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Monte Carlo simulations show that dense systems of spherical particles with a short-ranged
attractive interaction can undergo a first-order transition from a dense to a more expanded solid
phase with the same structure. This phase transition is analogous to the liquid-vapor transition in
systems with longer-ranged attractive forces. In particular, the solid-solid transition terminates in
a critical point. Numerical simulations on a square-well model indicate that a solid-solid transition
will occur both in two and in three dimensions if the width of the attractive well is less than 770
of the hard-core diameter. For a hard-core Yukawa model, the transition occurs at a comparable
value of the width of the attractive well. We argue that the solid-solid phase transition should be
experimentally observable in mixtures of uncharged colloids and nonadsorbing polymers.

PACS number(s): 64.70.Kb, 61.20.Ja, 82.70.Dd

INTRODUCTION

Since the work of van der Waals, it is known that there
is no essential distinction between a liquid and a vapor:
above the critical temperature T„avapor can be com-
pressed continuously all the way to the freezing point.
But below T„afirst-order phase transition separates the
dilute fluid (vapor) from the dense fluid (liquid). Yet,
although the van der Waals theory becomes exact in the
limit of weak, long-ranged intermolecular interactions [1],
there is no fundamental reason why the liquid-vapor tran-
sition should occur in every atomic or molecular sub-
stance, nor is there any rule that forbids the existence
of more than one fluid-fluid transition. Whether a given
compound will have a liquid phase depends sensitively on
the range of the intermolecular potential: as this range is
decreased, the critical temperature approaches the triple-
point temperature and when T, drops below the lat-
ter, only a single stable fluid phase remains. This phe-
nomenon is well known in mixtures of spherical colloidal
particles and nonadsorbing polymer, where the range of
the attractive part of the efFective colloid-colloid inter-
action can be varied by changing the size of the poly-
mer [2—6]. Experiment, theory, and simulation all sug-
gest that when the width of the attractive well becomes
less than approximately one-third of the diameter of the
colloidal spheres, the colloidal "liquid" phase disappears.
In fact, there is numerical evidence that in a molecular
compound (Cap), the range of the intermolecular attrac-
tion may be suKciently short to suppress the liquid-vapor
transition [7,8].

In this paper, we consider what happens in colloidal
systems with a very short-ranged attraction, where the
liquid-vapor transition is absent. In Ref. [9] we presented
preliminary evidence that these systems may exhibit a
type of solid-solid transition that is in many ways rem-
iniscent of the liquid-vapor transition: in particular, (i)
the transition takes place between two phases that have

the same structure, (ii) the line of (firs-order) solid-solid
transitions ends in a critical point, and (iii) the transi-
tion depends strongly on the range of the intermolecular
attraction.

As a first approximation, we use the square-well poten-
tial to model short-ranged interactions in colloids. This
model, although simple, should provide an adequate de-
scription of a wide class of uncharged colloidal particles
with short-ranged attraction. The square-well model has
been the subject of many theoretical and simulation stud-
ies [10,11]. In particular, the molecular dynamics stud-
ies of Young and Alder [11] on the phase diagram of a
long-ranged square-well system already show the possi-
bility of a solid-solid phase transition. However, as the
authors of Ref. [11] correctly point out, the latter tran-
sition is an artifact of the square-well model and is not
expected to occur in any a real system. As we shall show
below, the occurrence of the solid-solid transition in sys-
tems with short-ranged potentials is not sensitive to the
precise form of the potential and is therefore more likely
to be experimentally observable. Additional evidence for
the insensitivity of the solid-solid transition to the precise
shape of the intermolecular potential comes Rom very re-
cent theoretical work by Tejero et aL [12]. These authors
predict the existence of a solid-solid transition in yet an-
other model of particles with a short-ranged attractive
potential.

An interesting question that we address in the present
paper is whether or not the solid-solid transition exists
in other than three dimensions. It is well known that
systems with a short-ranged attraction cannot exhibit
a phase transition in one dimension, but the solid-solid
phase separation could occur in two-dimensional colloidal
systems. Our simulations show that this is indeed the
case.

The simulation results also indicate that the critical
temperature of the solid-solid transition remains finite in
the limit of infinitely narrow well width. We study this
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limit by simulation of a lattice model and compare the
results of the lattice model with that of the well-known
adhesive sphere model introduced by Baxter [13].

In Sec. I we present our simulation results on the
square-well model for both two and three dimensions,
followed by the discussion on the infinitely narrow well-

width limit. In Sec. II we discuss the application of a
simple uncorrelated cell model to the square-well system.
These calculations provide considerable insight into the
mechanism of the phase transition.

To verify that the solid-solid transitions is not an ar-
tifact of the square-well model we also performed exten-
sive simulations on hard-core systems with an attractive
Yukawa potential. The latter model is thought to pro-
vide a fairly realistic description of the effective colloid-
colloid interaction in mixtures of uncharged colloids and
nonadsorbing polymer [3,5,6]. The results of the Yukawa
simulations are presented in Sec. III.

X. SQUARE-WELL SYSTEMS
IN TWO AND THREE DIMENSIONS

A. Solid-solid coexistence

The square-well model provides a very simple descrip-
tion of particles igieraction through a pair potential that
is harshly repulsive at distances less than a character-
istic diameter o and has an attractive interaction with
a characteristic range h outside the repulsive core. The
functional form of the square-well potential is

oo, Q&r(o
v(T) = ] —e, 0' & r & 0'+ b

0, r &o'+b,

where e is the depth of the attractive well. In order to
compute the phase diagram of the square-well system,
we first must determine the dependence of the Helmholtz
free energy of the solid on density and temperature. As
the free energy of the solid cannot be measured directly
in a Monte Carlo simulation, we use thermodynamic in-
tegration to relate the free energy of the square-well solid
to that of a reference hard-sphere solid at the same den-
sity [14]:

F(p, e') = FHs(p) + . (BFI

(2)

where e' is the reduced well depth e/k~T and (E') the av-
erage internal energy of the system, a quantity that can
be measured in a Monte Carlo simulation at constant
number of particles (N), volume (V), and temperature
(T). The instantaneous energy is equal to the number
of pairs of atoms Nz that are within the range of the
potential times the depth of potential well ~. The dimen-
sionless &ee energy per particle now is simply

(3)

The &ee energy of the three-dimensional hard-sphere
solid EHs is well known and can be accurately repre-
sented using the analytic form for the equation of state
proposed by Hall [15]. In two dimensions the free energy
of the hard-disk "solid" can be obtained &om simulations
done by Alder et aL [16].

The presence of a first-order phase transition in
the square-well solid is signaled by the fact that the
Helmholtz &ee energy becomes a nonconvex function of
the volume. The densities of the coexisting phases can
then be determined by a standard double-tangent con-
struction.

In order to map out the phase diagram of the square-
well solid over a wide range of densities and tempera-
tures as a function of the width of the attractive well,
several thousand independent simulations were required.
To keep the computational costs within bounds, we chose
to simulate a relatively small system. With a small sys-
tem size, finite-size effects are expected, in particular, in
the vicinity of a critical point. However, away &om crit-
ical points finite-size effects should be so small that they
will not affect the conclusions that we draw below. In
what follows, we use reduced units, such that e/k~ is the
unit of temperature and 0, the hard-core diameter of the
particles, is the unit of length.

For the two-dimensional case, the simulation parame-
ters were as follows: All simulated systems consisted of a
periodic triangular lattice of 200 disks, placed in a rect-
angular simulation box with side ratio ~3. The densities
ranged &om p = 0.8, which is below the hard-disk "melt-
ing point, " to p = 1.154, which is almost at close packing
(po ——2/~3). The temperature of the system was varied
in the range 0 & 1/T & 2, in steps of 0.1. Simulations
were performed for b = 0.01,0.02, 0.03, 0.04, 0.05, 006,
and 0.07.

All simulations on the three-dimensional system were
performed on a face-centered-cubic (fcc) solid consist-
ing of 108 particles. This is presumably the stable solid
structure for hard spheres [17] and for the square-well
model with short-ranged attraction (i.e., only nearest-
neighbor interaction). The simulation box was chosen
to be cubic and periodic boundaries were applied. The
densities ranged &om p = 0.9, which is below the hard-
sphere melting point, to p = 1.414, which is almost at
close packing (po ——~2). The temperature of the system
was varied over the same range as in the two-dimensional
case. Simulations were performed for 8 = 0.001, 0.002,
0.003, 0.004, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06.
For every value of the well width b in both the two- and
the three-dimensional case, we performed some 1000 MC
simulations of 20000 cycles each.

In order to perform the double-tangent construction on
the Helmholtz &ee energy, all simulation data were fitted
to an analytic function of p, b, and T. We chose to use a
fit function that reproduced the correct limiting behavior
at close packing. In particular, for the two-dimensional
(2D) case, we used the functional form
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TABLE I. Best fft coefficients c;~i, for Eq. (4).

0
-0.72694
-0.03715
0.02852
5.25367
9.66389
5.82891

1

0.31198
1.24634

0.972982
-34.75364

0.17419
-66.85580

2

-0.25649
5.70997

-6.07053
101.28334

-165.09344
245.34140

k

3
1.11286

-16.67303
12.64276

-150.72832
387.68260

-3S6.61941

4
-1.49782
15.62463

-11.29891
112.86532

-351.99452
310.50889

5

0.69590
-6.13765
4.52050

-40.90991
141.41783

-115.36343

6
-0.10720
0.87198

-0.66905
5.71196

-20.97474
16.28254

S 3 (8
N„(b,T ', x)/N = —+ —erf —z ——

2 2 ~4 2)
1,2,6

+e * ) c,,sh*T'x"'
i,j,I =0

and in the three-dimensional case we chose the form

N„(b,T, z)/N = 3+ 3 erf
~

z ——3)
4)

1,2,6
+e-* ) c,,„b'T &z". -

i,j,k=O

(4)

(5)

pressures and chemical potentials in both phases using
the standard double tangent construction. The critical
temperature of the solid-solid coexistence curve was es-
timated to be the point where the &ee-energy curve erst
developed an inflection point. Of course, this estimate is
likely to depend somewhat on the system size. Moreover,
the analytic form of Eqs. (4) and (5) forces the classical
(mean-fleld) critical behavior on the solid-solid binodal.
We have not attempted to study the true critical behav-
ior of the solid-solid transition.

B. Fluid-solid coexistence

The parameter z in Eqs. (4) and (5) is defined as the ratio
of well width d to the distance a that characterizes the
expansion of the solid from close packing: a = rNN —0.,
where rNN is the average nearest-neighbor distance and
0 is the hard-sphere diameter. x is simply related to the
density through

where D is the dimensionality of the system. For large
z, i.e. , near close packing, the functions given in Eqs. (4)
and (5) go to the value of half the number of nearest
neighbors per particle. The coefBcients of the best 6ts
to the numerical data are given in Tables I and II. These
6ts reproduce the numerical data to within the statisti-
cal error. Using the functional forms given by Eqs. (4)
and (5) to represent the numerical data, we computed
the &ee energy of the solid as a function of temperature
and volume, using Eq. (3). The resulting free-energy
functions were checked for a possible nonconvex depen-
dence on the volume V. Whenever such an indication of
a 6rst-order phase transition was found, the densities of
the coexisting phases were determined by equating the

Although the solid-solid transition coexistence curves
can be obtained from simulations, we have yet to demon-
strate that this transition involves phases that are ther-
modynamically stable. In particular, the melting transi-
tion transition might preempt the solid-solid phase sep-
aration. It is therefore essential to study the fluid-solid
transition as well. We computed the solid-fluid coex-
istence curve by means of thermodynamic integration.
The Helmholtz &ee energy of square-well solid was cal-
culated according to Eq. (2) using our simulation data.
The free energy of the Quid phase was obtained by com-
bining data from our simulations of a square-well Quid

with the known &ee energy of the hard-sphere reference
fluid [18]. In the two-dimensional case the fluid simula-
tions were performed on a system consisting of 200 disks
with square-well potential in a square box. The densi-
ties ranged &om p = 0.81, which is below the hard-disk
fluid-solid transition at p = 0.87 [19], to p = 0.95, well

above the melting density. The other simulation parame-
ters were the same as in the two-dimensional square-well
solid simulation.

To simulate the fluid in three dimensions, we used a
system of 108 square-well spheres in a periodic cubic box.
The density was varied &om p = 0.9 to p = 1.0 and the

TABLE II. Best fit coefficients c,~& for Eq. (5).

2
0 0
0 1
0 2
1 0
1 1
1 2

0
-0.84230
-0.09405
0.09995
0.58991

43.01628
-13.2?615

1
-0.17552
2.33404
1.46334

16.75031
-354.03802

87.45912

2

1.09902
12.76261
-7.59121

-66.39091
968.06124

-212.72385

k

3
-2.39716

-34.81551
11.86321
86.77000

-1239.22030
240.10069

4
0.75281

31.47235
-7.70867

-59.36635
808.64141

-134.45590

5
0.22673

-11.86920
2.09?09

20.52549
-259.20230
36.047739

6
-0.08604
1.59704

-0.187279
-2.76241
32.32189
-3.66216
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well width ranged from b = 0.01 to b = 0.06. The simu-
lation parameters were equal to those chosen for the solid
simulations. For both the 2D and 3D simulations the ini-
tial random con6N, uration was compressed to the required
density and equlibrated for 20 000 cycles before data were
collected in a production run of 20000 cycles. To cal-
culate the fluid-solid coexistence one needs the absolute
&ee energy of both the reference Quid and the reference
solid phase. For the &ee energy of the hard-disk Quid we
used a Pade approximation proposed by Hoover and Ree
[19]. The hard-disk solid free energy was obtained from
simulation data by Alder et aL [16]. The free energy
of the harB-sphere Quid was calculated using the accu-
rate Carnahan-Starling equation of state [18], whereas
the Hall equation of state [15] was used in the solid re-
gion together with an absolute &ee-energy value obtained
from simulations of Frenkei and I add [20]. Using these
reference free energies and the simulated average internal
energies in Eq. (2) we were able to obtain the coexistence
curves for the fluid-solid transition for both the two- and
three-dimensional square-well models.

C. Results

Figures 1 and 2 show the computed solid-solid and
fluid-solid coexistence curves in the (p, T) plane for the
two- and three-dimensional square-well models. We 6rst
focus on the solid-solid transition. The density gap be-
tween the dense and expanded fcc solids is wide at low
temperatures and shrinks to zero when the solid-solid
critical point is approached. Because of the analogy with
liquid-vapor coexistence, one would expect that the solid-
solid critical point should be of the 2D and the 3D Ising
universality class.

1.50

1.25

l I'

I

I

1

I

1

l

I

I

I

I

0.50
0.85

I

1.00

P

t

1.05
I

1.10

FIG. 1. Simulated (T, p) phase diagrams for triangu-
lar lattice of 200 square-well particles in two dimensions.
Starting with the coexistence curve on the right, from
right to left the curves correspond to the well widths
b/o = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07. Solid-Huid
coexistence curves are shown for all systems with b/o ) 0.03.
The critical points are indicated by filled circles, the triple
points by open circles.

3.0

0.5
0.90

I

1.00 1.10 1.20 1.30

FIG. 2. Simulated (T, p) phase diagrams for the fcc struc-
ture of 108 square-well particles. Starting with the coexis-
tence curve on the right, &om right to left the curves corre-
spond to the well widths b/cr = 0.01,0.02, 0.03, 0.04, 0.05, and
0.06. The upper dashed Suid-solid coexistence curve refers to
a well width of b/o = 0.07 and shows that the solid-solid
transition has become metastable at this point. The criti-
cal points are indicated by filled circles, the triple points by
open circles. The critical point at p = v 2, corresponding to
b/cr = 0, was computed using the lattice model described in
Sec. ID.

The coexistence curves are asymmetric, especially in
the limit b -+ 0. In this limit, the reduced critical temper-
ature T, goes to a Gnite limiting value of approximately
1.7 for D = 3 and 0.92 for D = 2. As we shall argue be-
low, the phase behavior in this limit can be investigated
by studying a peculiar lattice model.

As can be seen in Figs. 1 and 2, the critical ternper-
ature depends only weakly on b. In contrast, the solid-
solid coexistence region shifts to lower densities as the
well width is increased. This effect can easily be under-
stood by noting that a dense square-well solid can be ex-
panded at virtually no cost in potential energy, up to the
point where the nearest-neighbor separation is 1+8, that
is, a = b. It is only when the solid is expanded beyond
this limit that the potential energy increases steeply and
a transition to the expanded solid may occur. Hence the
larger b', the lower the density where the phase transition
will take place.

The fluid-solid coexistence curves are also dependent
on b. For small b the width of the coexistence density gap
between fluid and solid remains effectively constant as a
function of temperature, although as a whole it shifts to
a higher density as the temperature is lowered. If b is
increased, the density gap widens at low temperature.

The point where the coexistence curves cross the solid-
solid binodals is the triple point T„,where the three
phases (fluid, solid I, and solid II) are in equilibrium.
At temperatures below the triple point the high-density
solid is in equilibrium with a dilute gas. When b becomes
larger, the triple point shifts to higher temperatures and
densities, until it reaches the critical temperature. At
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25.0

20.0 "

15.0 l

of the square-well system. The phase diagram for short-
ranged attractive potential js the mirror image of the
usual (P, T) phase diagram for longer ranged potentials
in which the liquid-gas transition is present. Note that
the slope of the solid-solid transition line cannot be neg-
ative because the critical temperature has to be higher
than the triple point temperature.

D. High density limit

10.0 I-

2.0

FIG. 3. Simulated phase diagrams of the three-dimensional
square-well system plotted in the (P, T) plane. The solid-solid
transition lines run from the triple point, denoted by an
open circle to the critical point, marked by a 6lled circle.
The lower curves are the melting lines of the square-well
system. From left to right the diagrams correspond to
b/o = 0.01,'0.02, 0.03, 0.04, 0.05, and 0.06. Note that this
phase diagram is almost a mirror image of the fluid-gas (P, T)
phase diagram. Also note that the slope of the solid-solid
transition has to be positive.

The simulations discussed above seem to indicate that
there is a solid-solid transition even in the limit where
b ~ 0. At first sight this seems surprising because one
would not expect an infinitely narrow potential well to
afFect the phase behavior at Rnite temperature. However,
at close packing, even an infinitely narrow potential will
give a finite contribution to the potential energy. Sur-
prisingly, it turns out that it is possible to perform sim-
ulations of the phase behavior in the limit b m 0. To see
how this can be achieved, it is convenient to consider first
the more general case that h is finite. In the dense crys-
talline solid, any given particle i is constrained to move
in the vicinity of its lattice site, i.e. , its average position
r, . In that case, we can reexpress the potential energy as
a function of the displacement 4; of the particles, from
their respective lattice sites: A, = r; —r, . The potential
energy of a pair of particles can then be written as

that point the solid-solid transition disappears because
for larger values of b it is preempted by the melting tran-
sition. Both in two and three dimensions, this happens
when h ) 0.06.

It is instructive to draw the phase diagram in the
(P, T) plane. In Fig. 3 the phase diagrams for the three-
dimensional square-well system are shown in the (P, T)
plane. The solid-solid transition lines run &om the triple
point to the critical point and lie above the melting lines

l

where we have used the obvious notation r,j = ri —rj.
For nearest neighbors, lr, —r

l
= o at close packing. At

lower densities, lro —r
l

= o + a, where a was defined
in Eq. (6). The potential energy of a pair of square-well
particles is a function of z,~—:(lr;~l —o)/h. We can
now express rij in terms of dk, ; and Aj. This yields the
following result for z,j:

o2+ 2o(a+ r";~ A,z) + a2+ A2. + 2ar;~ A;~ —a
zij =

b

where rij is a unit vector in the direction of r; and A;j =
LL; —Lh~. In the limit b/o ~ 0, z;~ takes on a very simple
form

lim zj =
b/cr —+0

a+ rij - A;j
(9)

In this limit, the square-well model is equivalent to a
lattice model, with a fixed but arbitrary lattice spacing
as shown in Fig. 4. The state at every lattice point i is
characterized by a scaled displacement vector v; = A;/b.
Note that a finite v; corresponds to an infinitesimal real
displacement v;h. The nearest-neighbor interaction is a
function of a/h+ v; . r;~. Clearly, the density in the orig-
inal square-well model now only enters in the problem
through the parameter a/h. We can now perform Monte
Carlo simulations on this lattice model by moving a ran-

domly selected atom i &om its initial scaled displacement
I

v; to the trial displacement v; in such a way that micro-
scopic reversibility is satisfied. Knowledge of the new
scaled displacement of atom i is sufBcient to compute
the change in potential energy associated with the trial
move, using Eqs. (7)—(9) above. We now use the con-
vential Metropolis rule to accept or reject the trial move.
By combining the results of a series of simulations for
a range of values of h/a and a range of temperatures
(twenty temperatures and thirty h/a values for every
temperature) with the hard-sphere equation of state near
close packing [21],we can compute the &ee energy of this
model system as a function of temperature and vob~me by
thermodynamic integration and construct the solid-solid
phase diagram in the limit b/o = 0. In the (p, T) plane,
the binodal would simply be a vertical line segment at
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FIG. 4. Schematically drawn scaled configuration of the

(2D) square-well solid in the limit b/o ~ 0. The lines of the
hexagons give the momentary boundary of the cell to which

a particle is confined. All the cell are scaled up to finite size,
as the cells are infinitely small in the limit b/o' -+ 0. The
cell boundaries will change position if the nearest neighbors
move. The arrows give the particle displacement from their
original lattice positions. In the shaded area the particles are
within the interaction range of their neighbors.

The adhesive-hard-sphere system has been studied exten-
sively both theoretically [22—24] and nnmerically [25,26].
In particular, the liquid-vapor critical point of this model
has been predicted to occur at 7 = 0.097 [22]. However,
if we identify the adhesive hard-sphere model with the
square-well model in the limit b/o -+ 0, then the present
simulations show that this model already has a solid-solid
transition for r = O(ln(o'/h)), i.e., for r ~ oo. At all
finite temperatures (finite 7) the only stable phases are
the close-packed solid and the infinitely dilute gas. Hence
all other phases of the adhesive hard-sphere model are,
at best, metastable In. fact, Stell [27] has already indi-
cated that the monodisperse adhesive hard-sphere model
is pathological because the 12th virial coefficient diverges.
This divergence could be removed by introducing a slight
size polydispersity into the model. Such polydispersity
would also affect the solid-solid transition. In fact, a
rough estimate of the phase-diagram suggests that in that
case, the solid-Quid transition occurs at finite v and hence

2.00

1.50—

close packing ending in a critical point. It is more conve-
nient to plot the binodal as a function of b/a. In Fig. 5
the solid-solid binodal is plotted in the ((b/a), T) plane.
As can be seen &om the figure, the critical temperature
is indeed finite. Moreover, the binodal becomes quite
symmetric in this representation compared to Fig. 2.

It is interesting to consider the square-well solid at fi
nite b/o in terms of the lattice model described above.
As can be seen from Eqs. (7) and (8), the potential energy
now is a function not only of a/h and A;/b, but also of
b'/o. If the free energy of the system is an analytic func-
tion of b/n, we could expand in powers of it around the
limit b/o = 0. However, the solid-solid transition only
occurs for b/sr & 0.06. Hence b/o is always a small pa-
rameter. It is therefore likely that the phase diagram of
the square-well model, when plotted as a function of 8/a,
differs only little &om the behavior in the limit b —+ 0.
As can be seen &om Fig. 5 this is indeed the case.

It is interesting to point out the relation between the
square-well model in the limit b/o = 0 and the adhesive
hard-sphere model proposed by Baxter [13]. The adhe-
sive hard-sphere model is obtained &om the square-well
model by considering the limit b/sr ~ 0, e ~ oo such that
e/kT = —ln [o/(12& )]. This limiting procedure results
in a model that has a finite second virial coefficient at
finite temperature. Usually, the ratio of the second virial
coefBcient of the adhesive hard-sphere to that of "non-
sticky" hard spheres is used to relate the parameter 7 to
observable quantities:

1.00
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0.00

I

0.50 1.00
5/a

1.50 2.00

2.0

1.5—

1.0

0.5
0.0 0.5

I

1.0
gaia

1.5 2.0

FIG. 5. Solid-solid coexistence curves in the (b/a, T) plane
(see text). The top figure shows the binodal in the limit
6/o = 0, while the bottom figure shows that all the scaled
binodals for finite h/o ( 0.07 very nearly coincide with the
binodal for h/o = 0.
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the phase diagram of the slightly polydisperse adhesive
hard-sphere model is nontrivial.

II. CELL MODEL CALCULATIONS

To gain a better intuitive understanding of the solid-
solid transition in the square-well model, it is instructive
to compare the simulation results with a simple theo-
retical approach, viz. , the uncorrelated cell model. The
cell model is based on the idea that an atom in a solid
is essentially confined to the "cell" formed by its near-
est neighbors [28]. In the uncorrelated, single occupancy
version of the cell model [29,30] the configurational part
of the partition function of an N-particle system is ap-
proximated by

Q=fdr e ~ t" ~=N!~ dec ~ "" ~, (11)
N r NN

the triangular and fcc crystal structures the cell volume
fraction o,p as a function of x. For suKciently short-
ranged potentials, the solid can be expanded to a density
where a is much larger than the width of the attractive
well b. In that case, a given particle can only have a few

neighbors within the range of its attractive well. %hen
the density is increased the particle interacts with more
neighbors. At b/a = 1 the particle has exactly half the
number of neighbors within the potential range. Once
the density is so high that 8/a ) 2, then every particle
interacts with all its nearest neighbors simultaneously.
This behavior leads to a fairly abrupt lowering of the
potential energy of the system. At low temperatures,
this decrease of the energy on compression will outweigh
the loss of entropy that is caused by the decrease of the
&ee volume V~. The Helmholtz Bee energy F will then
exhibit an in8ection point and a first-order transition to
a "collapsed" solid will result.

By application of a double tangent construction we can
compute the coexisting densities as a function of temper-

where U(r+) is the potential energy of the system and
U(r, rNN) is the potential energy of an atom and its near-
est neighbors. Here it is assumed that a cell can contain
at most one particle and that all correlations between
cells can be ignored. If one further assumes that every
particle moves independently in a regular fixed polyhe-
dron formed by its neighbors fixed at their lattice po-
sitions, the second integral of Eq. (11) can be easily
evaluated.

We use the square-well model to describe the short-
ranged attractive interaction. Because the square-well
potential is a step function, the cell volume can be di-
vided into difFerent regions characterized by the number
of neighbors within the range of its attractive well. The
partition function can now be expressed in terms of cell
volume fractions o;s in which the particle intracts with k
particles simultaneously

1.0

t

0.8 I-

o.6 I

o.4 I

I

o.2 I

0.0 0.5 1.0
5/a

1.5 2.0

0(* ~ ) V)- 1„(2
( )

r, =o j
(12) 1.0

where z = b/a is the parameter defined in Eq. (6), m is
the maximum number of neighbors, and V, is the volume
of the cell. This volume depends on the dimensionality
and the crystal structure. For a three-dimensional fcc
structure the cell is a dodecahedron with a volume V, =
a /~2, where a, the radius of the cell, is defined as before
a = rNN —o.. In a two-dimensional triangular lattice
V =2~3a.

The Helmholtz free energy of the solid is given by the
logarithm of the partition function

0.8 I-

0.6 I-

0.4 ';

0.2

PFsiv(z, e )
N

—ln Z(z, e*)
0.0

0.0 0.5 1.0
Ra

1.5 2.0

m

= —lnA Vd —ln ) e"' ~ ng(z) . (13)
&.=o

The first term can be interpreted as the entropy of an
ideal lattice gas, while the second term is the contribution
due to the attractive interactions. Figure 6 shows for

FIG. 6. Uncorrelated cell model calculation of the frac-
tion of cell volume where the central particle interacts with k

neighbors as a function of b/a. Top figure: two-dimensional
hexagonal lattice. The curves represent, from left to right,
k = 0, 1, ..., 6. Bottom figure: three-dimensional fcc struc-
ture. Prom left to right the curves are for k = 0, 1, ..., 12.
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III. YUKAWA POTENTIAL

The square-well potential is often used as a crude ap-
proximation to the efFective intermolecular potential in
colloid-polymer mixtures. A better approximation for
the colloid-colloid interaction in such systems is the hard-
core attractive Yukawa potential, given by

0.85

0.75

oo, 0(r(o
—e (—) exp [Ko(1 —r/o)], r ) o, (15)

0.65

F(P) = +Hs(p) + (EY k)Hs (16)

where (EY„g)Hs is the average value of the attractive part
of the Yukawa potential, computed in the hard-sphere
reference system. Prom this equation it is possible to
derive the Quid-solid coexistence by application of the
double tangent construction. Simulations on a 108 par-
ticle hard-sphere Quid and hard-sphere fcc crystal were
used to compute (Ev„q)Hs for K = 25 and K = 33.

The resulting phase diagrams for ~ =- 25, 33, 40, 50,
67, 100, and 200 are presented in Fig. 9. The solid-solid
transition is found to occur for e ) 25. For values K, & 33
the fluid-solid coexistence region will shift down, which
results in a larger solid-solid two phase region. The phase
diagrams of the Yukawa solid exhibit the same overall fea-
tures as those of the square-well system. The solid-solid
density gap is wide at low temperatures and shrinks when

where e is the well depth and K is a measure for the
range of the attractive part of the potential [5,6,4,3]. The
phase diagram of the hard-core attractive Yukawa Quid
was investigated recently by Hagen and Frenkel [34]. To
see if the solid-solid transition survives in the case of a
Yukawa potential, we did simulations on a 108 particle
fcc crystal for x = 15, 20, 25, 30, 35, 40, 45, and 50 and in
the high-density limit for e m oo. The densities ranged
&om 1.1 to 1.38. The temperatures, in reduced units of
s/k~, were varied in the same range as in the square-well
case, 0 & T & 2, in steps of 0.1. For every value of
p, T, and z we performed some 10000 Monte Carlo cy-
cles to equilibrate and the same amount to collect data.
The average internal energy was Btted to a polynomial
in +,1/T, and K (po/p —1) . It was not neccesary
to use the more complicated functional form given in Eq.
( 4) because the energies varied much more smoothly with
density than in the square-well model. The Helmholtz
&ee energy of the Yukawa solid was obtained by thermo-
dynamic integration starting with the hard-sphere free
energy [cf. Eq. (2)] and the coexistence densities as a
function of temperature were calculated by applying the
double tangent construction.

As in the case of the square-well model it is essential
to know the position of the Quid-solid coexistence region
to determine the range of densities where a solid-solid
transition can take place. We estimated the location of
the melting curve by Grst-order perturbation theory. In
Ref. [34] it is shown that 6rst-order perturbation provides
quite accurate estimates of the melting curve of the hard-
core attractive Yukawa system.

The Helmholtz free energy of the Yukawa system can
be approximated by

055 ———
0.90 1.00 1.10 1.20 1.30 1.40

the critical point is reached. The critical density shifts
to higher values when ~ is increased, i.e., when the range
of the attractive potential is shortened. However, in con-
trast to the square-well system the critical temperature is
now clearly dependent on the potential range. The criti-
cal temperature has a value of 0.67 in the limit 1/Ko = 0.
This was veri6ed by direct simulations in this limit, using
the technique described in Sec. ID. This critical temper-
ature is somewhat lower than for the three-dimensional
square-well solid. The reason is that the Yukawa poten-
tial is smoother than a square well. This results in an
inQection point in the &ee-energy curve at lower temper-
atures. This in turn will cause all the coexistence curves
to shift to lower temperature than those found in the
square-well case.

The value of K = 25, where the solid-solid transition
starts to occur, corresponds to an average well width of
v = 0.04. Although one cannot directly compare the
width of a square well and a Yukawa potential, the char-
acteristic well widths are of comparable magnitude.

CONCLUSION

Simple solids with a short-ranged atractive pair poten-
tial can exhibit phase separation in a expanded solid and
a more dense solid. This isostructural Grst-order solid-
solid transition is reminiscent of the the liquid-vapor
transition. The transition takes place between two phases
of the same structure, the coexistence curve ends in a

FIG. 9. Simulated (T, p) phase diagrams for the 108 par-
ticle fcc crystal structure with a Yukawa potential. Starting
with the coexistence curve on the right, from right to left the
curves correspond to x = 200, 100,67, 50, 40, 33, and 25. The
critical points are indicated by 61led circles, the triple points
by open circles. The critical point at p = ~2, corresponding
to b jo = 0, was computed using the lattice model described
in Sec. ID. The Quid-solid coexistence was calculated only
for the last two values. For higher K values, we should expect
to see the range of stability of the solid-solid coexistence line
increase until, in the limit K, ~ oo, it will extend down to
T=Q.
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critical point, and the location of the coexistence curves
depends strongly on the interaction range. The simula-
tions on the square-well model show that the solid-solid
transition takes place both in two and three dimensions
for potential well widths h/o ( 0.07. The analogy with
liquid-vapor phase separation suggests that the solid-
solid critical point should be of the 2D and the 3D Ising
universality class, although this still remains to be estab-
lished. The critical density depends on the well width b
and is well predicted by the uncorrelated cell model. In
contrast, the critical temperature hardly changes with b.
The critical temperature is finite for h m 0. This has
been confirmed by direct simulations in this limit. Com-
parison of the adhesive sphere model theories with the
simulations in the limit b -+ 0 shows that the solid-solid
transition already occurs for v ~ oo, where 7 plays the
role of temperature in the adhesive sphere model. This
implies that at finite w the only stable phases are the
close-packed solid and the infinite dilute gas. All other
phases are, at best, metastable. This pathological behav-
ior is thougth to be a consequence of the monodispersity
of the system. We expect that introducing a slight size
polydispersity will cause the solid-solid transition to oc-
cur at finite ~.

The results for the solid-solid transition in Yukawa sys-
tems are comparable to those for the square-well model.
The solid-solid transition occurs for ~0. ) 25, i.e., a po-
tential well width narrower than 0.04'. The major dif-
ference with the square-well results is that the critical
temperature depends more strongly on e.

It should be noted that isostructural solid-solid transi-
tions are known to occur in dense Cs and Ce [35]. How-

ever, in this case the intermolecular potential is too long
ranged to induce the mechanism described above and the
transition is believed to be due to the softness of the inter-

molecular potential associated with a pressure-induced
change in the electronic state of the metal ions. In fact,
theoretical work of Stell and Hemmer [36] and simula-
tions of Alder and Young [37] indicate that such softness
may indeed result in solid-solid transition. We stress that
the solid-solid transition discussed in the present paper
is diferent because it is not related to a pressure-induced
change in the efFective size of the particles.

An obvious question is whether the isostructural solid-
solid phase transition due to short-ranged attraction,
which we report here, can occur in real systems. We be-
lieve that such a transition can be observed in uncharged
colloids with a short-ranged attraction. Such systems can
be made, for instance, by adding nonadsorbing polymer
to a suspension of hard-sphere colloids (for a review, see,
e.g. , Ref. [4]). The polymers induce an effective attrac-
tive force between the colloidal spheres. The range of this
attraction is directly related to the radius of gyration of
the polymer. Hence a colloidal crystal to which a poly-
mer with a radius of gyration less than 7% of the radius
of the colloidal spheres has been added should exhibit the
solid-solid phase behavior of the models discussed in this
paper.
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