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Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating,
and gas-dynamic effects
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We have developed a numerical method to describe laser-pulse sputtering of Al in a thermal
regime. The irradiation consists of a single pulse of triangular form having a duration of 30 ns. The
laser light is assumed to be absorbed according to a simple exponential mechanism. Heat transport
in the Al is described by the heat Bow equation with boundary conditions for vaporization, with or
without boiling. Vaporization rates are evaluated by the Clausius-Clapeyron law and the boiling
mechanism (when boiling is assumed to be possible) is implemented as soon as the vapor pressure
reaches 1 atm. A critical analysis of the time scales necessary for true boiling, as well as for
superheating above the boiling temperature, is made in order to understand the relevance of these
phenomena with respect to particle emission from the Al surface. Moreover, on the basis of the
calculated vaporization rates, it is possible to distinguish between different gas-dynamic regimes.
When the rate is less than 1 ML in 20 ns, the particles emerging from the surface do not achieve
local thermal equilibrium, and therefore undergo free Bight describable by a modified Maxwellian.
When the rate is 1 ML in 20 ns, a Knudsen layer forms, at the boundary of which particles
achieve local thermal equilibrium and only subsequently undergo free Bight. Finally, when the rate
is sufBciently greater than ~ 1 ML in 20 ns, the gas dynamics of the particles leaving the Knudsen
layer may be described with the gas-dynamic equations, if the density is high enough, or, otherwise,
by the Boltzmann equation. Numerical results concerning the effectiveness of laser sputtering in
producing craters in irradiated Al, as well as the main features of the gas dynamics (including
recondensation or re6ection of the gas at the Al surface), are illustrated.

PACS number(s): 47.40.—x, 47.45.—n, 51.10.+y, 61.80.—x

INTRODUCTION

Pulsed laser irradiation of metals or semiconductors in-
volves many physical processes including the photoelec-
tric eHect; electron excitation, which induces the forma-
tion of electron-hole pairs; ionization; atom or cluster
emission; and so on [1]. Moreover, when the radiation
intensity is high enough, energy transferred &om excited
electrons to the lattice causes appreciable heating of the
solid. As a consequence phase changes, vaporization,
boiling, and even phase explosion [2,3] may occur. In
addition, the emitted particles may interact both with
the terminal part of the laser pulse and with the target
surface, recondensation or re8ection being possible in the
latter case. Due to the complexity of these processes,
approximations are necessary to describe the laser-solid
interaction [4].

However, to develop a model to describe laser abLa-

tion (or /aser sputtering) some approximations may be
easily justi6ed on the basis that many of the above men-
tioned processes are threshold processes with respect to
laser-pulse speci6cations such as wavelength, duration,
and energy density. Moreover some eHects become domi-
nant with respect to others depending on the phase (solid
or liquid) of the irradiated sample, on the vaporization
rate, or on the value of Tt, the thermodynamic critical
temperature.

In this paper we describe the main features of the ther-

mal regime model that we have developed to account for
laser sputtering of Al starting with absorption of the laser
pulse and concluding with gas-dynamic processes among
the emitted particles.

I. ABSORPTION OF THE LASER RADIATION

It is well known that laser light absorption may be
described by an exponential law

I = (1 —R)Io e

where Io is the intensity of the incident pulse (W/cm2),
I is the intensity at distance x beneath the surface which
is located at x = 0, p is the absorption coefBcient, and
R is the re8ection coefBcient. As a matter of fact p and
R may depend on the radiation &equency, on the elec-
tronic density (hence on the temperature), on the state
(amorphous or crystalline), and on the presence of pos-
sible contaminants on the target surface. Moreover, as
shown by Batanov et aL [5], when both the laser inten-
sity (between 10 and 10 W/cm ) and the pulse duration
are high enough that the target temperature may reach
a characteristic value well above the melting point, then
there is indication that a metal loses the ordinary con-
ductivity and becomes a dielectric. As a consequence the
values of p and R undergo a strong reduction, which is
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TABLE I. Parameter values employed to describe laser sputtering of Al.

Melting temperature
Boiling temperature at 1 atm
Latent heat of fusion
Latent heat of vaporization at Tg

Solid phase density
Liquid phase density
Solid phase specific heat
Liquid phase specific heat
Solid phase thermal conductivity
Liquid phase thermal conductivity
ReSection coeKcient (A 600 nm)
Absorption coefficient
Specific heat ratio

T
Tb

bH(T )
4H(Tg)

p
p

933.5 K
2740 K
396 J/g

10 500 J/g
2.7 g/cm
2.7 g/cm
0.94 J/g K
0.94 J/g K

2.25 J/scmK
1 J/scmK

0.79
50x10 cm

5/3

shown by Martynyuk [2] to have particular importance
for phase explosion.

While recognizing the complicated effects which may
occur in laser-surface interactions, we have decided to de-
scribe a kind of ideal sample in which p and R may be
considered temperature independent (see Table I). More-
over, due to the very low density of the emitted gas par-
ticles with respect to the solid or liquid density, we also
neglect any form of laser-gas interaction. (This simplifi-
cation is quite reasonable as far as target temperature is
concerned, but less so for gas-dynamic effects. )

When dealing with a laser pulse in the nanosecond
regime it is possible to consider as instantaneous the
electron-lattice coupling even if, at first, the energy ab-
sorbed from the pulse increases only the kinetic energy
of the free carriers (metals) or the number of electron-
hole pairs (materials with a band gap). In fact, charge
carriers may reach thermal equilibrium in about 10 s,
but, due to electron-phonon interactions which seem to
have a positive feedback, there is also a very fast energy
transfer to the lattice which is complete in about 10
s [1]. The form of the laser-pulse intensity Ip adopted in
our simulation will be taken as "triangular" [6]:

ductivity (units as in Table I) and S(x, t) is the heat
source term given by Eq. (1) multiplied by p. The quan-
tities c, p, and K will be subsequently assumed to be
temperature and space independent.

The heat Bow equation derived from Fourier's law

J = —KVT (4)

is subject to some restrictions when applied to heat tran-
sients where temperature gradients may be very large
(10 —10 K/cm). In particular, according to Harring-
ton [8], Eq. (3) holds only if the temperature gradient
may be considered constant over at least ten mean &ee
paths of the heat carriers (one mean free path is about
20nm in Al at room temperature), with higher temper-
ature derivatives otherwise being needed to describe the
heat Bow. We have checked this condition during our
simulations and it is indeed satisfied in the nanosecond
regime with an energy density of the order of 3.0—4.0
J/cm2.

Neglecting radiative loss from the surface (x = 0) and
considering the x axis as directed toward the sample in-
terior, then the following boundary conditions may be
assumed:

0 & t & 7.i/2
r)/2&t &7)
t &7),

(2)
and

T(x, t)l~=o =T. b

where r~ is the duration of the pulse (30 ns in the present
case .

II. HEAT TRANSPORT
AND PHASE TRANSITIONS

T(x, t)l.~ =T. b, (5b)

where T b is the ambient temperature (T b ——298K).
For T & T (T is the equilibri»m melting temperature
of the irradiated sample, 934 K in the case of Al), and
with vaporization neglected, one also requires the follow-

ing surface condition to avoid energy loss [9]:

A. Underlying assumptions =0, (6)

To describe heat Bow we make use of the heat Bow
equation in one-dimensional form, as is appropriate to
many experimental conditions [7]:

c(T) p(T) =
l
K(x, T)

l

+ S(x, t),
BT 0 f BT)
Bt Bx q Bx)

where J~ is the total Bux.
To consider squid-liquid or liquid-solid transitions, two

boundary conditions are required at the interface where
the phase transition occurs. The first of these is an energy
balance:

where T, c(T), p(T), and K(x, T) are, respectively, tem-
perature, specific heat, mass density, and thermal con-

BT
c»H~(&~r) &inst = ~sr

Ox
int

OT—K&;q
int

(7)
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where Tt,, is the temperature at which the transition takes
place, b,H (Tt, ) is the heat of melting at T = TE„and
v; & is the solid-liquid interface velocity. Moreover, the
thermodynamics of crystal growth requires that u; & be a
function of Tq, —T~,

v;., = f(T„—T ),

where f is determined by crystal growth thermodynamics
[9]

It has been shown that in an Al film irradiated in the
picosecond regime, superheating of the solid by 350 K
(i.e., to 1284 K) has a maximun duration of the order
of 1 ns [10]. One may therefore argue that, when dealing
with Al irradiated with a 30 ns pulse, superheating above
T plays no role. Another factor in this regard is the
presence of a high thermal gradient between the surface
and the interior. Moreover it may be shown that the role
of undercooling of the liquid may also be neglected [9].
We thus have Tq, T and only Eq. (7) need be taken
into account.

Equation (6) holds only if no vaporization occurs.
However, for high enough temperatures (here taken as
T )T~), vaporization will be important and so Eq. (6)
is no longer valid. During vaporization the surface re-
cedes with velocity u„. It is, however, still possible to
label its position with z = 0 if one chooses a reference
frame moving with the receding surface. Then, neglect-
ing mass acc»mulation and temperature dependence, Eq.
(3) becomes

p
p (2 z k~ T/m) '~2 (lib)

where v„ is the vaporization velocity. (Note that we allow
a nonzero v„at all temperatures. ) The relation between
the eq»iIibrium vapor pressure and the temperature may
be computed from the Clausius-Clapeyron equation in
the limit Vbq (( Vg~, Vfzq and V~ being the molar vol-
ume of liquid and gas, respectively. We assume the in-
equality T ( Tt„where Tt, is (as before) the thermody-
namic critical temperature, and write

AH(Ti)m (1 11
lp = pgexp

kg) i,Tg T )

v„= v„(1—Cb, ).

Concerning Cb„ lacking better information and in order
to ensure the continuity of v„as a function of tempera-
ture, we arbitrarily assign it a value given by

where pg is latm.
As will be explained in Sec. III C 3, when v„reaches a

threshold value of about v„" (2.8 x 10 cm)/(20 ns) =
1.4 cm/s, then gas-dynamic effects associated with the
Knudsen layer lead to a strong backstreaming which must
be taken into account by introducing a coefficient Cb, . As
a consequence the velocity at which the surface recedes
is given by

BT B T BT
cp = K 2 +cpv„+ S(x, t).

Bz (9)
Cb, ——Cb, p exp

vv
(14)

At the surface the total Bux is

T
JT~ =p~ = —&

opt

—[c(T —T b) + EH (T )]pv„
b,H, (T)pv„, — (10)

p
(2~k~ T m)'~2 (1la)

where p is the gas pressure, k~ is the Boltzmann con-
stant, m is the particle mass, and Cg is the sticking coef-
ficient (Cs 1) [11,12]. One may assume that Eq. (lla)
also holds in a nonequilibri»m situation as when particles
are emitted into vacuum thus yielding

with —~(BT/»)~~=p, &
= 0. The first term on the right

is zero because there is no heat conduction through the
surface. The second term describes the total energy of
the escaping particles and is already taken into account
with Eq. (9). EH„(T) is the heat of vaporization that
we ass»TTTe, as a first approximation, equal to the value
at Tg, the boiling temperature at 1 atm.

A simple way to compute v„as a function of temper-
ature is to consider what happens when a liquid is in
thermal equilibri»m with its saturated vapor. In this
case the number N„of particles vaporizing per»nit time
and area is

where Cb, p, the backstreaming cocci eat, will be deduced
in Appendix A [Eq. (AS)]. Equation (14) applies for 0 (
v„& v' if v hc8 not already reached v"; otherwise, for
v„& v" and if v„has already reached v" or else for v
v", we have the equality Cb, ——Cb,(}.

What about boiling'7 When the surface temperature
reaches Tg, then the vapor pressure equals the external
pressure pp. As a consequence, bubble nucleation may
occur in the bulk, bubbles themselves may move toward
the surface, and the vaporization rate may be enhanced.
At the same time the temperature of the sample will tend
to assume a constant value.

But is the above mentioned process what actually hap-
pens when using laser pulses in the nanosecond regime?
As a matter of fact, if the time in which heat is deposited
on the sample by a laser pulse is too short for bubbles
to nucleate, then a signi6cant superheating above Tg will
occur, with the temperature 6aaQy reaching T~, Alter-
natively, if the velocity at which the surface recedes is
high enough, then nucleation cannot in. any case occur
and again superheating will occur. Since the transition
&om simple vaporization to boiling needs a characteristic
time vg of about 10 —10 s for a liquid dielectric and
10 i —10 ii s for metals [13], then we do not expect
boiling in the picosecond regime while in the nanosecond
regime the question is still open to a de6nitive answer.
This is why we will present in Sec. IIB results for both
situations, boiling and superheating.
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i hase b irradiating an Al sample with a single 30ns laser pulse. ATABLE II. Main results obtained during the heating phase by irra ia ang an sa
recondensation bouadary condition is assumed for the KL.

Without boiling
Energy Start of
density liquid phase
(J/cm ) (ns)

3.00 8.3
3.10 8.0
3.20 7.9
3.30 7.7
3.50 7.5
3.70 7.3

With boiling at 2740 K
Energy Start of
density boiling
(J/cm ) (ns)

3.00
3.10
3.20 18.5
3.30 17.2
3.50 16.0
3.70 15.3

Duration of liquid
phase at the surface

(ns)
97
104
118
125
131
145

Duration of
boiling

(ns)

2.5
4.5
6.8
8.0

Maximum temperature
at the surface

(K)
2588
2679
2769
2859
3039
3217

Maximum temperature
at the surface

(K)
2588
2679
2740
2740
2740
2740

Maximum velocity
of surface recession v„

(cm/s)
0.7
1.0
1.5
2.2
4.3
7.8

Maximum velocity
of surface recession v„

(cm/s)
0.7
1.0

44.9
127.7
262.3
287.6

Crater depth
per pulse

(nm)
4.9 x 10
7.7 x 10
1.2 x 10
1.7 x 10
3.5 x 10
6.4 x 10

Crater depth
per pulse

(nm)
4.9 x 10
7.7 x 10
8.2 x 10

4.1
12.3
21.5

B. Numerical results

In our study 6rst we have used the simple vaporization
model given by Eq. (13) even to describe superheating
above Tp. Then we have examined the consequences o
boiling by implementing a boiling mechanism as soon as
T reaches Ts. The temperature of the surface is kept
constant and the excess energy deposited in the bulk by
the laser pulse is completely used to enhance vaporiza-
tion, no energy being spent in the heating of the emitted
particles.

On the basis of the above arguments, keeping the du-
ration of the laser pulse equal to 30 ns and with the pulse

performed by considering diferent values of the laser-

the energy density threshold for Tp to be reached as y-
ing between 3.15 and 3.20 J/cm2.

We report on six typical responses of the irradiated

3.70 J/cm2 (Figs. 1—4 and Table II). A comparison be-

tween the maximum values of v„when a boiling mech-
anism is operative (for examp e, v„ 45 cm s for
Ei = 3.20 J/cm2 and v„= 128 cm/s for Ei = 3.30 J/cm2
as in ig. as opF' . 3j opposed to those when it is not operative
(v„= 1.5cm/s for Ei = 3.20 J/cm2 and v„= 2.2 cm/s
for Ei = 3.30 J/cm2 as in Fig. 4) show that boiling is
important in enhancing the eKciency of laser sputtering.
A further indication of this importance is given by the
crater depths as summarized in Tab e II.

III. GAS DYNAMICS

A. Collision-free flow'

For particle emission by a thermal mechanism the ve-
locity distribution of the particles must be given by a
Maxwellian restricted to v positive [14,15]:

, s/2 EJ/2 1—/' m I
2& ka Ts j I'(j/2) (ka Ts)~/2

xexp (
— —(v, + v„+ v, ) + si

&aTs -2

for v ) 0, —oo & v„,v, (+oo. (15)

3000

c) E, = 3.30 J/cm without boilin

2500D
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K
1500

Q

1000
C3

500

CO

FIG. 1. Surface temperature of an Al sam-
ple irradiated with a single 30ns laser pulse
with energy density equal to 3.00 J/cm for
(a) and to 3.30 J/cm for (b) and (c). In (b)
it has been assumed that boiling is possible
on the relevant time scale 30ns while in (c)
it has been assumed to be impossible.
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FIG. 2. Velocity of Al surface recession,
v„, for two energy densities of the laser pulse
which give maximum temperatures below Tg.
A recondensation boundary condition is as-
sumed for backstreaming particles whenever
a KL is present.
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FIG. 3. Velocity of Al surface recession,
v„, for four energy densities of the laser pulse
which give maximum temperatures above Tq.
Here it is assumed that boiling is possible on
the relevant time scale 30ns. A. recondensa-
tion boundary condition is assumed for back-
streaming particles whenever a KL is present.
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FIG. 4. Velocity of Al surface recession,
v„, for four energy densities of the laser pulse
which give maximum temperatures above Tg.
Here it is assumed that boiling is impossi-
ble on the relevant time scale 30ns. A re-
condensation boundary condition is assumed
for backstreaming particles whenever a KL is
present.
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Here El is the total internal energy of the gas, j is the
member of internal degrees of freedom, I' is the gamma
function, and Tp and n~ are, respectively, the temper-
ature and the number density of the gas at the surface.
The pre-exponential term EI serves to ensure thatq/2-Z

(Ez) deduced from Eq. (15) assumes a thermodynami-
cally correct value given by (j/2)ka Ta [15,16]. A kind
of "center of xnass velocity" is given by

v fa+ dv dv„dv,

fs dv dv„dv,

r2kaTs'I ' '
7t'm )

(16)

z=v (t —ti) v t,

where 0 ( t~ ( ~~. The corresponding velocity distribu-
tion may be approximated by

fa(v» vw~ v. )
+

r ) Ej/2 —1

=" (*')
~ 2.l,aT. ~ r(j/2)(~aT, )'/'(* "*')

1 m

ass -2 (17)

where n~ is the gas number density and D stands for
Dirac.

Collision-free How is characterized by the fact that the
ratio T~~~/T~ undergoes a strong reduction termed kine
matic cooling for z )& 0 or t &) r~ due to the fact that
((v —(v )) ) (which is proportional to T~~) goes to 0
[18]. Here T~~ and T~ are, respectively, the temperature
parallel and perpendicular to the direction of the fiow.

B. The Knudsen layer

For low rates of vaporization, the density of the par-
ticles is so low that a collision is an unusual event: the
particles therefore undergo a so-called collision free flo-m

[14,17]. In this situation each particle keeps its original
velocity and, in the limit t )& r~, where r~ is (as before)
the duration of the laser pulse, the position of each par-
ticle emitted at the instant t~ is given by

where n~, u~, and T~ are, respectively, the nuxnber

density, the Bow velocity, and the temperature at the
"boundary" of the KL. Conditions of local equilibrium
then hold. (In fact a KL is really infinitely thick, but
is nearly fully developed after only 2—3 mean &ee paths
[19,20]. This is why we speak of a boundary. )

There are now two possibilities. If the sticking coefB-
cient for backstreaxning particles is given by C& ——1, one
has a recondensation boundary condition, as described in
Appendix A. If, on the other hand, the sticking coefB-
cient is given by Cs, ——0, one has a reflection boundary
condition, as described in Appendix B.

In either case the important result is that jump condi-
tion8 emerge. They are expressed in terms of the ratios
Tz /Ta and px/pa as in Eqs. (A4), (A5), (B4), and (B5),
p~ and pg being mass densities corresponding to n~ and
ng

C. Beyond the Knudsen layer

The Boltsmann equation

A rigorous study of the dynaxnical behavior of particles
emitted as in Eq. (15) may be done by using the well
known Boltzmann equation [21)

Bfa + Vfav+) F; = bcfa,Bfa
Bt Bv~

buffa

= v„~(fa fa~ —fa fa~)odvqdv'dv~
V1 V Vg

(19)

Here fa(x, v, t) is the Boltzmann velocity distribution,
I'; is the force per unit mass acting on each particle,
0. is the cross section for an elastic binary collision,
v v& v vy are, respectively, the velocities of two col-
lidhng particles before and after the collision, and v„~ is
given by v„~ = (v —vq( = ~v' —v~(. Moreover the index
i assumes the meaning of x, y, z.

Equation (19) holds under very weak restrictions.
However, to solve it the cross section must be known, and
to take into account Eq. (15) as the boundary condition
a Monte Carlo calculation must be performed, which is
very expensive in CPU time [18,22].

We have not yet commented on the problem that ther-
mally emitted particles, described by Eq. (15), are not
really in equilibriuxn. Equilibration occurs in the 6rst few
collisions near the surface in a region termed the Knud-
sen layer (KL). At the "boundary" of the KL the velocity
distribution takes on the form of a displaced Maxwellian

q
3/2 Ej/2 1

I
(2 z ka Tzr ) I'(j/2) (ka Tzc)~/2

xexp
1 m—[(v —uzi) + v„+v, ]+Ez2 2 2

kg Tg 2

for —oo & v , v„, v, & +oo, (18)

2. The flow equations

8—(-, (x))+) (.(.'~)) =-, (»)8
(20)

For most purposes one is not interested in the time evo-
lution of fa itself but in that of the mean values of a phys-
ical quantity y(x, v, t), which will depend on the position
and velocity of one single particle. The Enskog equation
may then be used. There are then no more constraints
than those for the Boltzmann equation [21,23]. When
dealing with average y(x, v, t) functions during each bi-
nary collision, the Enskog equation has the form
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where Dy is given by

X )~ X )~ X

z

index i (as before) assumes the meaning of x, y, z, and
x (for example) is equivalent to x. Moreover when g is
equal to the particle mass m, or to the linear momentum
mv, or to the energy of two colliding particles (1/2) mv2,
then Eq. (20) yields the mass continuity equation, the
Euler equation, and the energy conservation equation, re-
spectively. However, these three equations form a system
that is not complete, i.e., there are more unknowns than
equations.

A complete three equation system, that is, the gas-
dynamic equations, may be obtained via the Chapman-
Enskog perturbation method [24], holding when the col-
lisional term of the Boltzmann equation (b,c fz) is pre-
ponderant with respect to the dynamical terms (the re-
mainder). They are as follows: the continuity equation

Bt
+ V'(ps u) = 0,

the Euler equation

(21a)

Bt(""-)')-B ("".""
BB&i Z~

and the energy conservation equation

=0, (21b)

B—ps/ —u+E/
Bt g2

+) psu, ~

—u +f+ —
~

=) *. (2lc)
. B )1, pl

Bz~ (2 ps( Bz~

p = (~ -1)p, ~, (22)

where p = C~/Cv is the specific heat ratio. Equation
(21c) now yields the Poisson equation

u (& ps ~)'
4 pso)

(23a)

where po and pgo are, respectively, the pressure and mass
density of the gas at some arbitrary position and time. In
efFect, the use of Eqs. (21a), (2lb), plus (23a) continues
to conserve all three of mass, momentum, and energy.
Using the adiabatic sound velocity a = (pp/ps) ~, Eq.
(23a) may be rewritten as

pz a ~
2/(T —i)

pro E o)
(23b)

Here u (a = z, y, z) are the three components of the flow

velocity u, the quantities p, p~, and E' are, respectively,
the pressure, mass density, and internal energy per unit
mass of the gas, and 4 is the external (laser) heat input
into the gas.

In the adiabatic expansion approximation we have

g, BC';/Bx; = 0, while for a perfect gas one can in gen-
eral write

From Eqs. (23a) and (23b) follows the relation

2 ps
Ox Ox

(23c)

8. Unsteady adiabatic expansion

If the density of the gas at the boundary of the KL
is high enough, then the particles enter into a so-called
unsteady adiabatic expansion (UAE), which is well de-
scribed by the gas-dynamic equations [4]. However, it
should be noticed that at the expansion &ont, even in
the presence of an UAE, the number density of the par-
ticles is so low that only the Boltzmann equation can give
a good description of the gas. The threshold for the UAE
corresponds roughly to an emission rate of about 1 ML in
20 ns, which [neglecting the difFerence between v„and v„
seen in Eq. (13)] is equivalent to v„" (2.8x10 s cm)/(20
ns) =1.4 cm/s for the recession velocity of the surface [14].

If the vaporization rate is below v„", then gas-dynamic
eKects do not occur at all, except possibly for formation
of the KL, and we neglect them. On the other hand, as
soon as the vaporization rate reaches v„" at time t = t"
we make full use of Eqs. (21a), (2lb), and (23a). The
equations were integrated numerically in one-dimensional
form by following the Godunov scheme [25] with the KL
jump conditions and M = 1 as boundary conditions (see
Appendix C). Here M is the Mach number, given by
M = u/a for a one-dimensonal flow. Moreover, since the
crater depth is relatively small compared to the distance
scale of gas dynamics, we neglect the motion of the re-
ceding surface [v„as in Eq. (13)] in connection with the
gas dynamics.

Concerning Eq. (23a), the logical choices for po and

pso are obviously y~ and p~. However, as the ratio p/p~
evaluated at the KL boundary is a monotonically de-
creasing function of T~, which is in turn related to Ts,
we must face the problem that the flow is not actually
barotropic, i.e., the pressure is not a function only of the
density, and that Eq. (23a) gives only a local description
of energy conservation. As a result, p/p~ varies with x
and t. Nevertheless we have assumed that a good ap-
proximation of energy conservation still holds if during
the emission phase p/p~ assumes, for each value of t, a
unique value for the whole gas equal to that computed
at the boundary of the KL. When the vaporization rate
goes below the threshold for KL formation we assume
that p/p~ retains a constant value. That is, we neglect
heat loss to the target surface.

Two extreme boundary conditions may be analyzed
when considering gas-dynamic processes at an emitting
surface: recondensation with sticking coeKcient C& ——1
and mPection with Cs ——0. Obviously intermediate cases
are possible, 1 & C& ) 0, but we do not consider them.

The backstreaming within the KL was implicitly taken
into account by the parameter Ci„as in Eq. (14) and in
Appendix A. There is otherwise no return of particles to
the surface during the emission process. However, when
the emission ends the KL is instantaneously removed.
Particles can now scatter towards the surface, and it is
supposed that Cs is equal to 1 when recondensation oc-
curs and 0 when re8ection occurs.
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D. Numerical results

In Fig. 5 we geport the results obtained using a re-
condensation boundary condition, energy density of 3.70
J/cm2, and three values of t. Three different aspects are
illustrated.

Emission leading to a UAE begins at t = t; = t" = 14.9
ns and we consider in curve (a) the gas density and How

velocity when the surface temperature reaches its max-
imum at t=20.3 ns. The gas density has its maximum
at the KL boundary (pa = 200 pg/cms) and drops to
0 well away &om the surface. The Bow velocity of the
gas at the KL boundary is urt = 1051 m/s, but increases
with distance. According to previous analytical work, u
at the expansion &ont should be a maximum, given by
u = 4ult for atoms with p = 5/3 [14,26,27). The ob-
served discrepancy, i.e., that the How velocity reaches a
maximum slightly before the expansion front, is due to
the fact that near the front the density is so low that the
numerical method and rounding error play a signi6cant
role. More accurate results may be obtained by decreas-
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FIG. 5. Pro6les of gas density and Sow velocity for an en-
ergy density equal to 3.70 J/cm, three values of t, a reconden-
sation boundary condition, and the assumption that boiling
is not possible. Emission leading to a UAE is found to begin
at a time threshold t; = t„= 14.9 ns, when we have v„= v"
and T = 2693 K. Curve (a) corresponds to the time when the
surface temperature is at its maximum, namely, t = 20.3 ns.
Curve (5) is for the time at the end of the emission, namely,
tf —t„' = 27.4 ns, when we again have v„= v„and T = 2693
K. Curve (c) is for the time when a period equal to the emis-
sion duration (i.e., ty —t, 12.5 ns) has passed since the end
of the emission, n~ely, t = 39.9ns. A single LOC formally
analogous to the second LOC of Fig. 7 is seen to be present.
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FIG. 6. Pro6les of gas density and Sow velocity for an en-
ergy density equal to 3.70 J/cm at the time when the surface
temperature is at its maximum, namely, t = 20.3ns. Curve
(a) corresponds to a KL with a reHection boundary condition
for the backstreaming and curve (b) corresponds to a KL with
a recondensation boundary condition.

ing the time and spatial step lengths, a procedure which,
however, implies a heavy increase in the CPU expense.

In curve (5), at the end of the emission phase, when
we have v = v and t = tf ——t„=27.4 ns, no important
differences with respect to the previous case are observed
even if the How velocity (ult. = 404m/s) and density of
the gas (pz = 78pg /cm ) at the KL boundary are a bit
lower. We would point out that analytical descriptions of
the problem [26,27] normally do not have a regime similar
to curve (b) because they assume an instantaneous onset
and ending of the emission.

Finally, in curve (c) at t = 39.9ns, the density and
How velocity display a line of contact (LOC), which is a
remembrance of the abrupt density drop that occurs at
the end of the emission. For short enough times this LOC
coincides with the absolute density maximum. Near the
surface the velocity exhibits negative values due to the
recondensation process. These results are very similar to
those found for one-dimensional expansions based on the
Boltzmann equation [18],as well as for solutions based on
the gas-dynamic equations [26,27). At 39.9 ns some 6.7%
of the emitted gas has already recondensed, a quantity to
be compared with 2.4—5.2% for t = 271 47~ for —a "top-
hat" laser pulse [28].

Figure 6 shows a comparison between densities and
Bow velocities with recondensation and re8ection bound-
ary conditions for backstreaming within the KL. The
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FIG. 7. ProSles of gas density and Sow velocity for an en-
ergy density equal to 3.70 J/cm, three values of t, a reliection
boundary condition, and the assumption that boiling is not
possible. Emission leading to a UAE is found to begin at
t, = t„' = 14.9 ns, when we have v„= v„" and T = 2693K.
Curve (a) corresponds to the time when the surface temper-
ature is at its maximum, namely, t = 20.3 as. Curve (5) is for
the time at the end of the emission, namely, t y

——t„' = 27.4 ns
when we again have v„= v„" and T = 2693 K. Curve (c) is for
the time when a period equal to the emission duration (i.e.,
ty —t; 12.5ns) has passed since the end of the emission,
namely, t = 39.9 ns. Two LOC's are seen to be present.

temperature of the sample has been taken as being at
its maximum. In this situation there are no strong dif-
ferences even if, in the case of a reQection boundary con-
dition, p~ is a bit higher. Even the temperature profile of
the surface is not significantly affected by the differences
in Cb, at the maximum the difFerence in temperature is
less than 2 K.

Figure 7 shows the results obtained when reQection in-
stead of recondensation is assumed. Although curves (u)
and (5) are almost the same as the corresponding curves
of Fig. 5, curve (c) shows three important differences.
First, for all times the Qow velocity at the surface is 0.
Second, two LOC's are present both in the Qow velocity
and in the density profile. Third, the density exhibits
a plateau between the surface and the first LOC. This
is rigorously true only for atoms, but is always approxi-
mately true [26,27].

We have described a laser sputtering process as it
would occur in a thermal regime when both a primary
mechanism (due to absorption of the laser pulse) and
a secondary mechanism (gas dynamics) are taken into
account. In particular the following physical quantities
were computed: (a) surface temperature as a function of
time and with the postulate that boiling either is or is not
possible on a 30 ns time scale (Fig. 1 and Table II); (b)
duration of the liquid phase at the surface and duration
of boiling (Table II); (c) surface recession velocity due to
the vaporization process (Figs. 2—4 and Table II); (d) the
crater depth (Table II); and (e) density and flow velocity
of the emitted particles as a function of time with the
assumption that the gas-dynamic equations (rather than
the Boltzmann equation) may be adopted (Figs. 5—7).

In spite of there being only a limited possibility of di-
rect comparison with experimental results, due both to
the lack of published data (crater depth for instance)
and to the difficulty in imaging the gas cloud, qualita-
tive agreement with previous theoretical work was found
[18,26—28]. The latter, however, involved rather heavy
restrictions in the choice of boundary conditions. As a
result the Qow velocity assumed a rather simple structure
given by a single straight line during the vaporization and
by either two or three nearly straight lines after the end
of the vaporization. On the contrary, the boundary con-
ditions used in our model are less restrictive, the How ve-
locity and gas density (Figs. 5—7) being free to follow the
temperature changes of the sample surface (Fig. 1). This
implies a more structured Qow velocity function, which
departs &om having straight or nearly straight compo-
nents.

Even our approach, however, is not methodologically
perfect. We have had to adjust the ratio p/p~ for each
value of t.

The scheme adopted here for describing laser sputter-
ing may be improved by taking into account the tem-
perature and phase dependence of the density, reQection
and absorption coefficients, specific heat, conductivity,
and heat of vaporization. Likewise, the heat input into
the gas should have been considered.

A deeper understanding of the boiling mechanism is
necessary to overcome our "hybrid" description of va-

porization and boiling, which are supposed to happen
at a pressure of 1 atm, and the gas expansion, which is
supposed to be into vacuum.

Despite these possible improvements the results we

have obtained should describe well enough the laser ab-
lation process at rather low CPU expense. Indeed the
study of the whole process described here required more
or less 90 h of VAX6320 computer CPU time. This time
applies to a situation in which the spatial and time steps
were, respectively, Lx 23 nm and At 2 ps for the
integration of the heat Qow equation and Ax 4 nm
and b,t 0.1 ps for the integration of the gas-dynamic
equations.

At the saxne time the model is quite general. The laser
ablation of other materials may be described simply by
providing alternative parameters for Table I.
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APPENDIX A: THE KNUDSEN LAYER %VITH A
RECONDENSATION BOUNDARY CONDITION

(, ka TK't
PK uK+

m
Here we indicate brie8y how the properties at the

Knudsen layer (KL) boundary can be derived when the
sticking coefBcient applicable to backstreaming particles
is given by C& ——1, i.e., for a recondensation boundary
condition. Historically the argument was pioneered by
Ytrehus [29] and Cercignani [16].

Neglecting the KL thickness but requiring mass, mo-
mentum, and energy to be conserved across the layer, the
following equations are obtained:

1
(kaTs t'

PKuK = PS!( 27l'm )
1

(kaTK& '
+p pK ! ! [nm erfc(n) —e ], (Al)

and

1 kaTs kaTK
Ps + PK2 m m

(, 1
x

!
n y —

! erfc(n) —,ne
2) 7r 2

(A2)

(1 2 kaTK
PK uK

l
-uK +

(2 m p —1j
1

ka Ts (ka Ts ) ' ( p + 1 + PKm (2am) g2(p —1)J
~ (, p+1

!xerfc(n) —e !
n2+ 2(~-1)).

1
ka TK (ka TK 't ' (,n n + !x1

m g 2s'm) g (p —1)y

(A3)

Here n is given by n = M(7/2) ~~2 and p, is the saturated
vapor mass density at T, .

From Eqs. (Al)—(A3), the following jump conditions
[holding for 0 & M & 1 (Appendix C)] may be deduced:

1 2
TK (p —1 nl ' 1p —1 n1+ 7r A4
Ts (p+1 2) p+1 2J

(total Sux) —(escaping Hux)

(total flux)

(kaTs l —PKuK
g 2nmp

(kaTs) '~'
ps ( 2n'm )

1/2

ps E Tsj (As)

and

1 Tg+— 1 —m& ne erfc(n)
2 Tg

1 1

( TK ) pK (TK)

1
( kaTKI '

uK ——M aK ——M! 7 m

(A5)

(A7)

APPENDIX B:REFLECTION BOUNDARY
CONDITION

With a reflection boundary condition (sticking coeffi-
cient given by Cs ——0) and neglecting the KL thickness,
the backstreaming should not change the mass and the
energy Buxes between the surface and the KL boundary.
Equations (Al) and (A3) therefore need to be replaced
respectively by

(kaTs) '
PKuK = PS!

g27rm)

Here a~ is the local sound speed at the KL boundary,
and M = u/a is the Mach number for a one-dimensional
How.

Rn'thermore, from Eqs. (Al) the backstreaming co-
efficient Cb p as used in Eq. (14) may be deduced very
simply:

(1 2 kaTa
PK uK! —uK +

(2 m p —1)
1

kaTs (kaTsl ' ( p+ 1
m g

2n. m) g2(p —1)j
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In regard to the linear moment»~ Bux, in the reflec-
tion case the surface acts on the backstreaming particles
as a negative-to-positive "linear momentum converter. "
Equation (A2) must therefore be replaced by

tionary. If the Poisson equation [Eq. (23b)] and the re-
lation seen in Eq. (23c) are used, then Eqs. (21a) and
(2lb) can be rewritten as

ka Tace
pK ua. +

m

Ba Ba (p —1) a Ou—+u —+ =0,
le Bx 2 Ox

(CI)

Il
x

~

o. + —
~

erfc(cx)—
2)

1 ka Ts kyar T~
Ps + pK

2 m
'

m
1
, ne

7r 2

Ou Ou 2 a Oa—+u —+ = 0.
Ot 192; p —1 Ox

Then "stationary" or "alxnost stationary" How at the KL
boundary means

The jurnp conditions, in this case, may be deduced using
only Eqs. (Bl) and (B2):

0u Oa ~ 0
Bt

(C2)

TK
Ts

p+ 1 (V-I)~ +W2

2
(B4) and we have

Oa (p —1) a Bu
u —+ ~ 0

Oz 2 Ox

Pz
ps

(T )"'
2 a rr1/2 (TK )

1

(2rr)'~' ' (B5) Ou 2 a Oa
u — + ~ 0

Bx f —18x

(C3)

where the final values correspond to M = 1. Obviously
the new value of Cb.o is given by Cb.o ——0 and the coef-
ficient P (P g 0) is not needed. A discussion of the KL
for conditions of reflection apparently has not been made
previously.

Equations (C3) can be rearranged to

(C4)

APPENDIX C: THE HYPOTHESIS M = 1

We show here that the condition M = 1 is required
when the flow conditions at the KL boundary are sta-

&om which follow the relations u~ a~ and M 1.
This simple argument has apparently not been made

previously. Rather, much more complicated derivations
were used [16,29].
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