint im-
posed by a surrounding chain on a probe chain can be
removed by the reptational motion of either of the two
chains [8]. According to double reptation, the noninstan-

The nonlinear rheological behavior of the new model
suggested here satisfies the principle of xnaterial objectiv-
ity. This can be shown by analyzing the transformation
behavior of the equation of motion (1) and of the stress
tensor expression (3) under time-dependent rotations.

From the relaxation modulus (7) we obtain the zero-
shear-rate viscosity
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The simplest and most powerful method for inves-
tigating the modified reptation model proposed here
are stochastic simulation techniques. Such simula-
tions result from applying numerical integration schemes
to the stochastic difFerential equations of motion (1)
and (2) [4—6]. In the simplest simulation algorithm,
Uq+aq is constructed from Uq by adding sc(t) Uq &t +
ire[b, t/(3A)] ~ W to Uq, where W is a column vector
formed out of three independent Gaussian random num-
bers with xnean zero and variance unity; the result is then
normalized to unity in order to obtain Uq+~&. In the
limit Et ~ 0, this algorithxn reproduces the dynamics
described by the Ito stochastic difFerential equation (1)
[6]. Similarly, Sq+~s is obtained by adding (2/A) ~2 W'
to Sq, where R" is a further independent Gaussian ran-
dom number with mean zero and variance one. When
Sq+~q is not contained in [0, 1] it is retlected back into
this interval and, whenever such a reflection. happens,
Uz+~& is replaced by a random unit vector. In order to
obtain a higher-order algorithm one has to compensate
for unobserved reflections [4,5].

In Fig. 1, the viscosity of the modified reptation model
for e = 1, e = R = 0 obtained by high-precision simula-
tions as a function of dimensionless shear rate Aj is com-
pared to the corresponding result for the Doi-Edwards
model (e = e = e = 0). The fact that increasing e leads
to a smaller relaxation time Ai [see Eq. (8)] implies that,
for the modified model, deviations from the zero-shear-
rate viscosity appear only at higher dimensionless shear
rates Aj. In addition, the decay of the viscosity with
shear rate is slower for the modified model. While for
the Doi-Edwards model the asymptotic behavior of the
viscosity is given by il(j) oc p s~2, rigid-rod results imply
[11] g(j) oc j 4~s for the modified model. For the new
model, smaller values of e (or e) than usually assumed in
the Curtness-Bird model should hence prevent the viscos-
ity from decreasing more rapidly than j or, in other
words, prevent the shear stress from being a nonmono-
tonic function of shear rate.

V. SUMMARY
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FIG. 1. The normalized viscosity as a function of the di-
mensionless shear rate Aj for the Doi-Edwards model (dashed
hne) snd the modified reptstion model for s = 1, e = 8 = 0
(continuous line). At high shear rates, the asymptotic vis-

cosity curve for the new reptation model should possess the
slope —4/3 in the double logarithmic presentation; this slope
is indicated by the dotted line.

obtained by the double reptation idea. In the nonlinear
viscoelastic regime, which can easily be studied by com-
puter simulations, the decay of the viscosity with shear
rate is weakened and thus more realistic. In view of the
additional mechanism for orientational relaxation, which
acts not only at the chain ends, the modified model may
be expected to perform better than the original reptation
models when flows with strain reversal or recoil experi-
ments are considered. A route for incorporating polydis-
persity effects which leads to new mixing rules has been
described {in the linear viscoelastic regime, these mixing
rules are known to be very successful). In fact, the most
obvious deviations &om previous reptation theories re-
sult for polydisperse melts. In formulating the model, the
fluctuation-dissipation theorem, the principle of material
objectivity, and a thermodynamic consistency criterion
have been respected (the latter criterion is violated by a
previous reptation model with the same dynamics). A
more detailed discussion of the nonlinear viscoelastic be-
havior and mixing rules predicted by the modified repta-
tion model and a detailed comparison with experimental
results will be the subjects of forthcoming publications.

The modified reptation model obtained in this paper
by introducing a stochastic force on the dynamical equa-
tion for the orientation of inner chain segments and by
using a suitable stress tensor is more realistic than the
original reptation models. The linear viscoelastic behav-
ior of the new model is less dominated by a single relax-
ation tixne, which is a qualitative improvement, and the
quantitative improvement should be very similar to that
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