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Plasma instabilities in high electric fields
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We analyze nonequilibrium screening with nonequilibrium Green function techniques. By employ-

ing the generalized KadanoH-'Baym ansatz to relate the correlation function to the nonequilibrium
distribution function, the latter of which is assumed to be a shifted Maxwellian, an analytically
tractable expression is derived for the nonequilibrium dielectric function s(K, (dt). For certain values

of momenta K and frequency (o, Ims(K, at) becomes negatioe, implying a plasma instability. This
new instability exists only for strong electric Selds, underlining its nonequilibrium origin.

PACS number(s): 52.35.gz, 52.25.Mq, 72.20.Ht, 72.15.Nj

I. INTRODUCTION

Considerable interest has been devoted to instabili-
ties in plasmas [1—4]. Plasma systems are character-
ized by long range Coulomb forces, which result in col-
lective phenomena such as plasma oscillations. In the
present paper we present a quantum statistical investi-
gation of plasmas under the inQuence of strong electric
fields. In the recent past a number of attempts have been
made to study screening in nonequilibrium semicoaduc-
tor systems, e.g. , by Lowe and Barker [5]. Hu and co-
workers [6,7] compared the linear dielectric function de-
rived either from the semiclassical Boltzmann equation,
or from the quantum transport equation of Baym and
Kadanoff. It was found that in the long wavelength limit
1/q» As (As is the de Broglie wavelength) the semiclas-
sical and quantum results coincide. Further, Hu and co-
workers [6,7) showed that the Kadanoff-Baym quantum
transport equation leads to a dielectric function, which
has the Lindhard form, but where the Fermi distribu-
tions are replaced by nonequilibrium distribution func-
tions. The nonlinear dielectric functions, which we de-
rive in this work, reproduce this result in the limit of
weak fields. Further, Hu and O' Connell [8] have general-
ized the Lindhard dielectric function to include the efFect
of electron density Huctuations. The work described in
[6—8] is essentially limited to linear response. Arbitrar-
ily stroag uniform fields have been treated by employ-
ing the Airy-transform technique [9—ll]. In particular,
Y'i, Kriman, and Ferry [12] found a descreening effect
ia high applied electric fields. The fiaal formal result of
Ref. [12] involves a nonequilibrium distribution function,
which should be determined &om a quantum transport
equation, and hence no detailed numerical results for the
dielectric function were presented. In our work we fol-
low an alternative route: by applying the generalized
Kadanoff-Baym ansatz [13] to relate the nonequilibrium
correlation function to the momentum distribution func-
tion, for which we use a physical model, we are able to

extract aa explicit analytic result for the nonequilibrium
dielectric function. We also present numerical results,
and find a remarkable phenomenon: the imaginary part
of the dielectric function becomes negative for a range of
electric fields and &equencies, thus pointing towards the
existence of a new unstable region.

II. NONEQUILIBRIUM DIELECTRIC
FUNCTION

We consider a system of fermions (charge Z;e) under
the infiuence of an applied constant electric field. Using
the vector potential gauge we have the following Hamil-
tonian:

H = ) dr 4, (r, t) H; i
—.7' — *

A(t) i
4, (r, t)

(h Ze
(i c

+—) Jdrdrtttt(r, t)S (r, t)Vr(r —r)

x 4; (r, t) 4', (r, t),
where 0; is the one-body Hamiltonian, and

(2)

To examine the nonequilibrium properties of this system
we introduce the correlation functions

g) (r, t, r', t') = —i(C (r, t) 4'(r', t') ),
g (r, t, r', t') = i (4't (r', t') tlt'(r, t) ) .

It is often advantageous to use the center-of-mass and
di8'erence coordinates, and express the correlation func-
tions g in terras of the nonequilibrium spectral func-
tion a(p, ~, R, T) (recall that g( —g) = ia):
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g~ (p, ~, R, T) = ia(p, ~, R, T)F(p, ru, R.T),
g (p, ru, R, T) = —ia(p, (u, R, T)[1 —E(p, (u, R, T)], (4)

where F(p, u, R, T) is a "quantnm distribution function"
[21], which should be determined by solving the appro-
priate quant»~ transport equation. If the quasiparticle
picture is valid, i.e., the spectral function is a sharply
peaked function with a maxim»m at the quasiparticle
energy, one can simplify Eq. (4) to

g (p, ~, R, T) = ia(p, ~, R, T)fear(p, R, T), (5)

where f~ is the Wigner distribution function. We refer
to this relation as the Kadanoff-Baym ansatz.

Consider now the spectral function of free particles
within a static and uniform external electric Beld [14]:

K21
Ao(K, ~, R, T) = Ai

~

fuu—
AE AE ( 2m)

(6)

where Ai(x) is the Airy function, K = p + eET is the
kinematical momentum, and A@ is given by

h2e2E2

8m (7)

Since Ao(K, ur, R, T) has no single dominant peak, the
simple replacement Eq. (5) has no a priori justification.

Lipavsky et aL [13] have given an alternative ansatz
for relating the correlation function and the distribution
function, which, in fact, is exact for the Hartree-Fock
approximation for the self-energy. For a parabolic dis-
persion law and constant fields it reads [15]

i ( e2E2
g (K, r, R, T) =i exp

2 )

e(K, r) = b(r) + ie(r)V(K) [g (p) r)dp
(2zrh)'

xg (p —K, r) —g (p, r)g (p ——K, —r)).
(9)

Using the ansatz (8) and Fourier transforming we Bud

Note that in Eq. (8) one uses the variable r rather than
its Fourier transform u [see Eqs. (5) and (4)). This ansatz
is superior to the KadanoH-'Baym ansatz in the case of
high external fields in several respects: (i) it has the cor-
rect spectral properties, (ii) it is gauge invariant, (iii) it
preserves causality, (iv) the quantizm kinetic equations
derived with Eq. (8) coincide with those obtained with
the density matrix technique [16], and (v) it reproduces
the Debye-Onsager relaxation effect [17]. The retarda-
tion in the momentum variable of the distribution func-
tion in Eq. (8) turns out to be essential for the results
found below.

In the random phase approximation (RPA) the dielec-
tric function has the following structure:

e(K, ~, R, T) = 1+V(K) 4(u, K, p)
dp

2zrh 2

x [f(p —K) —f(p)], (10)

where the two particle spectral function is given by

e E.K
@((u,K, p) = 2 " . . (11)

exp(i&r —i ' 2 s )
2zr ey —ey K + h((u —(u) —zzI

If we neglect the E-dependent term in the exponential,
and use equilibrium distribution functions in (10), we
recover the usual Lindhard result.

III. ANALYTICAL EXPRESSIONS

In (non)degenerate systems electron-electron scatter-
ing tends to drive the nonequilibrium distribution to-
wards a heated displaced Fermi-Dirac (Maxwellian) dis-
tribution function [18]. Further, we assume that some
inelastic scattering process stabilizes the system so that
a stationary state can be reached [19,20]. Thus, rather
than solving the quantum kinetic equation (with the ap-
propriate scattering mechanisms) for the nonequilibrium
distribution function, a physically motivated approach is
to evaluate (10) with a displaced Maxwellian distribu-
tion:

fzz (p) = nA (T@)exp
(p- Q)'
2mk pe (12)

{
( K m(uh —Q Kl

x zv
i

+
i p

(2mv2 mKvz

with

p 2 21 cos(~) —i sin(~)

gl +ia (1+16a2)'/4 (14)

Here tang = a, and we have introduced the dimension-

less Beld parameter a = ~~, , and used the ther-E.K &(&

mal velocity vz —— "~ ~. The inverse Debye screening

length e is given by

4me222n

kATE
(15)

where A2 =
&

"& . The electron temperature T@ and
drift momentum Q(E) are Beld dependent, and should, in
principle, be evaluated self-consistently from the kinetic
equation. This is, however, not necessary for our present
purposes. The great advantage of this model distribution
function is that the integrals in (10) can be performed
analytically. Using contour integration tech»ques [22],
one finds
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Finally, w(z) reads

2

iv(x) = e * erfc( —i2:),

where erfc stands for the complement of the error func-
tion [23]. These results can be generalized to the degen-
erate case by using a shifted Fermi distribution instead
of (12). The final result can be expressed in terms of
the nondegenerate dielectric function [e(i/p) —1] &om
Eq. (13):

4

C4

& 2

-2
0 15 20

where z = e"/("s ~) and i/p„= ( + ia)v+1
Before turning to a detailed numerical analysis, it is

instructive to consider two special cases. First, in the
limit of vanishing fields (which also coincides with the
case of wave propagation perpendicular to the field), the
constant a vanishes, and one finds

~2 k~ T@h2 ~x
e K)(d =1+

K3vT
( K mu)h —Q Kl

!XX Ql! +
g2mvT mXvg

( K murh —Q Kl
+ !

2mvT mKvT

This is the well-known result for the quaatum RPA
dielectric function for Maxwellian plasmas and can be
rewritten in terms of iEi functions [24].

The parameter a, which is nonvanishing for loagitudi-
nal fields, depends on the de Broglie wavelength, and we

infer that the results found in this work are a consequence
of quantum interference.

Second, the classical limit is recovered if one expands
Eq. (13) in powers of h. Using K = hk, where k is the
wave vector, one 6ads

K
e(k, (u) = 1+ —,p, i 1 yi i/ir Qp. ik2 '

mkvT

m(u —Q. k'
xu)

I pmk vT' )
P,i is given by (14) with the classical limit of the param-
eter a = s', &'"&. This result for the field free (~P = 1)
dielectric function has been extensively discussed in the
literature [1].

-2-

-4
0

FIG. 1. The real part of quantum RPA dielectric function
vs frequency for wave vector k = 0,00384ao . The assumed
temperature is T = 16000 K and the Debye screening length
100ao. The deviation from the field free curve (solid line)
is plotted for three difFerent Beld strengths: E = 10 V/m
(dashed line), E = 10 V/m (dash-dotted line), and E = 10'
V/m (dash-double-dotted line). The case E = 10 V/m is
shown as an inset in order to illustrate the oscillating behavior
at special 6eld strengths.

an acoustic excitation. This is aormally connected with a
large imaginary part of the dielectric function, and there-
fore it caa be considered as a quasiparticle excitatioa. For
very high field strengths the screening vanishes, which is
in accordance with the descreening effect found in [12].

In Fig. 2 we display the imaginary part of the dielectric
function. There a similar behavior occurs: the maximum
of damping moves to higher values of u for increasing
fields. It is noteworthy that Im[e(K, ur)] becomes negative
at certain &equencies and Gelds. This behavior suggests
the existence of unstable modes. Recall that the mean
field energy Q gained from (or lost to) a longitudinal test
wave with amplitude Eq in the plasma can be expressed
as [25]

IV. NUMERICAL RESULTS Q = —~]Ei! Im[e(K, ~)] .
2

(2o)

We now turn to the analysis of the central result for
c(K, u), Eq. (13). In Fig. 1 we have plotted the real
part of Eq. (13) as a function of the applied electric field
strength. It can be seen that the zeros of Re[a(K, ur)]
and the value of w at which Re[e(K, cu)] reaches a min-
imum move to higher values of u with increasing fields.
This indicates that the plasma &equency is enhaaced by
the applied electric 6eld. The lower zero corresponds to

Thus, . a chaage of the sign in the imaginary part of the
dielectric function iadicates a change in the direction of
energy transfer. This can be interpreted as a propagating
wave gaining more energy &om the surrounding plasma
than losing to it, thus being unstable.

This interpretation is further confirmed by studying
the excitation spectrum Ime (K, cu), which is plotted in
Fig. 3. In addition to the shift of ordinary plasmon exci-
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FIG. 2. The imaginary part of quantum RPA dielectric
function vs &equency. The parameters are as in Fig. 1.
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tations to higher values of ru, we find that for frequencies
higher than the plasmon frequency a negative excitation
occurs. This is an unstable mode. For field strengths
exceeding 10 V/m no excitations were found due to the
descreening efFect described above.

The instability found in our work has another origin

than the ones discussed conventionally [1].Normally one
would attempt to calculate the influence of the applied
electric field on the distribution function and, with the
help of the Penrose [26] criterion, search for regions where
an instability may occur [27].

In order to obtain more physical insight into the nature
of the instability we consider the long wavelength limit
of the classical expression (19):

. eE.k
e(k, ~) =1 ——" 1+6i +O(k2).

QJ 2 fA 4cP
(21)

The energy gain (20) takes the form

2
eE. k(u2

Q = —3soEi " + O(k ), (22)

where the negative sign indicates the growth of the wave.
This instability can be understood as a nonlinear Landau
damping for small k in high electric fields. This is con-
firmed by the fact that the energy transfer (22) is com-
pletely independent of collisions. In the Appendix we
give an alternative derivation of this nonlinear Landau
damping in high fields.

The instability discovered in the present paper fol-
lows from using the generalized Kadanoff-Baym (GKB)
ansatz, which is an exact relation in the Hartree-Fock
approximation of the self-energy. Had we used the older
KB ansatz [5], no instability would have occurred. This
underlines the care required when working with nonequi-
librium Green functions.

Our findings for the dielectric function (DF) can be
snmmarized as follows.

(i) The acoustic mode, which corresponds to the lower
zero of the real part of the DF, tends to higher values
of ~ with increasing fields. The damping represented by
the imaginary part of the DF is diminished in this region
due to the field. These properties of the DF mean that
the acoustic mode starts to become &ee, i.e., it is not
damped further to quasiparticle excitations and can now
be observed [27].

(ii) For certain electric fields and frequencies the imag-
inary part of the DF changes its sign. This is refiected
in negative excitations in the spectral function. By con-
sidering the mean field energy, it is found that in this
case the energy transfer from a test wave to the plasma
changes direction, and an instability occurs.

In a forthcoming paper we will present calculations for
a partially ionized hydrogen plasma also including the
in8uence of the applied electric field on the distribution
function [28].

0 APPENDIX: PHYSICAL DERIVATION OF
NONLINEAR LANDAU DAMPING IN HIGH

ELECTRIC FIELDS

FIG. 3. The spectral function of the excitation spectrum
Ime of quantum RPA dielectric function vs frequency. The
parameters are as in Fig. 1.

In order to derive the nonlinear Landau damping
in high electric fields we divide the distribution func-
tion fo(u) of the plasma up into beams of velocity u
with density n„and examine their motion in a wave
Ei sin(kx —art) and an external field E. Our derivation
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follows closely the analysis of Chen [29].
The linearized fluid equation of beams with the veloc-

ity disturbance nz becomes in one dimension

+ u
[
= —eEx sin(kx —ut) —eE . (Al)

( Bt clz)

Now we seek for a solution which ensures the initial con-
ditions eq ——0 at t = 0. This is necessary, because other-
wise ui may become very large in the vicinity of u = u/k
and the plasma would be in a specially prepared state
initially. The solution reads

eEi cos(kz —tot) —cos(kx —kut) eE
t . (A2)

m 4P —lctL m

OA y t9A y O'U]
(A3)

Imposing the same boundary conditions (ni ——0 at t = 0)
the solution is

The corresponding continuity equation for the density
disturbance ni is

eE1k cos(kz —~) —cos(kx —kut) —(~ —ku) t sin(kx —kut)
m (~ —ku) 2

The work done by the wave on each beam is calculated
as follows. The force acting on unit volume of each beam
1s

F„=[
—eEi sin(kx —&ut) —eE](n„+ni).

The energy changes at the rate

dW„
dt

" = F„(u+ vg).

We next perform a spatial average, and sum over all
beams:

1 d sin((ut —kut)+ spEi(d& — fp(u)du—1 y ltd ~ —ku

2 eE d 1 —cos(art —kut)
~ 2m du (ur —ku) 2

(A5)

After a partial integration and using the identities
lim " = mb(z) and lim ' '* = P(—) we finally

obtain

dS' ( eE&
+ eEnp

i (u) — t
dt m y

=-,'"'-: r (-, )
,eE, fo(u)+—EpEg (d

)

In this expression the left-hand side describes the free
motion of plasma particles due to the applied electric
field, whereas the right-hand side expresses the diH'erent

energy transfer processes &om the particles to the wave.
We emphasize that this energy transfer takes place with-
out collisions and is therefore not connected with an in-

crease of entropy. Consequently, the first term on the
right-hand side recovers the known I andau damping.

We examine now the effect of the applied constant elec-
tric Beld E, which is described by the second term on the
right-hand side of (A6). A long wavelength expansion re-
sults in

(A7)

in agreement with (22), if one multiplies with a factor of
3 to take into account the three dimensions.
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