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The equilibrium structure of various crystal-fluid interfaces in hard-sphere and Lennard-Jones systems

is investigated by a density functional approach based on a weighted density approximation which yields

reliable bulk phase diagrams. The practically free minimization of the free energy is achieved. As a re-

sult the interfaces between the hard-sphere fluid and the fcc hard-sphere crystal are found to have a
width of typically seven hard-sphere diameters. A comparison with previous constrained variational cal-

culations demonstrates that free minimization is indispensable to obtain reliable values for the surface

tension. In accordance with recent computer simulations we also find complete wetting of a hard struc-

tureless planar wall by the hard-sphere crystal at crystal-fluid coexistence. Finally, the fcc-crystal-gas
interface of a Lennard-Jones system exhibits complete surface melting near the triple point for different

surface orientations. The width of the interfacial quasiliquid layer depends significantly on temperature

and on surface orientation.

PACS number(s): 68.45.—v, 64.70.—p, 68.35.—p

I. INTRODUCTION

The interface between two coexisting phases in thermo-
dynamic equilibrium normally has a microscopic width
and is characterized by an interfacial tension measuring
the free energy cost per unit area in creating it. If one of
the two coexisting phases is crystalline, the surface ten-
sion of a planar interface is anisotropic [1] and expected
to be smaller for densely packed planes than for looser
packed ones. This orientational variation of the interfa-
cial free energy is particularly important in determining
the equilibrium crystal shape [2].

A similar situation arises when a solid or fluid is
confined by an inert hard wall. Acting as an external in-

homogeneity on the bulk system, the wall induces an in-
terface of microscopic width with a characteristic wall
tension. If the bulk system is close to coexistence, the
balance between bulk and surface free energies may drive
surface phase transitions such as the wetting of the wall

by the metastable bulk phase [3]. In the case of complete
wetting the width of the wetting layer diverges at coex-
istence. Similarly, an interface between two coexisting
phases near a triple point may be wetted by the incipient
phase. A prominent example is "surface melting" of a
solid in coexistence with its vapor phase. When the triple
point is approached along the sublimation line, a quasili-
quid layer may be formed at the solid surface which
grows steadily towards a bulk liquid phase, provided the
interfacial wetting is complete.

In the last decade, the study of solid-fluid interfaces
has advanced considerably on the experimental as well as
on the theoretical side; for recent reviews see [4] (experi-
ments) and [5] (theory). However, as far as microscopic
theories are concerned where the only input should be the
interparticle interaction [6], the understanding of interfa-
cial structure is still limited even for very simple systems
such as hard spheres or noble-gas-like models with pair-
wise Lennard-Jones forces. The problem is that one
needs an accurate microscopic theory of bulk melting be-

fore interfacial problems can be addressed. Recently,
liquid-based density functional methods have been
developed [5—8] where freezing is viewed as a condensa-
tion of liquid density modes. When applied to the hard-
sphere fluid, the bulk phase diagram turned out to be in

satisfactory agreement with the results of computer simu-

lation. In this paper, we employ the density functional
approach to study the equilibrium density distribution of
various crystal-fluid interfaces of hard-sphere and
Lennard-Jones systems. In particular, we use the
weighted-density approximation (WDA), originally intro-
duced by Curtin and Ashcroft [9,10].

Previous similar studies of interfaces frequently invoke
the square-gradient approximation for slowly varying or-
der parameter profiles, which leads to a van der Waals or
Landau-type scheme where the parameters are obtained
microscopically from the density functional theory
[11,12]. With this strategy the structure of both the
hard-sphere crystal-fluid interface [13] and the crystal-
gas Lennard-Jones surface near the triple point [14] have
been investigated in terms of order parameter profiles.
Only few attempts have been made to avoid the square-
gradient approximation and to perform a direct minimi-
zation of the free energy functional. Curtin [15,16] ap-
plied the WDA to the hard-sphere and Lennard-Jones
crystal-liquid interfaces with a density profile described
solely by two parameters. Cherepanova and Stekolnikov
[17] examined surface melting of a Lennard-Jones system
near the triple point [18] within a simplified WDA pro-
posed by Tarazona [19].

Functional such as the generalized effective liquid ap-
proximation (GELA) [20], the modified weighted-density
approximation (MWDA) [21], and the hybrid weighted-
density approximation (HWDA) [22] are computationally
less demanding than the WDA but cannot be employed
to investigate crystal-fluid interfaces since these approxi-
mations are based on a globally averaged density which is
not well defined in the case of systems with two semi-
infinite bulk phases. As an interpolation between the
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MWDA and the WDA, the planar-averaged weighted-
density approximation (PWDA) was recently introduced
by Marr and Gast [23] and applied to explore crystal-
fluid hard-sphere interfaces as well as the solid-gas and
solid-liquid interface of Lennard-Jones systems within
Curtin's two-parameter ansatz.

Our present work differs from the previous ones in one
major respect: We performed a practically free minimi-
zation of the WDA functional. We treat hard-sphere
crystal-fluid interfaces with different orientations and the
hard-sphere crystal in contact with a hard wall as well as
surface melting of a Lennard-Jones system. The fcc-
crystalline-fluid surface tension of hard spheres is re-
duced by a factor of 2 as compared with the results of
Curtin [15] and with those of Marr and Gast [23]. We
also find that a hard wall is completely ~etted by a hard-
sphere crystal at solid-fluid coexistence, in accordance
with recent molecular-dynamics simulations of Cour-
temanche and co-workers [24]. Finally, a Lennard-Jones
fcc crystal undergoes complete surface melting near the
triple point for (111), (100), and (110) orientation. The
wetting layer displays a rich structure involving residual
crystallinities and a density oscillation induced by the va-
por side of the interface.

The presentation is arranged as follows. In Sec. II we
introduce the density functional approach and discuss the
WDA. The numerical procedure applied to minimize the
free energy functional is summarized in Sec. III. Results
for the different hard-sphere crystal-Quid interfaces are
given in Sec. IV and for the surface melting in Lennard-
Jones interfaces in Sec. V. We conclude in Sec. VI. A
preliminary account of this work was published else-
where [25].

II. DENSITY FUNCTIONAL THEORY

In the density functional approach the central quantity
is the grand canonical free energy functional Q[p] of an
inhomogeneous system with local density p(r), tempera-
ture T, and chemical potential p. The basic variational
principle [26] establishes the existence of an excess free
energy functional V,„,[p] such that the equilibrium densi-
ty minimizes the grand canonical free energy functional,

&[pl =&...[p]

+ fd r p(r)( V,„,(r) —p
+k~ T [in[A p(r) ]

—1] ) .

The minimum of Q[p] equals the grand canonical free
energy in thermal equilibrium. In Eq. (1), A denotes the
thermal wavelength and V,„,(r) is an external potential
induced, for instance, by a wall. In general, the explicit
form of P,„,[p] is not known and one has to rely on ap-
proximations. We shall proceed with the weighted-
density approximation for hard spheres combined with a
perturbative treatment of the Lennard-Jones potential.

A. WDA for hard spheres

The excluded volume interaction for hard spheres is
given by the pair potential

0 for r~o
V r='

Hs ~ for r(cT (2)

with 0. denoting the diameter of the spheres.
In the original WDA [9], the excess free energy func-

tional for hard spheres is assumed to be of the form

V,„,[p]= fd'r p(r)%(p(r) ), (3I

where 4(p) is the excess free energy per particle for a
homogeneous density; the weighted density p(r) is deter-
mined implicitly by

p(r)= f d r'w(~r —r'~, p(r))p(r') . (4)

The weight function w(r, p) is normalized and chosen in
such a way that the liquid structure factor S(k,p) is
reproduced by the functional V,„,[p] in the limit of a uni-
form density. For %(p) and S(k,p) we adopt the analyti-
cal Percus- Yevick expressions [27].

In order to simplify the numerical computation of the
weighted density p(r) via Eq. (4), we introduce a further
approximation. Since by construction the weight func-
tion w(r, p) depends smoothly on the density p, it may be
expanded in a Taylor series around a fixed reference den-
sity p'. We choose p*a. =0.5, lying roughly between the
ideal gas limit and the solid density at freezing, and trun-
cate the Taylor expansion after the quadratic term.
Hence we set

2
1 8ll

w(r, p)= g, [p —p*]" w(r, p*) .
0 n . ()p

A comparison of w(r, p) obtained from (5) with the solu-
tion of the complete WDA reveals that the differences are
negligibly small for physically relevant densities near p'.
Figure 1 demonstrates that the density-expanded weight
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FIG. 1. Weight function m(r) of the WDA
vs reduced distance r /a. for po =0.15 and 0.9.
The results from the full WDA (solid lines)
practically coincide with the dashed lines
which correspond to the quadratic expansion
of ~(r,p) around p*=0.5o
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TABLE I. Coexisting liquid and fcc-crystal densities, pf0 and p, o. , for a hard-sphere system ob-
tained with different methods: computer simulation [47], the density-expanded WDA, and the original
WDA (from [9,21]). The liquid free energy 4 was obtained using either the Percus-Yevick (PY) or the
Carnahan-Starling (CS) equation of state, and the crystal density parametrization was either Gaussian
or free. The Lindemann parameter L of the coexisting crystal [29] is also given.

Method

simulation
WDA
WDA
WDA
WDA

Expanded

no
yes
yes
yes

CS
CS
PY
PY

Parametrization

Gaussian
Gaussian
Gaussian
free

pf 0' 3

0.943
0.916
0.916
0.880
0.853

3pco

1.041
1.045
1.044
1.017
1.044

0.136
0.093
0.097
0.105
0.160

function (5) practically coincides with the nontruncated
w(r, p) even for low densities po =0.15, as well as for
po. =0.9, a density near freezing. Consequently, the ex-
pansion (5) is justified. Equation (4) can now be solved
analytically for p(r} yielding a unique physically relevant
root [28].

During the minimization of the free energy functional,
overlapping hard-sphere configurations must be excluded
[14]. In terms of the inhomogeneous density field p(r)
this constraint means that

B. Density functional for the Lennard-Jones system

We treat the Lennard-Jones (LJ) potential
' 12

V~(r }=4m
T

6

within hard-sphere perturbation theory [10]. In the first

step, made for numerical reasons, we follow Foiles and
Ashcroft [30] and approximate the LJ potential by a sum
of two Yukawa potentials,

fd r'e ——~r
—r'~ p(r') & I

2

has to be satisfied at any point r; here e(x } denotes the
unit step function. The exact but unavailable free energy
functional respects this relation automatically, of course.
Here, however, this constraint has to be implemented ex-
plicitly, since the WDA as well as the other known ap-
proximation schemes have no internal mechanism to ex-
clude such unphysical configurations. Except for this
constraint the minimization within the subspace of fcc-
lattice-periodic functions will be practically free, includ-
ing also a variation of the lattice constant. Details of the
numerical procedure to obtain the bulk phase diagram
are given in Sec. III. The deviations of the equilibrium
density field from the usual Gaussian peak form were pre-
viously discussed in detail [29] and turned out to be very
small. However, the anisotropy of the solid density dis-
tribution deviates qualitatively from the simulation re-
sults.

Bulk freezing data are collected in Table I together
with those from other approximation schemes. The
Percus-Yevick and the more accurate Carnahan-Starling
expressions for the liquid free energy yield different re-
sults for the coexisting liquid and solid densities. Since
the treatment of interfaces requires a unified description
of coexisting bulk phases we adopt the Percus-Yevick
form exclusively. By the free minimization the coexisting
densities are also changed slightly in compari. son with the
usual Gaussian parametrization. We checked that the re-
sults are not affected by the quadratic density expansion
of w(r, p). Irrespective of the approximate scheme em-
ployed, the coexisting densities are found to be in reason-
able agreement with the computer simulation results.

VLJ(r ) = VFA(r )

0 r=eE—exp —a ——1
1

T—exp —b ——1
CT

with E=2.019869, a=14.73418, b=2. 67924. In the
next step the potential VFA(r) is separated into a repul-
sive and an attractive part, VF~(r)=V„(r}+V,(r}, ac-
cording to the prescription of Weeks, Chandler, and An-
derson [31]

VFA(r) for r 2 cr

V (r)= '
(2i iso, } for r (2i iso. (9)

The repulsive core is now replaced by an effective
temperature-dependent hard-sphere diameter o(T) ob-
tained from the Barker-Henderson formula [32]

o(T)= f drI1 —exp[ —V„(r)/k&T]}. (10)

In the last step the free energy functional is split into a
part arising from the repulsive core and the contribution
from the attraction. For the first part, denoted by
QwD~[p], we substitute the WDA expression for hard
spheres with diameter n(T). The attraction is treated in
a mean field fashion. However, there is apparently no
unique way to do this. The criteria for our procedure are
first that the free energy of the uniform liquid should be
reproduced and second that the solid and the liquid are
treated on the same footing, which is necessary for a con-
sistent description of crystal-fluid interfaces. With these
requirements in mind, we are led to the following ansatz:
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Q[p]=QwD~[p]+ f d r p(r)[%'„i(p(r))—VHs(p(r))]

+—fd r f d r'[p(r) —p(r)][p(r') —p(r')]1

tisfactory. The triple point is at TT=0.75m/k8 in the
WDA; the simulation result is TT =0.68+0.02m/k~. In
comparison with the usual Gaussian ansatz the free
minimization in the solid phase shifts the solid-liquid
coexistence curve to smaller densities.

III. NUMERICAL IMPLEMENTATION

where rNN is the nearest neighbor distance in the bulk
crystal. Here we follow with a minor modification (see
below) arguments put forward by Curtin and Ashcroft
[10] and include a step function 8(r ) in the attractive in-

teraction to mimic the correlation "hole" for r & rz~ /2 in

the pair distribution function which prevents self-
interaction [18].

IfP(r } is replaced by the mean density of the crystal p„
then Eq. (11) reduces to the corresponding expression
given in Ref. [10]. However, in dealing with interfaces
we must avoid globally averaged densities. Therefore we
introduce an additional locally weighted density,

p(r) =f d r'p(r')m( ~r
—r'~ ) . (12)

The normalized linear weight function ir(r} is chosen
such that rapid modulations of p(r) in the crystalline
phase are suppressed. Accordingly, we set

24w(r)= 1— 8(o(T) r) . —
o(T) . cr(T)

(13)

Since tU(r ) is normalized, the last term in (11) vanishes in

the homogeneous liquid. Consequently, the excess free
energies per particle, +Hs(p) and +Li(p), of the hard

sphere and the LJ liquid are reproduced in the uniform
state. As for VHs(p} we take the analytic Percus-Yevick
expression, and we employ the results of Verlet and Weis

[33] for VLi(p).
The bulk phase diagram is displayed in Fig. 2. Com-

pared with the results from computer simulation [34]
with a truncated LJ potential, the overall agreement is sa-

ksT/e

1.5 .
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FIG. 2. Bulk phase diagram for a Lennard-Jones system ob-

tained from density functional theory with free minimization of
the solid density (solid line) and the Gaussian parametrization
(dashed line). Squares denote simulation data for a truncated LJ
potential from Ref. [34].

Let us consider a planar crystal-Quid interface with
surface normal in z direction in a finite rectangular slab
with periodic boundary conditions in each direction. The
widths L and L of the slab in x and y direction are
chosen to be a few lattice spacings. In contrast, the
length L, of the slab in z direction must be sufficiently

large to eliminate the interaction of periodically repeated
interfaces. Here, the short range of the forces enters cru-
cially. Our choice for the length L, is typically between

17o and 26o.
The density is parametrized in terms of its Fourier

coefficients,

p(r)= gp&exp(iG r), (14)

where G=(G„,G, G, ) are the reciprocal lattice vectors
of the periodic slab. The infinite sum is truncated for
IG„I&~N„IL„~G,~

&~&, /L, , and ~G, ~
&~N, IL„

where N„,N, and N, are integers such that the ratios

L„/N„,L~/N, and L, /N, are roughly equal. This
truncation provides in real space a set of equidistant grid
points where the density field is defined. The distances
between two neighboring grid points, L, /Nz Ly/Ny,
and L, /N„are typically of the order of o/40. Hence
even the rapid density variations in the solid phase can be
resolved with high accuracy. For an interface calcu1a-
tion, the total number of variational parameters [pc] is

of the order of N=N&NyNz 2X10, which is at the
storage limit of present-day computers. Because of sym-

metry, this number may be reduced to maximally
0.5 X 10 independent variables. Minimization is also per-
formed with respect to the system size L, L, and L, .

The convolution integrals in the density functional are
evaluated in Fourier space whereas the local nonlinear

part of the functional is computed in real space. Efficient
fast-Fourier-transformation (FFT) routines are then used

to switch between real and reciprocal space. We intro-
duce free energy penalties in order to eliminate overlap-

ping hard-sphere configurations, as described in Ref. [14].
By employing the Fourier representation of the density,
Eq. (14), the gradient of the free energy functional with

respect to the N variational parameters [po] can be cal-

culated with one FFT operation whereby the computa-
tional e6'ort is drastically reduced.

There is a variety of methods available for minimiza-
tion in a high-dimensional parameter space starting from
a given point, provided the functional and its multidi-
mensional gradient are known. For our purpose, we

found a procedure, which might be called simulated

quenching, very efficient and in general superior to a con-
jugated gradient scheme. For an outline of the method,
which is inspired by simulated annealing, let us consider
a fictitious particle in multiparameter space
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[I';]—:[p&,L„,L~,L, J with a mass m which moves ac-
cording to Newton's second law where the gradient
BF/81',. acts as force [35]. Thereby, trajectories [I',(t)]
with a time parameter t are generated. The process starts
from an initial density profile at t =0 with zero velocity
[I;(0)]. When the kinetic energy reaches a maximum
we stop the particle ("quenching") and then start the pro-
cess again. Newton's equations are integrated using a
finite time-step method. On a Cray YMP one time step
consumes a CPU time of about 15 s. Depending on the
initial density profile, the minimization process takes
about 10 -10 time steps. The interfacial tension is ob-
tained after separation of the minimal free energy func-
tional into a bulk and a surface part.

IV. HARD-SPHERE INTERFACES

3-

2-

pJ ~3
3

pm~

3

3 4

(a)

(b)

z/cz

A. Crystal-fluid interface

We first consider a planar hard-sphere fcc-crystal-
fluid interface at coexistence. The structure of the inter-
face is conveniently characterized by the laterally in-
tegrated particle number density, defined by 0

0 3 4 5 6 7 z/a

p (z)=—f dx dyp(r),
1

A
(15)

with the surface area A. Results for the profile p (z ) are
shown in Fig. 3 for three orientations within an interval
of length L, /2. The width of the interfaces is typically
7o, being significantly larger than Curtin's results ob-
tained with a two-parameter ansatz [15]. This widening
is due to smectic-type density peaks on the liquid side of
the interface, with a separation slightly larger than that
of the crystalline layers. A measure of the lateral density
modulations in the planes perpendicular to the z direction
is given by the minimal density

p (z ) =min(„jp(r), (16)

B. Solid-liquid coexistence of hard spheres near a hard mall

The problem of a liquid in the vicinity of a rigid wall
received much attention [36,22] and has become a stan-
dard test for any approximation scheme devised to deal

which is practically zero in the solid phase and equals the
bulk density in the fluid phase. Inspection of p (z } start-
ing from the fluid phase reveals that the longitudinal den-
sity wave in the (111) interface evolves before the lateral
modulation sets in, whereas in the (110}interface the situ-
ation is reversed. The density parametrization permits a
relaxation of the crystal in z direction. Nevertheless the
observed enhancement of the lattice constant towards the
surface is at most 2%%uo.

The values of the crystal-Quid surface tensions turn out
to be y"'=0. 35k& T/o y'" '=0.30k& T/a and
y',f"'=0.26k' T/o . Unfortunately, there are apparent-
ly no computer simulation results for these surface ten-
sions to compare with. Within the WDA, Curtin [15,16]
obtained y',f '=0.66k&T/cr and y',f"'=0.63k' T/o .
Hence the free minimization reduces the surface tension
roughly by a factor of 2.

p
J.~3

pmo

2.

(c)

iULju
0 1 3 4

z/cz

FIG. 3. Parallel-integrated density p'(z) (full curves) and
minimal density p (z) (dashed curves) vs z/cr for a hard-sphere
crystal-fluid interface obtained from the WDA. The densities
are in units of cr '. (a) (111) orientation; (b) (100) orientation;
(c) (110)orientation.

with strongly inhomogeneous systems. On the other
hand, the effect of a wall on solid and liquid phases of
hard spheres in coexistence has not yet been examined
within a density functional approach. In particular, the
question is whether a wall is wetted by the liquid or by
the solid. Recent molecular-dynamics simulations [24]
indicate that the planar wall prefers the crystalline phase
and we confirm this finding with the following results.

The density profile obtained from a freely minimized
WDA functional is displayed in Fig. 4. The contact
value of the density is fixed by the wall theorem [37],
prr=P/ks T, in terms of the bulk pressure P, irrespective
of whether the wetting phase is liquid or solid. The crys-
tal density profile shown in Fig. 4(b) attains its bulk form
already after two lattice distances from the wa11. For the
interfacial wall-crystal tension we find y'""
= —2.80k~T/cr, with a negative sign since the bulk
volume is defined by the location of the sphere centers
[38]. The wall-fluid tension, y „'f=—2.50k' T/o,
exceeds the wall-crystal tension by a substantial amount.
Hence we conclude that the wall is indeed wetted by the
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p Q 3

8

p 6
3

pm& 8.
7

z/o

solid phase with the (111)axis normal to the wall, in ac-
cordance with the simulation result. Moreover, we pre-
dict the wetting to be complete because y*f )f +f f.

V. SURFACE MEETING
OF A LENNARD-JONES CRYSTAL

The surface of a solid is an omnipresent defect in the
crystal structure and provides a natural stage where
thermal disorder can be induced without a nucleation
barrier. In fact, there is ample empirical evidence that
the melting process in thermal equilibrium starts
definitely below the bulk triple point TT by wetting the
crystal-vapor interface with a quasiliquid film. Once this
film is established, the growth law for its thickness l(~)
upon approaching the triple point, 1 —T/TT—=~~0,
may be inferred from a simple estimate [12] of the inter-
facial free energy which yields

1(r)=D in(ro/r) . (17)

This logarithmic growth is predicted to hold on a scale
determined by the decay length of the residual crystallini-
ty in the film. With increasing width a crossover to the
power law

—1/3 (18)

is expected when the van der Waals attraction governs

FIG. 4. Density pro61e of hard spheres near a hard wall lo-

cated at z=0 at Quid-solid coexistence vs distance z/0' (a)

1iquid at the wall, (b) crystal at the wall. In the latter case, the
parallel-integrated density p'(z) (full curve) is shown for the
(111)orientation while the minimal density p (z) (dashed curve)

practically vanishes.

the interaction between the crystal-liquid and the liquid-
vapor interfaces of the thick film.

Recent experiments on surface melting have been made
with rare gas crystals [39], ice [40], and lead [41,5]. The
measurements with lead, in particular, confirm both
growth laws (17) and (18). Surface melting of Lennard-
Jones crystals has also been investigated by computer
simulations [42], but the data are still inconclusive due to
significant finite size effects.

Here we report on our effort to deal with the anisotrop-
ic onset of surface melting in Lennard-Jones crystals at
finite values of the reduced temperature ~ by employing
density functional methods. This issue cannot be ad-
dressed with a phenomenological approach where the ex-
istence of a wetting film viewed as an undercooled liquid
is taken for granted, but requires a fully microscopic
theory such as outlined in Secs. II and III.

Our results for the laterally integrated density profiles
of a slab are shown in Figs. 5(a)—5(e) for the (111), (110),
and (100) orientations in a fcc crystal. Surface melting is
visible for each orientation, with a clear anisotropy in the
structure of the interface. As expected, the more loosely
packed (110) and (100) planes are more disordered than
the dense (111) plane. The evolution of the (110) profile
from r=10 to r=10 is illustrated in Figs. 5(d) and
5(e) and indicates complete surface melting which is
found for the (111) and (100) orientation as well. The
complexity of the density distribution is illustrated by the
contour plots in Fig. 6. There one can also see that the
lateral order in the (110) surface is strongly anisotropic.
Since we have a short-ranged interaction (8) between the
particles, the growth law for the film is given by (17)
without crossover to algebraic growth. Even though
there is no unique definition of the width l, the prefactor
D is determined by Figs. S(c)—5(e). Figure 7 shows the
temperature dependence of l. D is proportional to the
slope of the interpolating line and has a value of
1.3+0.20. or approximately two layers. This compares
we11 with a neutron experiment on methan which yields
D =1.65 layers [43].

Evans et al. [44] recently predicted a nonmonotonic
density profile of a planar liquid-vapor interface with
small-amplitude oscillations decaying towards the bulk
liquid. The structure arises from packing effects due to
inhomogeneities such as a steplike density variation in an
interface. These arguments may also explain the shallow

bump adjacent to the vapor phase seen in the p (z ) profile
of the thick wetting layer at ~=10 . The interaction of
this density oscillation with those induced by the solid

may affect the growth of the wetting layer as ~~0. For
the (100) orientation we observed a hysteresis effect in

minimizing the density functional for increasing and de-

creasing temperature which hints at a discontinuous
layer-by-layer growth via a first-order surface phase tran-
sition. On the other hand, the amplitude of the bump in

the liquid-gas interface depends sensitively on the form of
the last term in (11). Thus a quantitative analysis of this
problem remains an open task.

At the triple point, the crystal-liquid surface tensions
are obtained to be y,'&"'=0 23elo, yJ .'=0 29'/o, .
and y,'&' '=0.27elP . These values are in reasonable
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relates the critical angle to the x-ray wavelength A, . Z is
the charge number of the atoms and m, the electron
mass. For xenon (Z =54, o =4.07 A, go=199cr) we find

a, =30 mrad for A, =1.55 A. Taking p=0.8o, a, =29
mrad, b =10, and defining zo by p (zo)=0.4o we

evaluate Eq. (19) by inserting the full three-dimensional
density profile. The amplitudes in Fig. 8 depend
significantly on the width of the liquid film. The width of
the interface between liquid film and solid is reflected by
the shape of the left wings of the curves.

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 o (oO,f O,C

faces displayed in Figs. 5(c}—5(e). The intensity is pro-
portional to

I= fd r exp[ i [G„x—+Gzy+tt(z —zo)]

+ (z —zo ) /g] p(x, y, z ) (19)

where (6„,6 ) is the scattering vector parallel to the sur-
face. %e have chosen the lowest reciprocal lattice vector
of the projection of the fcc lattice onto a (110) plane. The
scattering depth g depends on the incident angle a; and
the exit angle af .

with

0

s;(a; }+s,(a&)
(20)

s;(a)= [a, —sin a++(a, —sin a) +4b ]'1

2a,
(21)

a, being the critical angle for total reflection and b an ex-

tinction coefFicient. The phase of the evanescent wave in
z direction is given by a = [s„(a;)+s„(af}]lgo, where

s„(a)= — [sin a —a, +Q(a, —sin a) +4b ]'~1

&Za,

FIG. 8. Intensity: I of x rays scattered under grazing in-

cidence from a melting LJ (110) surface at different reduced
temperatures t vs angle ratio af /a, . The parameters adapted to
xenon are given in the text. (I in arbitrary units. )

VI. CONCLUSIONS

We examined wetting phenomena and interfaces in
Lennard-Jones and hard-sphere fluids in the framework
of the WDA density functional. We computed surface
tensions as well as interfacial density profiles and studied,
in particular, the anisotropic onset of surface melting on
rare gas crystals. On the technical side we employed the
method of simulated quenching which facilitates an
essentially unconstrained minimization of the free energy
functional. The comparison of our results with those of
previous constrained variational calculations and with
simulation data leads us to conclude that the effort of free
minimization is indispensable for producing accurate re-
sults on interfacial structures within a density functional
approach.

In the theory of fluids the hard-sphere model is usually
invoked as a convenient albeit idealized reference system.
However, sterically stabilized colloidal suspensions pro-
vide a concrete example of a hard-sphere fluid and even
offer the chance to investigate interfacial features on a
supramolecular scale with optical means.

Our study of surface melting was restricted to planar
interfaces with the advantage that the systems considered
had to be large enough in one dimension only. In princi-
ple, the present theory also applies to grain boundary and
edge melting. To address those problems, the system
must be sufBciently large in two dimensions and the
storage capacity required for reasonable grid resolution is
at the limit of present-day computers.

Finally, we should not conceal that the attractive part
of the pair potential is treated in a physically motivated

but quantitatively rather crude fashion. The current ap-

proximation is expected to affect mainly the structure of
the interfacial film at its gas side. An improved modeling

of the attractive interaction is clearly an important open
problem for future work.

The quantity

c me CO

e pZ

1/2

27Ta

ACKNOWLEDGMENTS

This work as supported by the Bundesministerium fur
Forschung und Technologie (BMFT) under Contract No.
03-WA3LMU.

[1]D. P. Woodruff, The Solid Liquid Interface (C-ambridge

University Press, Cambridge, England, 1973).
[2] H. van Beijeren and I. Nolden, in Structure and Dynamics

of Surfaces II, edited by W. Schommers and P. van

Blanckenhagen, Topics in Current Physics Vol. 43
(Springer, Berlin, 1987), p. 85.

[3] S. Dietrich, in Phase Transitions and Critical Phenomena,
edited by C, Domb and J. L. Lebowitz (Academic, Lon-



DENSITY FUNCTIONAL THEORY OF CRYSTAL-FLUID. . . 4809

don, 1987), Vol. 12, p. 1.
[4] H. Dosch, Critica! Phenomena at Surfaces and Interfaces,

Springer Tracts in Modern Physics Uol. 126 (Springer,
Berlin, 1992)~

[5]H. Lowen, Phys. Rep. 237, 249 (1994).
[6] D. W. Oxtoby, in Liquids, Freezing and the Glass Transi

tion, edited by J. P. Hansen, D. Levesque, and J. Zinn-
Justin (North-Holland, Amsterdam, 1991).

[7]Y. Singh, Phys. Rep. 207, 351 (1991).
[8] R. Evans, in Fundamentals of Inhomogeneous Fluids, edit-

ed by D. Henderson (Wiley, New York, 1992).
[9]W. A. Curtin and N. W. Ashcroft, Phys. Rev. A 32, 2909

(1985).
[10]W. A. Curtin and N. W. Ashcroft, Phys. Rev. Lett. 56,

2775 (1986); 57, 1192(E)(1986).
[11]A. D. J. Haymet and D. W. Oxtoby, J. Chem Phys. 74,

2559 {1981);D. W. Oxtoby and A. D. J. Haymet, ibid. 76,
6262 (1982).

[12]H. Lowen, T. Beier, and H. Wagner, Europhys. Lett. 9,
791 (1989);Z. Phys. B 79, 109 (1990).

[13]W. E. McMullen and D. W. Oxtoby, J. Chem. Phys. $8,
1967 (1988).

[14]R. Ohnesorge, H. Lowen, and H. Wagner, Phys. Rev. A
43, 2870 (1991).

[15]W. A. Curtin, Phys. Rev. Lett. 59, 1228 (1987).
[16]W. A. Curtin, Phys. Rev. B 39, 6775 (1989).
[17]T. A. Cherepanova and A. V. Stekolnikov, J. Cryst.

Growth 99, 88 (1990).
[18]Different choices for the kernel of the double integral

could be imagined: V, (r) might be given by the Barker-
Henderson ansatz [32], the step function may have a
different cutoff or even be replaced by a pair correlation
function g(r) at an effective density [48]. All these
modifications do not lead to more realistic results.

[19]P. Tarazona, Mol. Phys 52, 81 .{1984).
[20] J.F. Lutsko and M. Baus, Phys. Rev. A 41, 6647 (1990).
[21]A. Denton and N. W. Ashcroft, Phys. Rev. A 39, 4701

(1989).
[22] R. Leidl and H. Wagner, J. Chem. Phys. 9$, 4142 (1993).
[23] D. W. Marr and A. P. Gast, Phys. Rev. E 47, 1212 (1993).
[24] D. J. Courtemanche and F. van Swol, Phys. Rev. Lett.

69, 2078 {1992);D. J. Courtemanche, T. A. Pasmore, and
F. van Swol, Mol. Phys. 80, 861 (1993).

[25] H. Lowen, R. Ohnesorge, and H. Wagner, Ber. Bunsenges.
Phys. Chem. 98, 303 (1994).

[26] N. D. Mermin, Phys. Rev. 5, A1441 (1965).
[27] J. P. Hansen and I. R. McDonald, Theory of Simple

Liquids, 2nd ed. (Academic, London, 1986).
[28] A similar quadratic density expansion was also used by

Tarazona [36] who expanded m(r, p) around p =0. Since
we have chosen a higher p we get a better representation
of w(r, p) for high densities relevant for the solid-fluid
transition.

[29] R. Ohnesorge, H. Lowen, and H. Wagner, Europhys. Lett.
22, 245 (1993).

[30] S. M. Foiles and N. W. Ashcroft, J. Chem. Phys. 75, 3594
(1981).

[31]J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem.
Phys. 54, 5237 (1971).

[32]J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714
(1967).

[33]L. Verlet and J.J. Weis, Phys. Rev. A 5, 939 {1972).
[34]J.P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).
[35] In practice it is important not to use just one single mass

m but to introduce a diagonal mass tensor and make an
appropriate choice for its elements.

[36]P. Tarazona, Phys. Rev. A 31, 2672 (1985).
[37] I. Z. Fisher, Statistical Theory of Liquids (University of

Chicago Press, Chicago, 1964).
[38]J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 619

(1976).
[39]D. M. Zhu and J. G. Dash, Phys. Rev. Lett. 57, 2959

(1986); 60, 432 (1988).
[40] A. Lied, H. Dosch, and Y. H. Bilgram, Phys. Rev. Lett.

72, 3554 (1994).
[41] P. von Blanckenhagen, Ber. Bunsenges. Phys. Chem. 98,

312 (1994).
[42] V. Pontikis and P. Sindzingre, Phys. Scr. T19, 375 (1987).
[43] J. M. Gay, cited in J. G. Dash, Contemp. Phys. 30, 89

(1989).
[44] R. Evans, J. R. Henderson, D. C. Hoyle, A. O. Parry, and

Z. A. Sabeur, Mol. Phys. 80, 755 (1993).
[45] J. Q. Broughton and G. H. Gilmer, J. Chem. Phys. $4,

5759 (1986).
[46] M. J. P. Nijmeijer, A. F. Bakker, C. Bruin, and J. H.

Sikkenk, J. Chem. Phys. 89, 1319(1988).
[47] W. G. Hoover and F. Ree, J. Chem. Phys. 49, 3609 {1968).
[48] L. Mederos, G. Navascues, and P. Tarazona, Phys. Rev. E

47, 4284 (1993).




