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Integral equations for a fluid near a random substrate
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The fluid distribution functions near the surface of a random porous solid are investigated by the
methods of liquid-state theory. The presence of the surface is taken into account by modifying the two-
body interaction potential between fluid and matrix particles. Cluster expansions and Ornstein-Zernike
equations for the correlation functions are derived as well as exact equations for the fluid density profile.
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Heterogeneity of solid surfaces, due to conditions of
formation or subsequent treatment of the solid plays a
significant role in many practical problems of adsorption
and catalysis. In spite of a great deal of experimental
work, progress in the theoretical description of fluids
near heterogeneous surfaces is still insufficient [1]. This is
mainly due to the difficulty in incorporating the chemical
or geometrical randomness of the substrate into a molec-
ular theory. Accordingly, much of the statistical
mechanical treatment of the solid-fluid interface has dealt
with periodic homogeneous surfaces [2] or idealized pore
structures [3]. Recently, a new approach has been pro-
posed by Madden and Glandt [4-6], which extends the
methods of liquid-state theory to the study of fluids ad-
sorbed in disordered porous materials. In particular, a
description of the molecular distribution functions of
quenched-annealed systems is now available, based on
cluster expansions and integral equations. The most use-
ful is a new set of Ornstein-Zernike (OZ) equations for
the disorder-averaged two-body correlation functions.
The exact form of these equations has been obtained by
Given and Stell [7] using the continuum replica method
[8]. Monte Carlo simulations for several fluid-matrix
molecular models have been carried out by Vega, Kamin-
sky, and Monson [9] and Lomba et al. [10] and com-
pared to theoretical predictions based on the Percus-
Yevick and hypernetted chain approximations. The ther-
modynamics of these systems and the connection with
the correlation function description have been investigat-
ed by Vega, Kaminsky, and Monson [9], Ford and
Glandt [11], and more comprehensively by Rosinberg,
Tarjus, and Stell [12]. All these studies, however, have
focused on the description of statistically homogeneous
systems. The present work is concerned with the exten-
sion of these methods to heterogeneous surfaces. What
we have in mind is a solid surface that is planar on aver-
age (extension to more complicated geometries is
straightforward) but rather corrugated on the atomic
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scale. This can be, for instance, the surface structure ob-
tained from a dense random packing of hard spheres. It
has been suggested that such a model may represent an
important class of heterogeneous adsorbents [13,14].
Here, we show how to include the presence of this type of
surface in the theoretical formalism. We give the cluster
expansions of the correlation functions and the corre-
sponding OZ equations. We also derive exact equations
for the fluid density profile in the vicinity of the surface.
Numerical application to model interfaces will be
presented in a future publication.

We consider the same fluid-matrix system as the one
studied by Madden and Glandt [4], in which the degrees
of freedom of species-0 (i.e., matrix) particles are
quenched, or frozen in place, whereas those of species-1
(i.e., fluid) particles are annealed. It is assumed that the
structure of the matrix is that of an equilibrium system at
a higher temperature, which implies that no major
structural relaxation has taken place during the thermal
quench. Madden and Glandt have shown how to recast
the bulk problem into a mixturelike form, so that one can
use the conventional techniques of topological reduction.
In order to follow the same strategy, we first have to find
out how to incorporate properly the presence of the inter-
face. For the sake of simplicity, we shall assume that the
heterogeneous surface has been obtained by a perfect
cleavage of the porous solid so that the centers of the ma-
trix particles are restricted to the z > 0 half-space. In this
case, pair and higher order distribution functions of the
matrix particles are the same as those of the massive
solid. The real situation is certainly more complicated,
but it seems reasonable to start with this simplified pic-
ture. This allows us to replace the original interfacial
system by an equivalent fictitious system where the ma-
trix particles occupy the whole space but interact with
the fluid only when located in the z >0 region. Assuming
that the adsorbate-adsorbent interaction is described by
the pair potential uy(r;,), we thus introduce the
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modified potential

610(1,2)=0(22)u10(r12) ’ (1)

where 6(z) is the Heaviside step function and r,, is the
center-to-center distance of the two particles. Since
[6(z)]*=6(z) , the corresponding Mayer function has the
form
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where B=(kBT)_1, kg is the Boltzmann constant, T is
the temperature, and fo(r;,)=exp[ —Buo(r;y)]—1 is
the original Mayer function. It is clear from Eq. (2) that,
in all diagrammatic expansions considered by Madden
Glandt, the explicit z dependence can be removed from
the f,, bonds and transferred to the field or root points.

Therefore, one can easily repeat all calculations of Ref.
[4] and obtain the following cluster expansion of the
disorder-averaged total correlation functions 5 ,4(1,2)
(a,=0,1):

Fro(1,2)=exp[ —Bii 10(1,2)]—1
=0(z;)f10(r12) (2)

h,g(1,2)= sum of all topologically distinct, simple, connected graphs with one

root point of species a, one root point of species B, some or no fluid field points weighted

by p,(z), some or no matrix field p, points, and some or no f bonds between the appropriate
pairs of points with no articulation points and no shielding sets. Matrix root and field points

connected directly a fluid point are weighted by 6(z) and p,6(z), respectively. 3)

The last restriction results from the presence of the surface. We recall that a shielding set, as defined by Madden and
Glandt [4], is a matrix articulation set whose removal produces unrooted, disjoint fragments containing at least one
fluid field point. One then defines the direct correlation functions as

cqp(1,2)= sum of all graphs in Eq. (3) with no nodal points. 4)

Using the replica trick, Given and Stell [7] have shown that in order to derive the correct OZ equations, it is neces-
sary to divide h; an c|, into the so-called connected and blocking parts, denoted here by h.,;, hy;y, and cq;, Cp1p» TE-
spectively. The blocking part is the subset of graphs such that all paths between the root point pass through at least
one matrix field point. The introduction of the additional correlation function h,,; is specific to random media prob-
lems [12] and the separation of 4 ; and ¢, into two parts prevents the occurrence of shielding sets in the OZ equations.
In the present case, examination of the nodal structure of the functions 4 ,5(1,2) (or, more simply, use of the replica OZ
equations) yields

hoo(r12)=coo(r12)+po [ dTscon(r13)heo(rs;) (5)
th(zl’ZZ’RIZ)=CIO(ZI’ZZ’Rl2)+P0fdz3dR3clo(zl’23’R13 Yhoo(r3;)

+fdz3dR3p1(z3 )ee11(z1,23, R 13)h19(23,25,R35) (6)
h01(21722rR12)=001(21»22’R12)+Pofd23dR3000("13)hm(zs’zz»Rsz)

+fd23dR3P1(23 )e01(21,23,R 13)hc14(23,25,R35) )
h11(21,25,R 1) =¢11(21,25,R 13)+po [ dz3dRs¢1(21,23,R 13)hoy (23,25, R 3y)

+fdz3dR3p1(z3 )ec11(21,23, R 13)h1(253,25,R 55)

+fd23dR3P1(23 Jep11(z1,23, R 13)hcy4(23,25,R55) @®)
heii(z1525, R 3)=cc11(21,2,Rp) + fdz3dR3p1(z3 Jee11(z1,23, R 13)he (23,25, R3,) )

where r={z,R}. By symmetry, one has hy(z,,25,R,)=hg(25,z,,R ;) and ¢y(z;,2,,R ;) =c(2,,2;,R ;). Note
that the equation for the matrix alone is the same as in the absence of interface (and is not influenced by the presence of
fluid particles), whereas translational symmetry in the z direction is broken for the fluid-fluid and fluid-matrix correla-
tion functions. We point out that h,4(z,,z5,R ;) and ¢ o(z,,z,,R ;) must be calculated in the whole space, even if
there are no matrix particles in the z, <0 region in the original interfacial system. Now, the set of OZ equations is not
complete and we need an equation relating the fluid density distribution p,(z) to the pair correlation functions. When
the fluid-fluid interaction is pairwise additive, the first equation of the Yvon-Born-Green (YBG) hierarchy can be easily
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obtained from the diagrammatic definition of p,(z) [4] ( or, alternatively, from the corresponding equation in replica

space). One finds

dlnp,(z,) dow(z;)
0z, +B 0z,

where u,,(r),) is the pair potential between fluid parti-
cles, g;;=1+h,;, and w(z) is an effective one-body
fluid-matrix potential, which satisfies

aW(Zl) du 10(7'12)
az, =P0fd22R2810(21’22»R12)T1

Zz) 5

(11)

where g,o=1+h,,.

One can also derive equations similar to the Lovett-
Mou-Buff-Wertheim (LMBW) equations [15,16] by taking
the gradient of In p,(z). In the graphical expansion of
this quantity (see, for instance, Ref. [11] for the bulk
case), the gradient acts only on the fluid vertices and on
the matrix vertices that are connected directly to a fluid
point and carry the factor py8(z). Then, a careful exam-
ination of the diagrams shows that the derivative with
respect to fluid points introduces the connected part c,;;
of the fluid-fluid direct correlation function whereas, re-
markably, the derivative with respect to matrix points in-
troduces a subset of graphs in ¢, which we may loosely
call also its connected part since it has the same topologi-
cal structure as c.; (i.e., the two root points are connect-

'
J

= “dezzdkzpl(zz )811(21,25,R 3)

au“(rlz)

10
dz, ’ (10

ed by at least one path that includes only fluid vertices).
More precisely, one finds

alnpl(z,)+ dv(z;)
dz, 9z,
dp(z;)
=fdzzdR2cc,1(zl,zz,R12)—p5~—2- . (12)
Z)

where v (z) is another effective one-body fluid-matrix po-
tential, which satisfies

aU(Zl)
dz,

90(z,)

9z,

:—pOdeIZéclO(zl’O’Rlz) ) (13)

= —Pofdzzdezcvao(Zlvzz’R 12)

v

where ¢, is a continuous function defined by
c10(z1,22,R 3)=C10(21,25,R ,)0(z,)  (indeed, c. (24,
z,,R;)=0 for z, <0, since the matrix root point is
directly connected to at least one fluid point by definition
of the connected part).

Defining similarly the ‘“connected” and ‘blocking”
part of hy; (with hy; =h g, +hy), one finds the addition-
al OZ equations,

he10(z1,22, R 13)=c 10(z1,25,R3) + fdz3dR3p1(z3 Jeen(21,23, R 13)he10(23,25,R 3;)

=cc10(21,2,Rp)+ fdz3dR3pl(z3)hcll(zliz3’R13 )ee10023,22,R 3) (14)

with  h;o(z{,25,R3)=h(2;,2,,R|;) by symmetry.
Note that h,,, does not correspond to the s =0 limit of a
correlation function between different replicas, unlike
hyqy [7,12].

Using Eq. (9), Eq. (12) can be inverted to give

dlnp,(z;) dv(zy)
a9z, 9z,
dv(z,)
:—dezzdklzpl(ZZ )hc“(z‘,zz,Rlz)AS: ’
(15)
which can be rewritten, using Eqgs. (13) and (14), as
81np1(zl) v
szofdklzhclo(zl,o’Rlz) . (16)
where £, is defined by

~

hclO(Zl’z?.’R 12 )=h010(21,22,R 12 )9(22 ),

(one has also h_(z,,2,,R ,)=0 for z, <0).
If the porosity of the solid allows a significant penetra-

tion of fluid particles, p,(z) goes to a constant when
z-—+ oo, which is just the averaged fluid density within
the massive solid. Then Eq. (16) can be used to obtain
the partition coefficient K, here defined as the ratio of the
fluid density within the solid to its density in the bulk
phase in equilibrium with it. One has the sum rule

an:p0f+xdzldeIZ}\iclO(zl’O’RIZ) . 17

This important equilibrium quantity can thus be obtained
as a by-product of the solution of the inhomogeneous OZ
equations, without requiring a thermodynamic integra-
tion of the Gibbs-Duhem equation, as in the bulk prob-
lem [5]. On the other hand, of course, one has to solve a
rather complex set of coupled integral equations.
Generally, one will have to complement the set “OZ +
BGY” or “OZ + LMBW?” equations by some approxi-
mate closure equations such as the hypernetted-chain,
Percus-Yevick, or reference Percus-Yevick approxima-
tions, which are well defined in replica space [10]. The
closure to Eq. (14) is more problematic since ko and h_
have no simple meaning in terms of replicas. However, it
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is easy to see that in the case of a random matrix (i.e.,
ugo=0), one has ¢,;o=h; ;=0 (whereas c;,, and h;,;70
[10]). Therefore, the closure c,;,=0 seems a reasonable
approximation to start with, at least for short-ranged
matrix-matrix interactions. Interestingly, the Percus-
Yevick closure for €100 ie., c10(1,2)
=g10(1,2)(1—exp[Bi4(1,2)]) implies c0(1,2)
=0 for z,<0 and thus also c¢,,o(1,2)=0 since
¢.10(1,2)=0 in this region. Numerical computations in
the case of random and hard-sphere matrices will be
presented in a forthcoming paper.

All the above results are explicitly written for the case
of a surface that is planar on average. As mentioned ear-
lier, the general structure of the equations remains un-
changed in more complicated geometries such as the cy-
lindrical pore geometry considered in Ref. [17]. One
merely has to change the coordinate system to modify the
argument of the Heaviside step function in Eq. (1) and to
make the corresponding modifications in all subsequent
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developments. Chemical randomness of the adsorbent
can also be introduced in the formalism by considering
matrices composed of different particle species.

Finally, let us point out that the information obtained
about the fluid structure near a random porous interface
may also be useful to study transport processes. It is
clear that any mass transport through a porous medium
begins at the external surface of the solid. In some cir-
cumstances, this may also have considerable influence on
the reaction kinetics and be the limiting rate step. With
this aim in view, Monte Carlo simulations have been car-
ried out recently to compute the fluid density near the
surface of a nonrandom porous solid where solid particles
are placed on a regular lattice [18]. Simulations of the in-
terface with a random solid are in progress.

We wish to thank G. Tarjus for a careful reading of the
manuscript.
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