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The physics of wetting in three dimensional systems with planar symmetry is revisited in order to
explore the extreme sensitivity to microscopic interactions that underlies even thick film adsorption
phenomena in d = 3. Beginning with short-ranged models of wetting by liquid at a wall-vapor
interface, weighted density functional theory is used to obtain an accurate description of the mean-
field interface potential along the entire saturated liquid branch. Well away from the bulk critical
point, the long-range decay of this class of interface potentials is damped oscillatory rather than
the generally assumed monotonic form. This result is best understood in the context of a recently
published general theory of the asymptotic structure of liquids and their mixtures. The inescapable
conclusion from mean-field theory is that over much of the saturated liquid curve, complete wetting
is replaced by thick film pseudowetting associated with layering phenomena. However, oscillatory
structure at microscopic wavelengths is strongly renormalized by the inclusion of capillary-wave
Buctuations. To assess this aspect, the paper reviews the explicit linear renormalization group
calculation of Chernov and Mikheev [Phys. Rev. Lett. 60, 2488 (1988)]. One must distinguish
between two cases: (i) pure wetting, where capillary-wave Suctuations renormalize the decay length
of the damped oscillatory structure, and (ii) wetting in the presence of external capillary-wave
damping (such as Earth's gravity), where the renormalization can dramatically reduce an oscillatory
amplitude but cannot formally prevent the suppression of complete wetting. The second main aim
of the paper is an attempt at a general survey of the plethora of length scales potentially relevant
to thick film wetting phenomena in d = 3. A full description of short-ranged models of simple
Quids is presented in terms of the behavior of monotonic and oscillatory decay lengths along the
saturated liquid branch. Additional length scales of the same class arise from competition with
exponentially decaying wall fields. Power-law interactions (dispersion forces) lead to a qualitatively
diferent asymptotic regime. Notwithstanding the ultimate dominance of power-law structure at the
longest range, moderately thick film wetting should still be in6uenced by short-ranged intermolecular
forces, particularly in mean field. Finally, the equally crucial significance of asymptotic structure
to wetting phenomena in liquid mixtures and in charged Quid systems is highlighted and attention
drawn to recently published theories of the required asymptotic forms. In summary, the physics of
wetting phenomena in three-dimensional systems is probably close to being fully understood, but
the resulting picture for typical experimental systems is amazingly complex.

PACS number(s): 68.45.Gd, 68.10.—m, 68.15.+e, 61.20.—p

I. INTRODUCTION

%etting phenomena form a long established branch
of physical chemistry [1]. Classically, one distinguishes
cases in which a Huid wets (or spreads) at an interface
(e.g. , a solid-gas interface) from cases in which macro-
scopic drops of adsorbed phase are formed instead. Phe-
nomenologically, this behavior is controlled by the sur-
face tensions (surface excess free energies) of the various
interfaces involved and even by the line tension of the
three phase conta-ct region [2]. However, these systems
are extremely sensitive to details of the intermolecular
forces, in contrast to most bulk macroscopic phenomena,
because the behavior is controlled by long-range Quid me-
diated interactions between weakly interacting interfaces.
This fact has been well appreciated for some considerable
time by Derjaguin and co-workers [3], but elsewhere the
significance of microscopic details to wetting phenomena
has only excited interest in the last decade and a half [4].
Here, I shall attempt a comprehensive classification of
wetting phenomena based on the details of intermolecular

interactions, drawing on recent general theories of asymp-
totic correlations in liquids and their mixtures and on the
linear renormalization group approach to incorporating
interfacial Quctuations. In particular, three-dimensional
wetting phenomena (both in models and reality) are re-
vealed to form an amazingly complex universe, due to the
existence of a plethora of relevant length scales, including
some associated with oscillatory interactions.

From the point of view of interfacial physics, wet-
ting phenomena arise whenever three distinct phases (of
any class whatsoever) can come into mutual coexistence.
Typically, this will arise because two phases are at or
close to bulk two-phase coexistence, while the remaining
phase is essentially a benign spectator (usually treated
as a planar external field, or wall). Accordingly, one
needs a minimum of three thermodynamic fields to dis-
cuss wetting phase behavior; namely, a substrate field
(usually written hi or e ) and two bulk fields (say, T
and p, where T denotes temperature and p the chemi-
cal potential). This phase diagram was first proposed in
1982 [5] and shows three important classes of interfacial
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phase transitions believed to be appropriate to Quid wet-
ting phenomena. These arise because the half-plane of
bulk two-phase coexistence (y, = p„, T ( T,) contains a
curve of wetting phase transitions enclosing a region of
partially wet waH-Quid interfaces. In this plane one can
cross the wetting curve by varying e or T to observe
either a first-order wetting transition or continuous (crit-
ical) wetting; the point on the wetting transition curve
where the order changes is a tricritical point. If instead
one approaches the completely wet area from below (in-
creasing the saturation of a wall-gas interface) then the
adsorption isotherm will show a diverging adsorption in
the limit of complete wetting (a second example of in-
terfacial critical phenomena). If this path comes close to
a first-order section of the wetting transition curve then
one will also observe a thin-thick 61m transition, prior
to complete wetting. The physics of these phenomena is
usually understood by regarding them as interface delo-
calization processes [6].

In planar symmetry, the nature of wetting phase tran-
sitions is controlled by the underlying behavior of the
interfacial &ee energy as a function of film thickness [usu-
ally written V(/)]. If V(E) possesses a double well struc-
ture then the wetting transition is 6rst order, with associ-
ated thin-thick transitions lying close to bulk two-phase
coexistence. Otherwise, one observes so-called critical
wetting. Such interface potentials are easily calculated
in mean 6eld from density functional theory. However,
in dimension d & 3 one must also take into account the
effect of capillary-wave (cw) Huctuations on the underly-
ing potential. The important physical case of d = 3 is
especially complex because, as discussed in detail in this
paper, many relevant length scales can potentially alter
the nature of an interface potential.

To understand wetting phenomena in the vicinity of
wetting transitions one must consider cases in which thick
6lms of adsorbed phase are present. In this case, the in-
terfacial free energy is a subtle balance of the eEects of
the distant interfaces on one another. Apart from direct
long-range external fields (whose effects are trivially un-
derstood and will only be briefiy referred to below) such
a pair of separating interfaces communicate via the long-
range decay of their respective density profiles. Thus the
thick film behavior of the interface potential is directly
related to the asymptotic decay of inhomogeneous Buids.

Recent work by various groups has uncovered a gen-
eral theory of medium-range and long-range correlations
in liquids and their mixtures. In particular [7,8], be-
yond the range of external fields, the asymptotic decay
of inhomogeneous density profiles into a bulk Quid is con-
trolled by the bulk Huid direct correlation functions c;~ (r)
and hence possesses the same functional form as the bulk
Huid total correlation functions Ii;z(r), linked to c,.z via
the Ornstein-Zernike (OZ) equations. This also implies,
through sum rule analyses or the use of wall-particle di-
rect correlation functions c ~(z), precisely the same long-
range behavior for a solvation force (mediated by the
same Huid) or a disjoining pressure [ BV(E)jM] [9,10]. —
The most general approach to treating all these systems
is therefore through a complex pole analysis of the com-
mon denominator that appears in the OZ equations, fol-

lowing Fourier transform. This approach is particularly
enlightening for short-ranged models, where the common
denominator implies a unique asymptotic form that is ei-
ther a monotonic exponential decay or an exponentially
damped oscillatory decay [10]. For mixtures there are in
addition amplitude and phase relations that further sim-
plify the physics [11,10], while in wall-Huid systems the
amplitudes are of course dependent on the details of the
external fields [8]. This approach is also directly applica-
ble to charged Quid systems, due to the eEects of electro-
static screening, where an especially rich pole structure
arises [12,13]. The presence of power-law interactions
(dispersion forces) greatly complicates the pole analysis,
but one can make contact with previous approaches to
the power-law decay of interfacial profiles [14] and in ad-
dition gain insight into the crossover to medium-range
correlations controlled by repulsive interactions [15]. Fi-
nally, to include the efFects of capillary-wave Quctuations
on planar profiles in d = 3, one has recourse to linear
renormalization group (LRG) theory [16,6].

To conserve on notation, hereinafter I shall focus on
the case of wetting by pure liquid at a planar wall-gas
interface. Close to saturation (bulk liquid-vapor coexis-
tence), we must consider the possibility of a thick layer
of adsorbed liquid that ends in an almost free liquid-
vapor interface. The physics of this problem arises &om
the weak interference between the liquid tails of two vir-
tually separate pro6les; namely, a mall-liquid interface
and a planar liquid-vapor interface. The general the-
ory of asymptotic decay implies that both of these pro-
6les decay into a given bulk liquid with the same func-
tional form, that in turn defines the long-range behavior
of the bulk liquid total correlation function [specifically,
rh(r)] For a fini.te-ranged model (Hamiltonian) one finds
that pure exponential decay dominates asymptotic cor-
relations for saturated liquids close to the critical tem-
perature (T,) but that elsewhere the asymptotic form is
likely to show the familiar damped oscillatory behavior.
Specifically, for mean-6eld models of simple Quids the
crossover line in density-temperature space (p, T) where
these two asymptotic forms possess the same exponen-
tial decay length, known as the Fisher-Widom (FW) [17]
line, crosses the liquid-vapor coexistence curve at around
TjT, 0.9 [8,15]. At all temperatures below this point,
the mean-field liquid-vapor profile (or saturated liquid
radial distribution function) possesses an oscillatory liq-
uid tail. The asymptotic decay of the wall-liquid pro-
file shows exactly the same behavior, for a finite-ranged
wall field. The amplitude of the tail decay is, however,
dependent on the wall field [8,10]. Vapor tail decay is
always monotonic because the FW line is constrained to
lie above the mean-Geld liquid spinodal.

From [10] we can summarize the asymptotic behavior
of short-ranged models as

~~ =—~(z) —n,
= a exp( —nsz) + b exp( no' z) co—s(niz —8)

+O(bp ), (1)

where positive z points away from an interface into bulk
liquid (pl. ), and the no, ni notation refers to simple poles
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q:—kiii+iuo of 1/[1—pc(q)] in the complex plane, with c
denoting the three-dimensional (3D) Fourier transform of
the bulk liquid direct correlation function. Clearly o.y

2vr/0', to yield a wavelength close to o, the repulsive-core
diameter. The amplitudes a and b are defined by c'(q)
and also, in the case of a wall-liquid profile, by the 1D
Fourier transform of the wall-particle direct correlation
function c z(q) [10]. For simple models there is only one
pole lying on the pure imaginary axis (ao), while there
exists an infinite number of separated oscillatory poles.
In general, the next order oscillatory pole, with decay
length 1/o. e2

" and wavelength roughly half that of the
leading-order oscillatory pole, is well separated in terms
of the decay length (no ")) no") so that typically Eq.
(1) is an accurate representation of the full profile beyond
about the second minimum out &om the interface. In
any given case, to obtain the leading-order correction to
the asymptotic form (relevant to the repulsive region of
an attractive interface potential) one must consider 2no,
2az', and o.o ",as well as the non-dominant member of

Chernov and Mikheev [18] were the first to point out
the significance of the damped oscillatory term in Eq.
(1). Near the triple point the as" pole approaches the
real axis so that oscillatory decay dominates the asymp-
totic form and the leading-order correction decays as
exp( —2ne"z). Thus, in this region of phase space, wet-

ting phenomena should be controlled by an interface po-
tential whose long-range behavior is of the form of Eq.
(1) with amplitude a set to zero. Since damped oscilla-
tory decay would always yield a global minimum in the
interface potential at some finite value of the film thick-
ness, such a scenario could never yield true complete wet-

ting (i.e., only thick pseudo wet films) and in approaches
to pseudo wetting from oK bulk two-phase coexistence
one would often see layering transitions. This behavior
is in marked contrast to earlier theories of complete and
critical wetting, which were based instead on setting am-

plitude b to be zero [19,16]. However, in d ( 3 one must
also consider the effect of capillary-wave (cw) fiuctua-
tions on the mean-field interface potential. Chernov and
Mikheev [18] argue that the oscillatory term is strongly
renormalized because of the large value of ai (a high cur-
vature contribution to the potential) and in fact use the
linear renormalization group (LRG) theory of Fisher and
Huse [16] to predict that suKciently strong cw fiuctua-
tions would renormalize the value of o.p so much that
the oscillatory decay would cease to dominate the asymp-
totic form. In this case, they argue, the repulsive term in
the interface potential would take over and an infinitely
thick complete wetting film would form. At no stage do
Chernov and Mikheev bother to include the o;0 term in
their scenario. The main quantitative purpose of my pa-
per is to reexamine this entire issue in detail, including
specific calculations of the full interface potential appro-
priate to short-ranged models of simple Huids at weakly
attractive walls and the thick film asymptotic behavior
along the entire liquid-vapor coexistence curve.

Section II below uses the density functional theory ap-
proach of Tarazona and Evans [20], except that I use a
more modern weighted density functional (WDA theory)

capable of an accurate representation of repulsive-core
oscillatory packing, to calculate V(E) appropriate to wet-
ting above the F% line. The mean-Geld aspects of the
predictions of Chernov and Mikheev are fully confirmed.
In addition, the underlying physics concerning interfer-
ence between damped oscillatory profile tails of weakly
interacting interfaces is explicitly demonstrated. Section
III reviews the LRG theory of fluctuating interfaces ap-
plied to oscillatory interface potentials and specific cal-
culations are given using the tA'DA theory data. The
contrast between the LRG conclusions of Chernov and
Mikheev [18] and those of later authors [8] is seen to arise
from the inclusion or exclusion of additional sources of
capiBary-wave damping. In particular, the significance
of oscillatory interface potentials to real systems must
be seriously taken into account under various conditions.
The paper concludes (Sec. IV) with an extensive discus-
sion that attempts an essentially complete classification
of length scales that are potentially relevant to wetting
phenomena in a wide variety of systems, both model and
real. The entire saturated liquid curve of short-range
models is surveyed, detailing the crossover between the
low T regime of Chernov and Mikheev [18] and earlier
theories appropriate to high T [19,16]. In addition, com-

petition with external fields and the complications ex-

pected for charged Buids and systems with dispersion
forces are discussed. The immediate relevance to wetting
in Quid mixtures is also highlighted. In short, wetting
phenomena in d = 3 are seen to belong to an amazingly
complex universe of competing length scales. In partic-
ular, to predict physically relevant wetting behavior for

any given system one must first undertake a very thor-
ough examination of the underlying mean-Geld interface
potential. Only then can the significance of capillary-
wave phenomena be properly understood.

II. INTERFACE POTENTIAL IN MEAN FIELD

The description of damped oscillatory correlations
in liquid state theory requires a careful treatment of
repulsive-core interparticle interactions. In particular,
van der %aals square-gradient theory, Landau theory, or
any other local density functional treatment of an inho-

mogeneous Huid wil1. always fail to yield oscillatory struc-
ture. From the point of view of the general theory of
asymptotics [10], this arises because these crude treat-
ments reduce the repulsive-core contribution to c(r) to
a b function form (i.e., zero range). To describe a hard-
core Auid radial distribution function or a mall-liquid. in-
terface profile, one requires a &ee energy functional that
generates a realistic hard-cere contribution to the bulk
liquid direct correlation function. One solution is to use
functionals of smoothed or weighted densities (hence the
acronym WDA theory) with weight functions chosen to
ensure a good representation of the hard sphere fiuid c(r).
In mean field one usually treats the attractive correla-
tions in the random phase approximation (RPA), which
in fact, from comparisons with accurate bulk liquid in-

tegral equation theories [15], yields a direct correlation
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function sufhcient for our purposes in that it predicts a
FW line that lies very close to accurate theory in the
region of liquid-vapor coexistence (in terms of reduced
variables). Close to solid states the details of c(r) become
more important [7], but the RPA treatment of attractive
correlations appears to remain qualitatively correct. In
this section I shall use the WDA theory due to Tarazona
[21], as applied by van Swol and Henderson [22] to the
model of square-well fluid adsorbed at a square-well wall.
In terxns of reduced variables (T/T„p/p, ), this approach
should represent a reasonable description of argonlike flu-
ids adsorbed at weakly attractive substrates, apart &om
the absence of power-law dispersion forces (see Sec. IV)
and the lack of capillary-wave broadening (taken into ac-
count in Sec. III). The exceptions to this are systems close
enough to the liquid-vapor critical point to be controlled
by bulk critical phenomena (not under discussion in this
paper).

Evans et al. [8] have previously used the WDA theory
referred to above to obtain liquid-vapor density pro61es
above the FW line, that clearly show damped oscillatory
decay into bulk liquid. In particular, at T/T, = 0.64 the
amplitude of the largest oscillation of the liquid tail is a
few percent of the saturated liquid density (pL, O = 0.739
where o denotes the repulsive-core diameter), while the
decay length 1/no" is a little under 40. These parame-
ters are appropriate for a detailed investigation of the
asymptotic form of the mean-field interface potential,
here using systems of length 40~. Earlier work used
smaller systems and thus failed to note the asymptotic
details given below. Namely, this section repeats the wet-
ting curve calculations of van Swol and Henderson [22],
based on the Tarazona and Evans [20] procedure, but
focuses on the thick 61m details at one specific ternpera-
ture. I shall conclude that the first-order wetting transi-
tion curve obtained by van Swol and Henderson is in fact
only a pseudowetting curve, at temperatures below the
point where the FW line crosses the liquid-vapor coex-
istence curve (T/T, 0.90). For this mean-field model,
critical wetting does not occur until even closer to the
critical point (naxnely, above about T/T, = 0.93).

The Tarazona and Evans route to obtaining V (E) is to
solve the density functional theory using a simple stable
numerical method, such as Picard iteration, for a whole
range of initial profiles at different values of 8. Given a
sensible method of generating the initial profile (which
should be a smooth splice between a wall-liquid interface
and a liquid-vapor interface), a small number of iterations
(here I use 40 iterations at a mixing parameter of 0.1) is
sufFicient to generate a reasonably converged adsorbed
film pro6le and &ee energy, but at essentially the same
value of 8 as the starting pro61e. Typically, in Picard iter-
ation, the amount of adsorbed film varies less than 0.050.
in such circumstances. Accordingly, one can generate a
mean-field V(E) curve whose shape or form is well char-
acterized (provided of course one never mixes different
numbers of iterations), although the absolute value of the
surface &ee energy varies with the chosen iteration length
or the n»merical method. Note that only one value of E

corresponds to the true equilibrium state; the rest of V (I)
refers to mean-Geld metastable and unstable states in the
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FIG. 1. The mean-field interface potential of a wall-vapor
interface of square-well Quid adsorbed at a square-well wall,
as a function of the thickness of the adsorbed liquid film. The
temperature is at T/T, = 0.64 which lies above the FW line
(implying damped oscillatory decay) and the attractive wall
field is s = 1.81kT, (which just favors infinitely thick films
of liquid over a dry wall); see text.

spirit of van der Waals. Despite the inevitable fuzziness
to the physical reality of V(I) it is precisely the quan-
tity that appears in renormalization group (RG) theories
of wetting. Namely, V(E) is a bare interface potential
defined by including correlations up to some arbitrar-
ily chosen microscopic length. The Tarazona and Evans
procedure is in effect a much higher quality approach to
generating a bare potential than the usual crude rnatch-
ing criterion (which corresponds to no iterations at all
and thus is highly dependent on the chosen method of
splicing the two interfaces together to make the adsorbed
film). For full details of the numerical procedures used
the interested reader is referred to Ref. [22].

Figure 1 shows the interface potential at bulk liquid-
vapor coexistence, in the region of a first-order pseu-
dowetting transition, obtained from WDA theory of a
square-well fluid at a square-well wall. More precisely,
the plot shows the grand canonical potential of the wall-

vapor interface as a function of the thickness (E) of an ad-
sorbed liquid film, as de6ned by the Tarazona and Evans
procedure discussed above, in units of kT, (k denotes
Boltzmann's constant) per unit wall area (A). On this
scale one can just begin to discern the damped oscilla-
tory nature of the decay, as is appropriate to a state
point lying above the FW line in phase space. Ignoring
this aspect for the moment, Fig 1 is otherwise indicative
of a standard first-order wetting transition. Namely, if
one varies T (and px, and px, to remain at bulk liquid-
vapor coexistence) or equivalently the wall field s (the
method used here), the basic shape of the interface po-
tential remains as plotted. The only important change
is a shift in the relative depths of the two main minima
(at E 0 corresponding to a dry wall and at E = oo cor-
responding to complete wetting). The value of s used



4840 J. R. HENDERSON 50

to plot Fig. 1 lies just beyond the (pseudo)wetting tran-
sition point. At e = 1.795kT one finds essentially the
same curve except that now V(0+) = V(oo), which in the
absence of oscillatory decay would imply the presence of
a 6rst-order wetting transition &om a thin adsorbed 61m
to an infinitely thick 6lm of liquid. At even lower val-
ues of ~ the minimum at E 0 is the global minimum,
which corresponds to partial wetting (in a macroscopic
system partial wetting means that adsorbed liquid can
only adsorb as drops surrounded by vapor, with a non-
zero contact angle).

Fig. 2 shows the thick 61m region of Fig. 1, magnified
by a factor of 40. The damped oscillatory decay of the
interface potential (and hence its derivative, the disjoin-
ing pressure) is immediately apparent. These data also
highlight the dramatic significance of the FW line mech-
anism to the existence of true complete wetting. For
this system the global minimum lies at a film thickness
of around 12~ or 130. and regardless of how large one
makes e it is obvious that the global minimum of a
damped oscillatory interface potential can never lie at
in6nite 61m thickness. Since in this model the wall field
is strictly finite ranged, the oscillatory nature of the de-
cay of V(E) is independent of e (but not the amplitude
of the oscillations), the wavelength and decay length be-
ing determined purely by the bulk saturated liquid direct
correlation function. In fact, the region E ) 20o. of Fig. 2
is readily fitted to the functional form Eq. (1), without
the need for any pure exponential terin [i.e. with ampli-
tude a set to zero in Eq. (1)]. For this state point, the
analytic asymptotic form, defined by c(r) through the
pole criteria 1 —pL, c(q) = 0 [8,10], has an inverse decay
length of oo" ——0.26/0 and wave number ai ——6.24/o.
These values are fully consistent with fits to the den-

sity profile tails of isolated wall-liquid and liquid-vapor
density profiles generated by WDA theory (the slight dis-

crepancy with the values quoted in [8] being due to the
small system size used in the earlier work). Similar fits

to the tail of the interface potential plotted in Fig. 2 are
slightly less stable with respect to the value of o«' . This
is probably due to the nature of the Tarazona and Evans
procedure; i.e., during the 40 Picard iterations allowed
for minimization of the adsorbed film &ee energy, the
value of E becomes ill defined to around plus or minus a
numerical grid size (0.05o') [23]. Various fits averaged to
a slightly higher value of bio" (around 0.3/cr), but the
analytic asymptotic value is essentially equally applica-
ble. In short, the numerical solution shown in Fig. 1 and
Fig. 2 confirms that the interface potential decays with
the same asymptotic form as the profile tails.

The general theory of asymptotics in short-ranged
models yields a common profile form for the tails of all
density pro6les decaying into the same bulk liquid. In
the region of phase space applicable to Fig. 1 and Fig. 2,
this is a damped oscillatory decay with a wavelength and
decay length determined by the bulk liquid direct corre-
lation function [8]. Accordingly, above the FW line, the
growth of a thick liquid film at a wall vapor interface (be-
yond the direct range of the wall field) involves the inter-
ference between two damped oscillatory pro6les possess-
ing identical wavelength and decay length. This mecha-
nism ensures that the interface potential or its derivative,
the disjoining pressure, possess precisely the same asymp-
totic form. Figure 3 shows two examples from the same
system used to obtain Fig. 2. Case (a) corresponds to the
global minimum in the interface potential (in this case,

13cr), while case (b) is appropriate to the asymptotic
region. The latter plot clearly illustrates the interference
mechanism referred to above. Plot (a) shows that the
global minimum in the Bee energy occurs at a 61m thick-
ness at which the two pro6le tails are just beginning to
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FIG. 2. The tail region of Fig. 1, magnified by a factor of
40 so as to show the nature of the global free energy minimum
followed by damped oscillatory decay.

FIG. 3. Density profiles of liquid films adsorbed at a
wall-vapor interface, corresponding to two values of the in-

terface potential plotted in Fig. 1 and Fig. 2. The wall is

situated at z = 0. Case (a) shows the far edge of the liq-

uid 61m belonging to the global minimum in the free energy

(E = 12.7o); case (b) shows the "bulk" liquid region of a film

profile belonging to the asymptotic form of the interface po-
tential.
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separate; i.e., when one can just discern the first oscilla-

tion belonging to the vapor-liquid profile.
(E denotes the film thickness at the potential minimum)

and

kT
(~(~*) = in(A(((). (6)

III. car BROADENING AND I RG THEORY

The surface of a nearly &ee liquid-vapor (or liquid-

liquid) interface is constantly in motion, due to the pres-
ence of thermally excited capillary waves [24]. For short-
ranged models in dixnension d & 3, xnean-field theory
yields a very poor description of the cw broadening of a
liquid-vapor profile [25]. This is because for such models
d = 3 corresponds to an upper critical dimension, be-
low which the tails of density profiles are dominated by
universal capil}ary-wave correlations. Previous workers
have developed a linear renorxnalization group approach,
suitable for including the effects of cw broadening, in
the special but physically relevant case of d = 3 [19,16].
Here, one renormalizes an interface Hamiltonian (or &ee

energy) of the class

= pAA+ V(/),

Thus 7' = ln(A(~~), where A denotes a high wave number

cw cutoff (usually assumed to be A 0. ). Exactly
the same Gaussian renormalization applies to the density
profile or its derivative; i.e. , replace V(l + z) in Eq. (3)
with the mean-field density profile pMF (E+z). The linear

nature of the above RG theory arises in particular from

the replacement of the lower limit in the integral of Eq.
{3)with —oo. This neglect of collisions with the repulsive

wall potential is only valid if (~& is sufficiently small; see

below.
The I RG theory sketched above was first applied to

purely monotonic potentials [Eq. (1) with o.o ) 2o.o],
which yields first-order wetting and three classes of crit-
ical wetting phenomena [19,16]. Later, Chernov and

Mikheev [18] considered the opposite case [Eq. (1) with

ao ) 2nD"]. The general case follows &om the one-

dimensional Fourier transforin of Eq. (3):

where V(E) is a mean-field interface potential (as dis-
cussed in Sec. II above). The first term on the right side
of Eq. (2) represents the restoring force (p denotes sur-
face tension) acting against the change in surface area
(6A) resulting &om capillary-wave fiuctuations of the
profile. Typically, one takes p to be the surface ten-
sion of a free liquid-vapor interface, arguing that the
dominant effect of capillary waves arises &om the long
wavelength limit [26]. I shall only explicitly consider ap-
proaches based on this assumption; however, it should be
noted that recent work has concluded that the thickness
dependence of the interfacial tension [p(E)] cannot always
be ignored because wetting phenomena can be inHuenced
through next-to-leading-order contributions to the inter-
face Hamiltonian such that capillary-wave effects persist
even for d ) 3 [27].

The LRG theory of Fisher and Huse [16] is equivalent
to a Gaussian renormalization of the mean-field interface
potential:

V (~) = V(~) exp[—&'&i'(&)/2]. (7)

At first sight the asymptotic form of the interface poten-
tial cannot be affected by renormalization, apart &om
altering the amplitude of the profile tail, because the
Gaussian factor in Eq. (7) cannot contribute to the pole
structure. However, one must note &om Eq. (4) that the
amplitude goes to zero in the thick film limit, in the ab-
sence of any external cw damping such as gravity or finite
wall area. The basic idea of Chernov and Mikheev is that
a renorrnalized oscillatory interface potential can only re-
main dominant if the renorxnalization remains consistent
with the curvature of the potential being controlled by
the oscillation at the global minimum. In this regime
one has ay &) ao" and thus a dominant oscillation will

greatly reduce the value of the correlation length in the
plane of the interface; see Eq. (5). Explicitly, substitut-
ing the second term on the right side of Eq. (1) into Eq.
(7), one has

1 OO

V(~ +

(3)

V (E) = V(E) exp[—q2(j' (r)/2]
= av exp( —ao"E) exp( —~7.)

x cos[Ait —c1iAO (&{r)—gv], {8)

t'kT i
g2xp)

(4)

In d = 3 the capillary-wave broadening varies as the
square root of the film thickness. Briefiy (see, for ex-
ample, the reviews [6,28]),

where now q refers explicitly to the leading-order pole
defined by the mean-field model, av and 8v [in place
of b and 8 used in Eq. (1)] denote the mean-field oscil-
latory potential amplitude and phase, respectively, and
following Chernov and Mikheev I have introduced the
key renor malization parameter

where the appropriate value of ~ (r') is the length scale
at which one caa treat the renormalized potential with
standard cw theory,

&)(
=—&&/[&'V-. (&)/&I']i=i

(9)

[q&z
——niz —(o.o")z]. Then, evaluating Eq. (5) and sub-

stituting A(~~ = exp(~'), one has
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pAA~
exp[(2 —ur) w*] exp( —ao" I)

G~ 0.'&
(10)

which implies that (2 —u)r = ao"E to within a log-
arithmic constant. When this last result is substituted
back into the renormalized potential, one finds that the
efFective decay length has been renormalized [18]:

V ~ (/) exp[ —2ao" l/(2 —(u)].

Accordingly, only the weak capillary-wave regime ~ ( 1
is consistent with an oscillatory interface potential. Oth-
erwise, the efFective inverse decay length 2ao"/(2 —~)
is greater than 2ao" (which controls the repulsive part
of the interface potential arising &om bp~ contributions
[18]). Of course, the above scenario is only acceptable if
u ( 2, otherwise one is in a strong fluctuation regime and
no oscillatory potential term should survive. In fact, the
replacement of the lower limit of the integral in Eq. (3) is
only accePtable in the linear regime (&z(r') ao" & E which
is just slightly more restrictive, given that o.~ )& o.~" as
in Fig. 2. Apart from this latter detail (i.e. , ao" g 0)
the above discussion is identical to the LRG treatment
of a surface roughening transition at ur = 2 [6].

In the region of the triple point one will always be in
the regime 2as" & ao (see Sec. IV below), and so the
Chernov and Mikheev scenario reviewed above should ap-
ply. The particular case treated in Sec. II has ~ 5.4
and so the mean-field prediction would not be relevant
to thick wetting films. In fact, &om Eq. (9) it follows
that surface tensions appropriate to liquid metal systems
are required before complete wetting is replaced by the
oscillatory layering potentials predicted &om mean-field
theory. Exactly the same conclusion must hold for the
density profile tails. That is, repeating the above LRG
analysis, but with V(E) replaced by p(z'), one finds the
amplitude of an oscillatory profile tail is renormalized
by the factor exp( —q&(z/2) with the phase shifted by
aias"(&. In which case, at a distance E from an inter-
face the amplitude of an oscillatory tail is decaying as
exp[ —2as"E/(2 —u)]. For thick film wetting, this im-
plies that if ~ & 1 then the tails of the density profiles
will interact at leading order via a repulsive 2a~" term
rather than in an oscillatory fashion.

The above scenario of Chernov and Mikheev contrasts
with the conclusions of Evans et ul. [8]. The apparent
conflict is due to the latter authors taking the view that
in real systems one would expect (& to be controlled by
external fields, due to the extremely weak logarithmic
behavior of the pure wetting case, Eq. (6). For exam-
ple, when capillary waves are damped by the presence of
the earth's gravitational field g the maximum value of (

II

is p/mgb, p, where mAp is the change in mass density
across the fluctuating interface. Similarly, if an experi-
mental system was limited to a finite planar area A, then
( would necessarily be restricted to remain below Az.

II

For example, taking as a typical value A(~~(max) 10,
the cw damping would cease to reduce beyond about

16. For the particular case discussed in Sec. II
this translates into (& & 4.40' . This suggests that the

LRG criterion ((&ao" & E) is essentially always met in
the presence of external cw damping (in d = 3); i.e., the
central part of the liquid-vapor interface does not wan-
der suKciently to experience collisions with the repulsive
wall potential. The presence of external damping is suf-
ficient to prevent the renormalization of the oscillatory
decay length discussed by Chernov and Mikheev. How-

ever, the Gaussian nature of the cw damping means that
the amplitude of an oscillatory contribution is drastically
reduced for values of (~/o greater than about 0.3. For
the example discussed above, the cw damping would pre-
vent the damped oscillatory form from dominating the
interface potential decay until films of many 100s of o.

thick had formed, by which time the magnitude of the
energy barrier separating the global minimum from com-
plete wetting would be very small indeed. Nevertheless,
the presence of external cw damping means that at suf-

ficiently large 8 an underlying mean-field oscillatory in-
terface potential must eventually win, since (z is finite,
and so formally complete wetting is prevented for sys-
tems lying above the FW line in (p, T) space. In practice
however, the Chernov and Mikheev criterion, ~ & 1, is

likely to remain a good guide as to the likelihood of being
able to observe the effects of a renormalized damped os-
cillatory potential. At the triple point of argonlike fluids

3. The most favorable case would appear to be col-
loidal systems, since then o.

&
should become extremely

small (as the wavelength will now be determined by a
large colloidal particle diameter) while p should still be
typical of ordinary fluids, implying ~ && 1.

To conclude this section, it is interesting to contrast
the above scenario with the situation that would be found
for complete drying at a wall-liquid interface. In short-
ranged wall-fluid models complete drying is found at low

values of e, since if liquid molecules are significantly
more attracted to each other than to the wall then at
liquid-vapor coexistence it must become favorable for a
thick (formally infinite) film of vapor to adsorb at the
wall-liquid interface. The complete drying case is diEer-
ent to complete wetting over much of the liquid-vapor co-
existence curve because the asymptotic forms of the liq-
uid tail and the vapor tail differ. This arises because the
FW line is constrained to lie above the mean-Geld liquid
spinodal [8] and so the asymptotic behavior of a vapor tail
of a liquid-vapor interface or a wall-vapor interface (or a
bulk vapor radial distribution function) is always domi-
nated by a monotonically decaying form. Thus, leaving
aside the possible modification of the repulsive part of
the interface potential by a damped oscillatory contribu-
tion, the case of complete drying in short-ranged models
is precisely that envisaged in the early theories of wetting
transitions [19,16]. Furthermore, the values of ao appro-
priate to a mean-field vapor tail are much higher than
for a liquid tail (away from T ) and so the renormaliza-
tion of a drying film is much greater than for a wetting
film; for the system discussed in Sec. II the value of u
defined by o.o

" is around 1.5, which is quite close to
the strong fluctuation regime w ) 2. A drying film also
possesses the beneficial characteristic that the local struc-
ture induced by the wall is extremely weak, so that the
interface potential is almost entirely determined by the



50 WEl I'ING PHENOMENA AND THE DECAY OF CORRELATIONS. . . 4843

simple mean-6eld form renormalized by capillary waves.
The fact that in this case essentially all medium-range
and long-range correlations in the film are due to capil-
lary waves has been successfully exploited in an extensive
computer simulation study [29]. Unfortunately, there ap-
pears to be no documented report of an experimentally
observed complete drying film, which may well be due
to the ubiquitous presence of power-law dispersion inter-
actions. As discussed in Sec. IV below, the presence of
in6nite-ranged power-law interactions qualitatively alters
the asymptotic analysis. The pole on the imaginary axis
(ns) no longer exists and instead the longest-range corre-
lations are controlled by singular behavior at the origin.
Eventually, all density profiles and pair distribution func-
tions must decay as a power law. However, for the theory
of wetting or drying involving thick 61ms, this situation
is actually a bonus because in d = 3 power law tails
are not renormalized [30] and so the mean-field interface
potential is suf5cient. In fact, a full solution can be writ-
ten down for thick film continuous wetting phenomena in
the presence of power-law interactions [31]. Since com-
plete wetting films dominated by dispersion forces are
well known classical phenomena [3], some authors have
suggested that the absence of any experimental systems
showing complete drying is due to fundamental asymme-
tries between the solid, liquid, and vapor polarizabilities
that determine the attractive versus repulsive nature of
the dispersion force contribution to an interface potential
[32]. Finally, the issue of complete drying has been given
a recent twist by a phenomenological argument that in-
cludes the effect of line tension at three-phase contact
regions present in nonplanar symmetry [2]. Namely, re-
gardless of the details of microscopic interactions, a posi-
tive line tension will act to reduce the wall-liquid surface
area of any drop of liquid on a nearly dry surface. For suf-
ficiently small drops this thermodynamic argument pre-
dicts a jump to zero contact [2].

scales applicable to wetting phenomena. Apart &om cw

Quctuations, all of these length scales arise &om the de-

tails of intermolecular forces. The unavoidable conclusion
&om this exercise is that everyday macroscopic wetting
phenomena mask a truly amazing sensitivity to the de-

tails of microscopic interactions.
The behavior of the length scales controlling the

asymptotic structure of simple finite-range models of Bu-

ids is given in Fig. 4. The curves show data de6ned

by the direct correlation function of square-well Quid

along the saturated branch of the liquid-vapor coexis-
tence curve, with attractive interactions treated in the
random phase approximation (the same WDA theory
used in Sec. II). All the inverse decay lengths plotted
are defined in Eq. (1), apart &om o.sz

"which refers
to the leading-order correction to the asymptotic anal-

ysis beyond the leading-order poles (i.e., defined by the
damped oscillatory pole possessing the second to largest
decay length [10]). Tq„de ntoscthe triple point temper-
ature (which was only required here to an accuracy of
about 10'%%ug). There are good reasons for supposing that
Fig. 4 represents the genera1 picture for almost aD short-
ranged models of simple fiuids. In particular, (i) the FW
line is constrained by the position of the mean-6eld liquid
spinodal so that it will cross the saturated liquid curve
(the point where ao ——ao" in Fig. 4) at approximately
the same point for all models whose liquid-vapor coexis-
tence curves scale roughly with the same set of reduced
variables (supported by a recent analysis using sophisti-
cated liquid-state integral equation theory [15]),and (ii)
simple models of liquids invariably yield an oscillatory
pole that touches the real axis just beyond the melting
line [7], and in any case it is inevitable that ao"0' (( 1 at

IV. DISCUSSION

The theory of wetting phenomena is based on identify-
ing an underlying mean-field interface potential, which is
then subject to possible renormalization due to capillary-
wave fluctuations. In d = 3, cw effects are marginal
and wetting phenomena are subject to a plethora of non-
universal length scales, arising from the details of the
intermolecular interactions. In the case of thick wetting
6lms, the interface potential is determined by the asymp-
totic form of weakly interacting density profile tails. Ac-
cordingly, a microscopic theory of wetting phenomena in
three-dimensional systems must begin with a detailed in-
vestigation of the asymptotic behavior of interfacial pro-
files predicted by mean-field theory. Only after this stage
does it make sense to consider the inclusion of cw fIuctu-
ations. However, the complexity of this basic initial step
has proved dauntjng and to date no single group have
attempted a general approach, choosing instead to just
ass»me one possible class of physically relevant interface
potentials. In this extended discussion I shall attempt
a global survey of the many potentially relevant length

b
C)

0
0.0

I

0.2 0.4 0.6
I

0.8 1.0

FIG. 4. The global behavior of inverse decay lengths con-
trolling the mean-field asymptotic structure of short-ranged
models of saturated liquid. Speci6c data were generated from
the bulk Buid direct correlation function defined by the WDA
theory discussed in Sec. II, but there are good reasons for
believing that the qualitative picture is essentially universal.
See text.
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the triple point. The various classes of thick film wetting
phenomena in mean-6eld models of short-ranged Buids
can be read &om Fig. 4 as follows. Repulsive contri-
butions to an attractive interface potential will vary as
bp2, the 2o.o and 2o.p curves. Note that o.o

"remains
too high for it to be able to interfere here. The form of
an attractive interface potential will be controlled in the
thick 61m regime by whichever of the two inverse decay
lengths ao and no' is the smallest. Thus, &om Figure 4
the regime of Chernov and Mikheev (oscillatory inter-
face potentials) holds from the triple point to beyond
halfway to the critical point. The traditional theory of
wetting phenomena, based on pure monotonically decay-
ing potentials, is restricted to a fairly small region close to
the critical point (where 2o;o ( no"). In between these
two isolated classes lie crossover regions where next-to-
leading-order contributions need to be taken into consid-
eration, namely, a regime at intermediate temperature
where o.&" ( ap ( 2o.p", followed by a band of higher
temperature states where o.p ( o,p ( 2ao. Whether
or not these higher order terms contribute repulsive or
attractive contributions to the interface potential might
well be model dependent.

The clear message &om Fig. 4 is that, over much of
the saturated liquid curve, mean-field interface poten-
tials of short-ranged models are oscillatory in the thick
61m regime. This oscillatory structure arises &om repul-
sive intermolecular forces and has a wavelength close to
the repulsive-core diameter. Such an interface potential
is incompatible with complete wetting, since the global
minimum must lie at finite E. Instead, pseudo wetting
films of 10o —20o are implied. For slightly undersatu-
rated systems, an oscillatory interface potential is associ-
ated with adsorption isotherms containing layering tran-
sitions that end at critical points with 2D universality

[»l
When using I.RG theory to incorporate the effects of

thermally excited cw Buctuations, it is immediately ap-
parent that oscillatory structure is markedly renormal-
ized for (~ ) 0.30. In particular, Gaussian smoothing
of an oscillatory tail leads to a dramatically reduced os-

cillatory amplitude. In the absence of external sources
of cw damping (&2 actually diverges with E (in d = 3).
The resulting renormalization is then so severe that the
decay length of an oscillatory tail is reduced [18]. For
short-ranged models of argonlike Buids, the renormaliza-
tion is strong enough to completely suppress damped os-
cillatory structure, while for systems with signi6cantly
weaker cw broadening (w ( 1) LRG theory predicts a
transition &om pseudo wetting to complete wetting at
a suf5ciently high temperature. However, in d = 3 the
presence of earth's gravity or 6nite wall area is sufhcient
to restrict the maximum value of (~ to around 2o, so
that the damped oscillatory asymptotic form cannot for-

mally be altered. Notwithstanding this formal result, for

(~ ) 0.3o the oscillatory amplitude is reduced so much
that pseudo wetting 6lms will be found at thicknesses of
1000 or more. In lower dimensional systems, the latter
efFect will be much more extreme and cw broadening is
too strong to be treated by LRG theory [33].

So far we have only considered length scales arising

&om cw Buctuations and short-ranged liquid correlations.
Since the latter decay exponentially it is clear that the in-
verse decay length (A) of an exponentially decaying wall

field has precisely the same significance to wetting as the
length scales plotted in Fig. 4. Accordingly, in such mod-
els the class of wetting alters whenever the value of A is
small enough to dominate the leading-order or second-
order decay of the interface potential [34]. The eKects
of cw Buctuations on an interface potential dominated
by an exponential wall 6eld are directly analogous to the
standard LRG theory of critical wetting [16,35]. Most
recently, cw renormalization of the surface tension has
also been considered [27].

The sensitivity of wetting phenomena to the details
of microscopic interactions allows for a plethora of non-
universal behavior. For example, various groups have
considered cases where the interface potential contains
a double attractive well structure [36], which obviously
possess some features analogous to the case of oscilla-

tory potentials. Experimentally, a wide variety of such
designer wall-fluid systems are accessible via the technol-

ogy known as self-assembled monolayer systems [37,38].
Although complicated by the plethora of potentially

relevant length scales, the above scenario is straight-
forwardly applicable to short-ranged models of wetting
phenomena. However, the situation in typical experi-
mental systems is greatly complicated due to the ubiq-
uitous presence of power-law dispersion forces. When
power-law interactions [P~(r)] are present the tails of a
liquid-vapor interface must eventually decay as a power
law, albeit with a very small amplitude proportional to
S(0)—:pkTyT where yT denotes a bulk Huid isothermal
compressibility [14]. In bulk Huids OZ theory implies

h(r) + S(0) P~(r—)/kT [39]. Wall-Huid interfaces can
also be treated with OZ theory, via the introduction of
wall-particle correlation functions [10]. One finds that
c „(0) S(0) i so that the presence of a wall or an-

other bulk phase increases the power-law amplitude by
removing one factor of S(0) [9]. The Huid mediated dis-

persion force contribution to solvation structure between
two walls is therefore independent of S(0) [9]. The single
most important point regarding dispersion force effects
is that in d = 3 capillary-wave Buctuations are too weak
to renormalize power-law tails, even in the absence of ex-
ternal damping [30]. Accordingly, true critical wetting
is described by mean-Geld theory and in fact an explicit
general solution can be derived [31]. However, for all
classes of wetting phenomena afFected by intermediate-
ranged structure one must continue to bear in mind the
scenario obtained from short-ranged models.

A simultaneous treatment of power-law tails and
intermediate-range structure is somewhat complicated
because one cannot describe power-law correlations in
terms of simple poles; rather one has to instead expand
about the origin of the complex plane. As a consequence
one loses the pole on the imaginary axis responsible for
the no monotonic decay in Eq. (1). In contrast, one still
6nds damped oscillatory poles more or less unaltered by
the inclusion of dispersion forces [15]. Thus in mean-Held

models the intermediate-ranged structure of dense liquids
is still dominated by damped oscillatory correlations. For
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bulk liquid distribution functions and wall-liquid pro61es,
the crossover between oscillatory behavior and asymp-
totic power-law decay is controlled partly by the value
of S(0). Thus near the triple point one can only see
the power-law decay at very long range (which for inter-
face potentials means thick wetting films only) [15]. Ac-
cordingly, in znean-6eld models of experiznental systems,
Fig. 4 should be a good guide to the presence of layering
transitions in moderately thick wetting films. Even the
inclusion of cw Quctuations need not remove this latter
conclusion [18]. However, since oscillatory structure is
strongly renormalized by cw broadening whereas power-
law tails are essentially unafFected, it follows that the
region of phase space where damped oscillatory interface
potentials play a role will be greatly reduced by the in-
clusion of cw eH'ects whenever L ) 0.3o.

To conclude this survey, I shall note the equal signif-
icance of the above analysis to complex Buids, such as
mixtures and charged Quids. The case of short-ranged
models of Quid mixtures is a straightfoward generaliza-
tion of the pure Huid analysis [10]. The pole analysis
yields a unique asymptotic forzn for all pair distribution
functions and wall-component density pro61es; in partic-
ular, there is a single FW surface in phase space separat-
ing damped oscillatory asymptotic structure &om mono-
tonic decay [10]. Thus the number of relevant length
scales does not grow out of hand. Although to date the
equivalents of Fig. 4, appropriate to mean-6eld models
of wetting at, liquid-liquid, liquid-vapor, and wall-vapor
interfaces of mixtures, have yet to be derived, there is
no reason to expect damped oscillatory interface poten-
tials to be any less dominant [40]. LRG theory of cw
broadening is equally adaptable to all classes of Quid-

Quid interfaces and very similar eH'ects will arise &om
Gaussian smoothing as for a pure Quid liquid-vapor in-
terface. Once again, the significance of cw Huctuations
hinges on the size of Ir~.

Pole analyses of asymptotic correlations in the restric-
tive primitive model of charged Huids (treated with the
hypernetted-chain theory or the generalized mean spher-
ical approximation) have recently been highlighted by
various groups [13,12]. Furthermore, in Ref. [12] the au-
thors have been able to justify a qualitative significance
of their results to experimental systems of weakly asym-
metric binary molten salts and electrolytes. The presence
of charge neutrality (screening) reduces all correlations to
the short-ranged model form given in Eq. (1). However,
there are now two sets of simple poles that one must

consider to map out the asymptotic behavior throughout
phase space; namely, one set controlling long-range cor-
relations in the charge density with another set arising
from short-ranged interactions as in the simple Quid case.
There are thus two iznportant crossover lines in the phase
space of charged Buids, signaling a change from mono-
tonically decaying structure to damped oscillatory decay
[12]. The equivalent of Fig. 4 therefore contains twice
as many potentially relevant length scales. Wetting phe-
nomena in electrochemical systems should therefore dis-

play remarkably rich behavior, directly interpretable in
terms of znicroscopic length scales. Here one should note
the ease of control one has over the sign and strength of
electrode potentials (cf. e ).

To sum up, a proper theory of wetting phenomena
must begin with a clear identi6cation of all length scales
that znight possibly be relevant to an interface potential.
This can be done by concentrating on the znean-6eld pic-
ture, noting that a careful treatment of repulsive force
contributions is essential to obtain a proper description
of damped oscillatory terms. For short-ranged models it
is essential to understand the relative behavior of the o,o
and ao" poles (Fig. 4), defined by the bulk liquid direct
correlation function. The quality of an interface poten-
tial will be directly related to the quality of the bulk
fluid direct correlation function belonging to a given the-
ory. Furthermore, the oscillatory poles continue to play
an important role even in the presence of power-law in-
teractions. One must also consider length scales arising
directly from the wall field. Then, in d = 3, one can use
LRG theory to include the effects of cw Huctuations. The
main conclusion here is that cw broadening of oscillatory
structure is especially significant, although the presence
of external damping protects the ultimate forzn of the
asymptotic behavior. The implication of damped oscilla-
tory interface potentials to the suppression of coznplete
wetting phenomena is of particular note. The sazne gen-
eral conclusions hold equally for wetting in Huid mixture
systems. Finally, thanks to recent progress in describing
the asymptotic structure of charged Buids, one could now
extend the entire general theory of wetting to encompass
electrochemical systems.
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