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Anomalous scaling in fluid mechanics: The case of the passive scalar
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A mechanism for anomalous scaling in turbulent advection of passive scalars is identified as
being similar to a recently discovered mechanism in Navier-Stokes dynamics [V. V. Lebedev and V.
S. L'vov, JETP Lett. 59, 577 (1994)]. This mechanism is demonstrated in the context of a passive
scalar field that is driven by a rapidly varying velocity field. The mechanism is not perturbative, and
its demonstration within renormalized perturbation theory calls for a resummation of infinite sets of
diagrams. For the example studied here we make use of a small paraxneter, the ratio of the typical
time scales of the passive scalar vs that of the velocity field, to classify the diagrams of renormalized
perturbation theory such that the relevant ones can be resummed exactly. The main observation
here, as in the Navier-Stokes counterpart, is that the dissipative terms lead to logarithmic divergences
in the diagrammatic expansion, and these are resummed to an anomalous exponent. The anomalous
exponent can be measured directly in the scaling behavior of the dissipation two-point correlation
function, and it also affects the scaling laws of the structure functions. It is shown that when the
structure functions exhibit anomalous scaling, the dissipation correlation function does not decay
on length scales that are in the scaling range. The implication of our findings is that the concept of
an "inertial range" in which the dissipative terms can be ignored is untenable. The consequences of
this mechanism for other cases of possible anomalous scaling in turbulence are discussed.

PACS number(s): 47.27.Eq

I. INTRODUCTION

The community of Buid mechanics is split into two
camps: one camp believes that the scaling theory of tur-
bulent media is adequately described by the Kolmogorov-
Obukhov 1941 phenomenology [1,2] (KO41), whereas the
other continues to be troubled by experimental indica-
tions that the KO41 predictions are not obeyed (see, for
example, Refs. [3—5]). The issue is whether dimensional
analysis is sufiicient to predict the full scaling behavior
of the theory of turbulence. This behavior may be char-
acterized in terms of the structure functions of the hy-
drodynamic fields. Denoting the velocity field by u(x, t)
and a generic passive scalar field by T(x, t), the structure
functions are defined in terms of differences across a scale

S,( ) = ([S „(x)] ) - "~ ("),

~.() —= ([~T.( )]') - "'"'
(1.1)

(1.2)

where

bu„(x) = [u(x+ r) —u(x)]

bT„(x) = T(x+ r) —T(x).

(1.3)

(1.4)

Here (s are scaling exponents, and (. ) denotes an aver-

age over time. Equations (1.1) and (1.2) are expected to
hold over an "inertial range" of scales much smaller than
the outer scale of the velocity field L and much larger
than a q-dependent integral scale that depends on the
Reynolds number Re = UI, L/v, with v being the kine-
matic viscosity of the Quid and UL, the variation of the
velocity field on scale L.

Within the KO41 phenomenology one expects the nu-
merical values of (s to be q independent. For homoge-
neous isotropic turbulence the prediction [1,2,6,7] is that
(s(u) = gq(T) = ( = 1/3. We shall refer to this predic-
tion as "norroal scaling. " Experiments seem to indicate
that this prediction is not obeyed [8]. For higher-order
structure functions of the velocity field (high q) there
have been claims that significant deviations &om normal
scaling are observed [5]. Recently also the low values of
q were examined using data analysis [9] suggesting that
for q ( 3 the exponents are larger than 1/3 and for q & 3
smaller than 1/3. (Of course, Cauchy-Schwartz inequal-
ities lead immediately to the constraints (~ & (v for any
q'&q)

Prom the theoretical point of view the situation is even
more confusing. There have been many attempts to con-
struct phenomenological models to describe anomalous
scaling in turbulence [10,11]. A starting point For some
attempts was the observation that the two-point struc-
ture function of the dissipation Buctuations depends on
the separation distance even when the latter is in the
inertial range. The dissipation Geld in turbulence ~ has
a correlation function which was observed [12] to decay
in space like (L/r)". It was erroneously argued (and
see below, Sec. VII) that the KO41 theory predicts that
p = 0. The exponent p was called the "intermittency
exponent. " Mandelbrot suggested that its non2, 'ero value
stems from soine fractal concentration of turbulence [13].
Mandelbrot's idea led to a Hurry of models [14,15], all of
which suffer &om a lack of connection to the equations
of Quid mechanics. We shall show in this paper that, for
the passive scalar field, the exponent of the dissipation
correlation function has nothing to do with any &actal
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concentration, but that it is important for the under-
standing of the appearance of multiscaling.

More systematic derivations based on the equations
of Buid mechanics have tended to find scaling solutions
that agree with the KO41 phenomenology [16,17]. Here
we refer to perturbation expansions, whether arbitrar-
ily truncated or fully renormalized. It is noteworthy that
the renormalized perturbation approaches have indicated
that the expansion converges term by term [17,18]. There
seems to be no reason to expect divergences that must
be res»mmed in order to get anomalous exponents. One
of the main aims of this paper is to question some of the
assertions of these approaches, and to investigate what
might be the reason for the failure to find possible mech-
anisms for anomalous scaling. Following Lebedev and
L'vov [19] we shall make the point in this paper that
such a mechanism may be furnished by the dissipative
terms in the equations of motion.

Rather than dealing directly with all the complications
of the Navier-Stokes dynamics, we shall focus here on
the scaling behavior of a passive scalar whose dynamics
is described by Eq. (2.1). One expects this problem to
be sixnpler, because one can choose the driving velocity
field to have a simple scaling behavior, with Gaussian
statistics and no multiscaling [i.e., (q(u) = ((u) for all
q]. Some constraints on the possible scaling properties of
the passive scalar were established recently using rigorous
techniques [20,21]. Two inequalities were derived:

2~i(T)+ ~(") + 1

2( (T)+g(u) &1.
(1 5)
(1.6)

In the case that the passive scalar has sixnple scaling, i.e.,
(i(T) = (' (T) = ((T), these two inequalities furnish the
prediction

2((T) i ((u) = 1 (no anomalous scaling). (1.7)

The rigorous techniques of Refs. [20,21] did not indi-
cate under which conditions one should expect anoma-
lous scaling. Kraichnan has suggested [22] that in the
case that the driving velocity field varies on much faster
time scales than the passive scalar, Eq. (1.7) will not be
obeyed. Kraichnan derived an equation for the two-point
correlation function of the passive scalar in this limit [23]
and from it computed the value of t', 2, finding that this
value depends on the dynamical properties of the velocity
field. This result xneans that in this case the two bounds
(1.5) and (1.6) may not coincide, and that this case has
the potential to exhibit multiscaling. Kraichnan went on
to derive an expression for (2 under certain assumptions,
and found that it has a nontrivial dependence on n.

In this paper we follow Kraichnan's insight [22,23], and
perform a systexnatic study of the scaling solutions of
the equation for a passive scalar which is convected by
a rapidly varying velocity field. By "rapidly varying"
we mean that the typical (k-dependent) frequency scale
of the velocity Be]d, I's, is much larger than the typi-
cal frequency scale 7i, of the scalar field, so pi, /I'i, (( l.
We will show that the existence of this small parame-
ter allows us to treat the Dyson-Wyld equations [24] of

(Bi+u. V')T(x, t) = ~V'2T(x, t). (1.8)

The velocity Beld u(x, t) is externally determined, and we
are interested in the effects of this velocity field on the
scalar T. From this equation one xnay obtain an equa-
tion of motion for S2„(r) defined in Eq. (1.2), where we
have restricted q for our investigation to even integers
2n One Brat. derives an equation [22] for bT(x, x', t) =
T(x, t) —T(x', t), which is multiplied by 6T(x, x', t) 2

and averaged over the ensemble to obtain in the station-
ary case

'D~ (r) = J2 (r)

where, with r = (x —x'~,

(1 9)

172„(r) = 2n(b'T " (x, x', t)
x [u(x, t) V + u(x', t) 7']6T(x, x', t)), (1.10)

and

J2„(r) = 2n~(6T " '(x, x', t)[V + V' ]6T(x,x', t)).
(1.11)

For future comparison with Kraichnan's derivation [22]
of the scaling exponents, we mention here that his anal-
ysis is based on the balance equation (1.9), and upon
a differential equation which determines the convective
term 172„(rj in terms of the structure function S2„(r)
(for general dimension of space d):

(1.12)

The function h(r) is the "eddy dHFusivity" [23],

renorxnalized perturbation theory in a way that leads to
closed form equations. In the limit that pi, /I'i, -+ 0 we

can solve exactly (in agreement with Kraichnan) for the
two-point propagators, whereas the calculation of higher-
order correlation functions still involves an infinite series
of diagrams. In the investigation of this series we fol-
low the idea presented by Lebedev and L'vov [19] that
the diffusive term in the equation of motion is responsi-
ble for the appearance of logarithmic divergences in the
series, and that these can be resummed exactly, leading
to anomalous scaling. We will show within a consistent
theory how the possibility of anomalous scaling in the
structure functions S2„(r) may arise. It is noteworthy
that these divergences do not go away in the limit that
the difFusivity goes to zero; we argue that in this prob-
lem the notion of an inertial range, in which the diffusive
term is negligible, is untenable. Thus, a theory that sets
from the beginning the diguaioe term to zero will miss the
mechanism for anomalous scaling of the scalar structure
functions. Needless to say, we would like at the end of
our calculations to suggest that the same conclusion may
hold for the case of the Navier-Stokes equations and the
limit v ~ 0. We defer further discussion of this point to
Sec. VIII.

The equation of xnotion for a passive scalar is
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t
h(r) = dt ([u(x+ r, t) —u(x, t)]

.[u(x+ r, 0) —u(x, 0)])

Our calculation leads to a difFerent evaluation of J2„(r).
Using Eqs. (1.10)—(1.14) for n = 1, one may determine
the coeRcients of Sq(r). For general n, one may then
use the balance equation, evaluating 27z„(r) according to
(1.12) and Jz~(r) according to (1.14) to derive an equa-
tion for the coefficients which determines the scaling ex-
ponents. The result [22] is

(z„(2n(z„—2(z + d) = de. (1.15)

We shall not regain this equation.
A part of the strategy of this paper is to treat the

problem in (k, u) space instead of the configuration space
(r, t). Although this is a traditional approach in the ana-
lytic theory of turbulence, it needs discussion. After all,
plane waves are not the natural representation of one' s
intuition about turbulent "eddies. " It is not obvious that
the (k, ur) representation is efficient in describing the fine
scale structures which develop on the viscous scales, and
are suspected to play an important role in the theory, as
we also claim in this paper. On the other hand, the (k, ~)
representation ofFers a kit of powerful technical tools. We
shall show that in the case that we are considering here
we can deal with all the important terms in the infi-
nite series of our perturbation theory. We will resum all
the diagrams which describe the important role of the
viscous-scale structures, and analyze their efFect on the
Buctuations in the inertial range. Thus, the main com-
plaint about traditional perturbative studies, i.e. , that
they resort to uncontrolled assumptions about the infi-
nite series of diagrams, will in part be answered in this
case.

The structure of this paper is as follows. In Sec. II we
develop the line-renormalized perturbation theory for a
passive scalar. It has been shown that in order to avoid
infrared (ir) divergences due to sweeping efFects one may
transform to quasi-Lagrangian variables as introduced in
Ref. [1?], and see also Ref. [18]. This transformation
is exact, and it indeed allows us to eliminate the diver-
gences; the price is that we lose momentum conservation
at the vertices, and the theory becomes tech~ically more
cumbersome. We discuss the renormalized Dyson-Wyld
equations in quasi-Lagrangian variables for the case at
hand (Sec. IIA) and show how the separation of time
scales between the velocity 6eld and the passive scalar
can be used to efFectively eliminate many diagrams from
the renormalized expansion. In Sec. III we solve for the
two-point Green's function and the correlation function.
This solution is exact and leads to a calculation of the

which is assn~ed to depend on r like h(r) ~ r~". In our
derivation in this paper we will recover this relation for
Dz (r). Kraichnan [22] used another relation which is
crucial for his results, an approximation for the dissipa-
tive term Jz„(r):

Jz„(r) = 2n~S2„(r) V Sg(r) —V Sz(0) /S2(r) (1..14)

exponent (z(T). This exponent is not in agreement with
(1.?), indicating that the bounds (1.5) and (1.6) do not
coincide in this case, and that we should expect mul-
tiscaling. We begin to study the mechanism for mul-
tiscaling in Sec. IV. We analyze the nonlinear Green's
function and 6nd that this quantity is represented by
an infinite set of diagrams ("ladder diagrams"), each of
which contains a logarithmic divergence in the ultravi-
olet (uv). Happily, we can resum this set of diagrams
exactly, and prove that it leads to an anomalous expo-
nent in the nonlinear Green's function. Sections V and
VI are dedicated to understanding how the anomalous
exponent found in Sec. IV appears in the scaling prop-
erties of the structure functions. To this aim we explore
in Sec. V the various higher-order correlation functions
and structure functions, and in Sec. VI the quantities
J2„. We show that the same ladder diagrams that ap-
pear in the nonlinear Green's functions appear as parts
of the diagrams for J2„, leading to the appearance of the
anomalous exponent also in Jz„. We explain how this af-
fects the structure functions in Sec. VI. Section VII deals
with the calculation of the two-point correlation func-
tion of the scalar dissipation, which is analogous to the
correlation of the energy dissipation rate and which also
has anomalous scaling behavior of the same nature; see
Ref. [19]. It culminates in showing that the anomalous
exponent appears once again in the power law decay of
this quantity. In fact, it is shown that the borderline of
the appearance of multiscaling corresponds in our theory
to the elimination of the spatial decay of this correlation
function in the scaling regime. This 6nding is in fact
in glaring contradiction with the folklore that ascribes
"intermittency corrections" to deviations from r behav-
ior of the dissipation correlation. Quite to the contrary,
such a behavior is the necessary condition for anomalous
scaling in the structure functions. Section VIII is dedi-
cated to a summary and a discussion of this paper. We
shall also make in this section some comments about the
implications of our analysis on the scaling theory of the
structure functions of the velocity field in Navier-Stokes
turbulence [25].

II. RENORMALIZED PERTURBATION THEORY
FOR A PASSIVE SCALAR

A. Quasi-Lagrangian formulation

Let us return to the equation of motion (1.8) and add
an external force ((x, t) which mimics a source of scalar
Buctuations with the characteristic scale L:

(8, +u. V)T(x, t) = ~V T(x, t) +((x, t). (2.1)

The external farce ((x, t) is assn~ed to be Gaussian and
statistically homogeneous in space and time. The prop-
erties of the correlation function of ((x, t) are best stated
in k space: it is concentrated in the small k region, i.e.,
k ( 1/I, and it decays quickly to zero for k )) 1/I. In r
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space this means that g'(x, t)f(x+ r, t)) is constant for
r &&L.

The perturbation theory of Eq. (2.1) suffers from in-

&ared divergences. It was found in the context of the
analysis of the Navier-Stokes equations that these diver-
gences can be removed by transforming the equations
to quasi-Lagrangian coordinates [17,18]. This is a use-
ful approach for our problem as well. To perform a
quasi-Lagrangian coordinate transformation, all the ve-
locities are taken relative to the velocity of a chosen point
which passes through ro at time to. Note that this diHers
from the Lagrangian transformation where one would fol-
low the trajectory of every point. The quasi-Lagrangian
transformation is not an approximation, but a nonlin-
ear transformation of the variables which will allow us
to eliminate divergences that are due to larger scale mo-
tions. The Euler velocity and the passive scalar fields
transform as

t
R(t) = x — dv. v„,, (rp, ~).

tp
(2.5)

We can write an equation of motion for 8, q, (R, t) using
Eq. (2.1), Eqs. (2.2)—(2.5), and the chain rule of diKeren-
tiation:

8 O„(R,t) + [v„(R,t) —v„(rp, t)] . V8„(R,t)

= ~V'8„(R, t) + g„(R,t). (2.6)

In Eq. (2.6) we have dropped the subscript tp. The reason
is that the equation is invariant to the choice of the origin
of time to, but not to the choice of the position ro. At
this point we can replace R by a d»mmy space variable
x. Define now the Fourier transform of a function f(x, t)

u(x, t) = v„,, (R, t),
T(x, t) = 8„,„(R,t),
g(x, t) = 4„,.(R, t),

(2.2)

(2.3)
(2.4)

f(k, e) = f dxdt f(x, t)exp]t(k x —et)]. (2 7)

where the quasi-Lagrangian trajectory is
After Fourier transforming (2.6) with respect to x and t,
we find the equation of motion

dk2 durq d~2
(a+ink )8~, (k, u) = 2x

(2x)s (2w)s 2x 2n'

xV„(k,k~tk2) v,', (kit(dl)8, 0(k2t(d2)b(~+ ~1+~2) &4'ro(kt~)t (2.8)

where the quasi-Lagrangian vertex V„(k,kq, k2) is given
by

is proportional to k2 and consequently much larger than
Fp

V„(k,k, k2) = (2 ) k2[b(k + kg + k2)
—e *"""b(k+k2)]. (2 9)

(iii) «r Ik. l
« lkl lk~l

V„(ktkgtk2) (x k2, (2.i2)

Notice that without the second term in Eq. (2.9) we re-
cover the Eulerian vertex. With the second term the
vertex has useful properties when one of the triad k vec-
tors is much smaller than the other two. Consider for
simplicity the case rp = 0 (which is not essential for the
argument as is clarified below).

(I) «r lkl « 1k~i Ik. l

V„(kt kit k2) = kb(k+ kg + k2). (2.10)

V"( k~ k2) = k.
I

k~. b(k+ k2) I.l(
dkg )

(2.ii)

The important thing is that the vertex is proportional to
k~. This is very cMerent &om the Eulerian vertex which

To see this, notice that by incompressibility we can add a
k) to the k2 that multiplies the b functions in Eq. (2.9).
Then, using the first b function we get the result (2.10).
The second b function vanishes in this limit.

(ii) «r lk~l && Ikl lk21

as one sees from Eq. (2.9). We conclude that in all these
three cases the vertex is proportional to the smallest wave
vector. This is the main reason for the quasi-Lagrangian
formulation; a similar result for the dynamics of the ve-
locity field under the Navier-Stokes equations has been
previously established [17]. This property serves to elim-
inate divergences that exist in the Eulerian case. We
stress that in our derivation below we use the full and
exact form of the vertex (2.9). The preceding discussion
of the asymptotic properties of the vertex serves only to
motivate our choice of coordinates.

We wish to calculate the simultaneous two-point and
higher-order correlation functions of the T(x, t) field. We
will use the above equation to calculate the correlation
functions of the 8„field. It will be clear (see also [17,18])
Rom the following ar~~ment that the simultaneous cor-
relation functions of T(x, t) coincide with those of 0„.
Since the equations of motion for both T and O„are in-
variant to translation of the origin of time, simultaneous
correlation functions cannot depend explicitly on time.

- Accordingly one can compute the correlation of O„at
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t = tp. At this time the quasi-Lagrangian transformation
Eqs. (2.2)—(2.5) is an identity, and the two fields T and
O~, are identical.

The theory is developed in terms of three two-point
propagators, i.e., the correlation function and the Green's
function of the passive scalar 6eld O„and the correlation
function of the quasi-Lagrangian velocity field v„. These
are de6ned as follows:

the calculations. From the point of view of Navier-Stokes
dynamics, a "fast-varying" velocity field is only realizable
when the nonlinear term in the equations is negligible,
and the dynamics is dominated by the external forcing
which is fast varying. When the nonlinearity is small,
there is no appreciable B~H'erence between Eulerian and
quasi-Lagrangian coordinates. %'e can therefore take the
followillg form for %r, (kI, k2, idl):

2m P„(kl, k2, ur I)b ((ul + (u2)

= (O„(kl, url) O„(k2, ~2)), (2.13)

2Irg o(kl k2 ~1)~(~1 + ~2)

ro(kl&k2&~1) pkq&(4)f
~

~
~(kl + k2)) (2.18)

(u)I )
(lk )

where f(ul/Fk) is a scaling function, jdz f (z) = 1, and
f (0) = O(l). Pk is the transverse projection operator

= (aero(kl, ~l)/hp'(k2) ~2)), (2.14)

2n'Rro (kl, k2, ~I)b(ur 1 + ~2)

and

k*

(2.19)

(2.20)

= (v„(kl, url)v„(k2, u2)) . (2.15)

These quantities are not diagonal in k representation be-
cause of the existence of the reference point rp. How-
ever, the original problem is homogeneous in space. As
is shown in Appendix A, this leads to a transformation
rule with respect to a change of reference point by R.
This rule [cf. (A9)j is

The quantity I'I, is the characteristic &equency of vari-
ation of the quasi-Lagrangian (and Lagrangian) velocity
field on a scale 1/k. We are interested in this paper in
the case where I'g is large, in a sense to be made precise
later.

B. Dyson-Wyld equations

+r —R(klan k2&~1) = + (kl k2) ~1)e

This rule can be represented in a simple form in a mixed
(k, r) representation, where k = (kl —k2)/2 and r is a
space coordinate conjugate to s = kq + k2. Defining

In this subsection we develop a line-renormalized per-
turbation theory for the two-point propagators. We
choose graphic notation as shown in Fig. l.

P„(k,r, (ul)

ds exp is r T„k+ s 2, —k + s 2, ~z, 2.16

one may rewrite Eq. (A9) as

8 (k,co)

v(k, w)

E„(k,r, url) = X(k, r —rp, ~l), (2.17) 'V(kl, k2,k3 )

where we have denoted P„—p by X. Similarly, one can
derive a corresponding relation for the Green's function.
The implication of these relations is that, rather than
having a dependence on kq, k2, and rp, the two-point
propagators depend on two quantities only, i.e., k and
r —rp. The transformation rule Eq. (2.17) demonstrates
explicitly that the choice of the reference point rp is iden-
tical to a choice of the coordinate origin due to the de-
pendence of the propagators only on the spatial difFer-
ence r —rp. Accordingly, without loss of generality we
can choose kom now on rp ——0 and write the theory
in terms of the quantities X(k, r, ul), g(k, r, ul) or their
Fourier transforms with respect to r.

Since the velocity 6eld in our problexn is at our dis-
posal, we shall introduce a physical model that simpli6es

g(k&,k2, m)

g(k&,k2, m)

A(k&,k2, m)
k) k2

FIG. 1. Notation.

k)

VVVTVVVV
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In Fig. 2 we show the diagrapnmatic representation
of the equation of motion (2.8) in terms of renormal-
ized propagators. Despite the fact that our propagators
(and our vertex) are not diagonal in k representation, one
can perform the standard Dyson summation of the one-
particle irreducible diagrams to obtain the well-known
Dyson-Wyld equations. With our notation the Dyson-
Wyld equations are shown in Fig. 3, where we also display
the first contributions to the mass operators Z (renormal-
ized damping) and O (renormalized noise correlations).
In analytic form the Dyson equation for the Green's func-
tion and the Wyld equation for the correlation function
read

Dyson Equation

(a) VIA

Wyld Equation

'IIIINIIIA = 'IIA

where

~'

Pl

-~VA 91LII' QNf --'JNV + ...

g(kl, k2, ul) = go(kl, ul) (2z') h(kl + k2)

3~(kl)ks) ~1)g(ks, k2, ~1) )
dks
27r 3

(2.21)

(d)

(e)

P

I \

'~

'~

QIW'

r '~

+ &II' &.IINArIF + ...

dk3 dk4
( lr 2t 1) —

(2 )3 (2 )3

x g (kl, ks, ~1)4 (ks, k4, (d 1)
x g' (k2, k4, (d 1), (2.22) FIG. 3. Dyson-Wyld equations.

P (k~, k2, td) = f (
~)~ 'V(k&, P3, P1)

j=1
~%(ps, ~ —~1) V(P2, ps, k2)

Xg(P1, P2, (dl), (2.23)

3

(k„kz, ~) = f '~ V(kl P3 Pl)
j=l

(ps) ~ ~1) ' +(k2i P3~ P2)

XP(Pl~ P2~ &1)~ (2.24)

FIG. 2. Equation of motion for O.

where the bare Green's function is go(k, u) = (u +
i~k2) '

In order to solve these equations we need to examine
the series for Z and 4. The lowest-order contributions
for these are

where Eq. (2.18) has been used. We will show now that
for the problem at hand all the higher-order contribu-
tions to Z and 4 are negligible, and vanish in the limit
of an infinitely fast-varying velocity field. Accordingly,
Eqs. (2.23) and (2.22) close the Dyson-Wyld equations.
A similar situation occurs in the problem of weak local-
ization [26].

To see why all the other diagrams vanish in the limit
it is useful to consider the diagrams in the time domain
rather than in the &equency domain. Every propagator
propagates &om a time tq to a time t2. The Green's func-
tions are time ordered; due to causality G(kl, k2, tl, t2)
vanishes for tq & t2. The velocity correlator, in the limit
of extremely fast decay, can be thought of as a h func-
tion in time, h(tl —t2). Consider the second diagram in
Fig. 3(c), which is redrawn with time labels in Fig. 3(e).
Due to causality it must vanish, since t2 has to be both
smaller and larger than tl. The key feature is that all
the diagrams except the first contain interlocked dashed
lines of the velocity correlator and this will always violate
causality. The series consists entirely of such diagrams
because these are all irreducible contributions; the unin-
terlocked diagrams have been resummed already into the
definition of the renormalized (i.e., dressed) propagators.

If the correlator is not quite a b function, we gain a
factor of (p jl')2 in this diagram. Higher-order diagrams
have even higher powers of this small parameter, and will
all vanish in the limit 7/I' -+ O.

In order to demonstrate this explicitly, Appendix B
contains a calculation of the next-order diagram in the
one-pole approximation, which reveals a coeKcient of
&yr.



4690 L'VOU, PROCACCIA, AND FAIRHALL 50

III. THE TWO-POINT PROPAGATORS OF THE
PASSIVE SCALAR

In this section we analyze the Dyson-Wyld equa-
tions (2.21)—(2.24) with the aim of understanding the
properties of the two-point propagators g(ki, k2, u) and
E(ki, k2, u) of the scalar field.

A. The properties of the Green's function

(3 1)

and therefore

g(ki, k2, (d) = ——(27r) b(ki+ k2).
ckd 2

2' ' ' 2
(3.2)

Using this form in Eq. (2.23) we find that Z~2l becomes
&equency independent and may be written as

Zl l(k„k2) = —— dpdq(p P k )'R(q)
2

x [b(ki + p+ q) —b(ki+ p)]
x [b(k2 + p + q) —b(k2 + p)],

where we have replaced %(q, u), as explained, by
P~'R(q). The result of the calculation is

d (kq, kq) = —i qkz kqb(kz q. kq) f dqqi(q)

Consider first Eq. (2.23). For I'i, very large, we can
evaluate 'R in the limit u = 0, where the scaling func-
tion f(0) = O(1). Therefore the &equency integration in
the loop is over the Green's function g(k3, k4, (di) only.
This integration leads to g(k s, k4, t = 0). For t = 0
the Eulerian and quasi-Lagrangian Green's functions co-
incide. Accordingly, g(ki, k2, t = 0) = (2~) ga(ki, & =
0)b'(ki + k2). The Eulerian Green's function g@ satisfies
the sum rule

calculation; see Sec. VIII. An important point to notice is
that without the second Green's function that originates
from the quasi-Lagrangian transformation the integral in
(3.4) may not be bounded at its lower limit. This in&a-
red divergence is the reason for the introduction of the
quasi-Lagrangian coordinates. We shall see that this di-
vergence is eliminated in the present formulation. Fur-
thermore, we show in Appendix C that g(ki, k2, u) is
symmetric under exchange of k~ and k2.

Let us now integrate out the second argument of the
Green's function to obtain an equation for the function
G(k, (u),

G(k, (d) — g(k, ki, ur).
dkg

(3.5)

1 (~')
G(k ~) = —~l —

I

), '6 )
and by power counting find the scaling relation

z+z =5.

(3 7)

(3.8)

Note that in this case the dynamic exponent z is deter-
mined completely by the static exponent x of the velocity
field.

Finally, in Appendix D, the asymptotic properties of
the Green's function at large &equencies are derived. It
is shown that the real part behaves like 1/(d, and the
imaginary part is proportional to 1/~~i+2) ').

B. The properties of the correlation function

This equation then reads

~G(k, ~) = q + ik J sin qgqqi(qj

x [G(k+ q, ~) —G(k, (d)], (3.6)

where 8&q is the angle between k and q. For W going
as 1/q, it can be seen &om this equation that there
are no in&ared divergences in this integral for 3 ( z ( 5.
Since 'R(q) decays sufficently rapidly for large q, the main
contribution to the integral comes &om the region q k.
Introduce therefore a scaling form for G(k, (d),

(kl ' P12 ' k2)R(]ki + k2]) (3 3)

where P i2 = Pi„+i„. Note that Z~ l (ki, k2)
Z& &(k2, ki). Since we have already argued that all
the higher-order contributions to Z vanish in the limit
I' ~ oo, we can substitute Z&2l into Eq. (2.21) to derive
a closed integral equation for the Green's function:

(dg(ki, k2, ur) = (2~) b(ki+ k2)

+i(2m) 3 (ki Pv ki)'R(q)2' 3

x [g(ki + q, k2, (u) —g(ki, k2, (u)].
(3.4)

In writing Eq. (3.4) we have approximated go as (d, ne-

glecting +k . Although the neglect of N k is a usual pro-
cedure for k in the "inertial range, " we will have to return
to a careful discussion of this step at a later stage of the

In this section we shall find the scaling exponent of the
simultaneous correlation function of the scalar field that
will be denoted as F(k). This quantity is obtained &om

X(ki, k2, ~i) by integrating Wi/27(. After integration
we have the simultaneous quantity, which is the same as
the Eulerian quantity, denoted by F(k). We shall assume
a scaling form for F(k),

F(k) = —. (3.9)

We begin by using Eq. (2.24) to rewrite 4' in explicit
form:

4 (k k (d) = .-" (2m)3 2m.j=1
X R(p3)(pl P3 . p2)E(plq p2q (dl)

x(2vr) [b (ki + pi + p3) —b(ki + pi)]
x [b(k2+ p2+ p3) —b(k2+»)l

(3.10)
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g12 g13Z34g24) (3.12)

where we introduce the matrix notation g12
g(k1, k2, ut) and the implied summation represents an in-
tegration over the indexed variable. The Wyld equation
is rewritten in this notation as

where we have replaced 'R by the projection operator
form as done in Sec. III A and displayed the form of the
vertices. Performing the integration over cuq and using
the s~me arg»men. ts about the t = 0 value of the corre-
lation function as in Sec. III A we find

O * (k, , k~, ~) = f d&de%(v)(p Pq p)l'(p)

x [b(k1 + p + q) —b(k1 + p)]
x [b(k2+ p+ q) —b(k2+ p)]. (3.11)

From this expression it is clear that 4~ ~ is symmetric in
kq, k2 and is &equency independent.

In order to determine the scaling exponents for the
correlation function we proceed now to arrive at a useful
form of the Dyson-%'yld equations. In Appendix E we
show that the Dyson equation for the imaginary part of
the Green's function g" may be written as

4(k1, k2) + Z"(k1, k2) [F(k1) + F(k2)]

dpq q p. P -p 2'Fp —Fk& —Fk2

x [h(k, + p + q) —b(k1 + p)]
x [b(k2 + p + q) —b(k2 + p)] = 0. (3.22)

This simplifies to the diagonal form

f dpdq'R(q)b(k+ p+ q)(p P~ p)

x [F(p) —F(k)]h(k1+ k2) = 0. (3.23)

This equation will enable us to obtain the scaling expo-
nent of F(k). In order to do this, denote the function
in front of b(k1 + k2) on the left-hand side (LHS) of
Eq. (3.23) as Lg. Next write Lg = 2(LI, + Ls). In the
second Lg we will use a transformation of the integrand
that was introduced in Refs. [27—29]. Define an operator
Rp on the space of vectors according to the requirement
that

k = Rpp. (3.24)

+12 g13O34042. (3.i3)

&=gd @4 g',
g" = g~Z"*g'

(3.14)

(3.15)

Multiplying both equations on the left by Q
1 and re-

spectively by Z" and 4 we find

g 1d&d Z"=C*g'dZ",
g 1d g" e@=Z" d g'4O = 44g' d Z",

(3.16)

(3.i7)

where in the last step we have used the symmetry prop-
erties of all the functions. Subtracting Eq. (3.17) from
Eq. (3.16) we obtain

Because of the symmetry of g, g42
——$24, we can rewrite

the last two equations in condensed matrix notation
where we abbreviate the above summation by the symbol

This operator rotates by the angle between k and p, and
dilates by the factor A = k/p. Introduce the new vari-
ables

p = Rgk = RpRpp,
q' = —Rqq,
k'=R, p=k.

(3.25)

(3.26)

(3.27)

0 = LI, —— dpdq'R q k+p+ q p Pq. p

Writing then Eq. (3.23) in terms of primed variables
(k -+ k', p w p', q m q') and then using Eqs. (3.25)—
(3.27), assnming that the integral converges in the ir and
uv regimes, we find that the integral is multiplied by a
factor of As ",and in the integrand k and p exchange
positions and q ~ —q. Thus we have derived the equa-
tion

Zll gll + @

This equation can also be written as

Im [Z»&32+@»&32(~)]= o.

(3.18)

(3.i9)

x [F(p) —F(k)] 1 —
i

—
i

E&)

Obviously the solution is

(3.28)

Z"(k1, k2)F(k2) + 2 4 (k1, k2) = 0. (3.20)

Similarly one can derive

Integrating over &equencies and using the identity of the
t = 0 quasi-Lagrangian and Eulerian propagators, we
finally conclude that

y=8 —x, (3.29)

which is the desired equation for the scaling exponents.
In the Introduction we have defined the scaling exponents
(2 and (g as defined by Kraichnan. These exponents are
related to x and y according to

Z"(k1,k2)F(k1) + 24(k1, k2) = 0. (3.21)
ps=2: —3, 2(2 ——y —3. (3.30)

Adding the last two equations together, and using the
forms of Z and 4, we find

In terms of these scaling exponents the relation (3.29)
reads



I,'VOV, PROCACCIA, AND FAIRHAI I,

2(2 = 2 —(a (3.31)

which is in agreement with Kraichnan's calculation. The
reason for this agreement is that (3.29} basically re8ects
the condition of the constancy of Bux of T2. We shall see
that this agreement is not repeated with $2„as there is no
such constraint on higher-order quantities T ". We will
explain in detail in Sec. VI why the higher-order Buxes
are not constant.

In order to consider the efFect of the neglect of the
x&2 terms, one may return to Eq. (3.28) and include the
corrections due to difFusion. One may easily determine
that this results in corrections to scaling of lower order
than the scaling index of E determined by Eq. (3.29).

Finally, note that the assumption of convergence of
the integrals in the ir and the uv prescribes the range
of validity 3 & z & 5, or 0 & t,'i, & 2, or 0 & t,'2

1, which is the natural range of validity for a scaling
{Holder) exponent.

The diagrammatic series for g„~ is displayed in Fig. 4(a).
As in the arguments of Sec. III all the diagrams in which
the velocity correlation dashed line is not vertical are neg-
ligible in the limit (p/I') ~ 0. The contributing diagrams
are the reducible part and the infinite set of "ladder dia-
grams, " whose first two members are shown in Fig. 4(a).
This set of ladder diagrams can be resummed straight-
forwardly to provide the closed form equation for the
nonlinear Green's function shown in Fig. 4(b).

For our purposes we need only partial information
about g, , i.e. ,

g„„(ki,k2, k3 k4 0)

(Ady l4)3
gN~{ki~ k2) k3~ k4) QPi~ 0 (a/i) td3~ 0 —(d3}.

2K 2'

(4.2)

IV. THE NONLINEAR GREEN'S FUNCTION
AND THE MECHANISM FOR ANOMALOUS

SCALING

We found that the scaling exponent (2 need not sat-
isfy Eq. (1.7), meaning that the bounds (1.5) and (1.6)
may not coincide. We face, therefore, a situation where

(i may dier from (,which is the situation referred to
as anomalous scaling. The theory that we develop here
does not lend itself easily to the estimation of (i. It is
more natural to study the scaling exponents t,'2„ in or-
der to discuss anomalous scaling. We are forced to study
higher-order correlations and structure functions whose
perturbative expansions do not simplify to one diagram
as we have had so far, but rather have an infinity of rel-
evant diagrams. Notwithstanding, if all these diagrams
converge in the ir and the uv, we do not have a mech-
anism for anomalous scaling. Scaling relations that can
be found with the lowest-order diagrams persist to all
orders if the diagrams are local in k and ur. (Note that
the locality in frequency is proven in Appendix D.) We
expect therefore to find divergences in the diagrammatic
expansions, and our hope is that these divergences can
be resnirimed to an anomalous exponent. It turns out
that there exists one quantity, the nonlinear Green's func-
tion, whose diagrammatic expansion overs the cleanest
demonstration of the mechanism for anomalous scaling.
Furthermore, it provides us with a means to calculate
the value of the anomalous exponent &om first princi-
ples. We therefore focus on this quantity in this section,
and learn how to deal with the type of divergences that
are going to reappear later in other quantities of interest.

A. The nonlinear Dyson equation

This quantity is the Fourier transform of the time-domain
function

g„„(ki,k2, k3, k4, 7 )

= {[b8(ki,t + ~)/bp'(k3, t)][N(k2, t + r)/bp'(k4, t)]) .

B. The mechanism for the anomalous exponent

Consider the nonlinear Green's function in the limit
kq, k2 )) ks, k4. Examine a typical diagram in the ex-
pansion of g„~, such as in Fig. 6. Let us take for the
purposes of calculation the Green's function to have the
Eulerian property

g(ki, k2) (u) = G(ki, u)b(ki + k2). (4.4)

Each diagram can be computed as nested integrals which
typically look like

(a)

g (k„~,k m„m m, mg
~ALI'

2@It' 4

~ JVNI ~IIN'

2gAV 4/Ã

(4 3)

The resuinmed series for this quantity is shown in Fig. 5.

The nonlinear Green's function is defined as

(4
2vrg„„(ki, k2, k3, k4, (ui, ur2, (u3, (u4) b )

(;=i )
= {[be(ki)uri)/bQ'(k3p ~3)][be(k2y ~2)/b4 (k4& 4)]) .

(4.1)

(b)

+4

~SR
2JVIt' 4

FIG. 4. Nonlinear Green's function.
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k h K4 + k2 + K) —b(K4 + k2)]
dkg dk2dksdk4dk du)

kg + K) —b(Ks + kq)][h K4 +(K)
(

k + ~& [b(k4 + ~, + k) —h(k4 + m, ) .~ P m2 [h(ks + mq + k) —$(ks + gg~)x g(kg, ks, ur)g( 2,x i, , (k k4, —~)'R(k) (~g PI, ~2)

'R(Ik )

x g(kg, k+ ~g, u))g kg, —
x'R(k) (~g Pg ~2) (4.6)

ma nitude of the k vec-e ation on the magnl u
tainsh t l[L q ]. Wewi showt a

the sub-rangeiver ence by considering
th two-vector h fu t'

1

t Implementing the unrian ver ex.
(4.5 becomes

tributions the coefB-en we resum such con ri u
nt 4 appears as an anom ous e

(4.10)

ex onent is to re-e the anomalous expono
d e uation lg.

n. e will derive a resum
to the resumme q

»mmed equation
for a quantity A(q, p, 0 de ne

d k using thee inte ation over kq andp or the zntegra
The result, neglecting ~ w'form (4.4I. e

reads

(k P~ k)f (ay[L, -&;zj

x~G(k, ~)~'Z(a)(~, P, .~, . (4.7)

0 4.11)= —q pG I ) (q p, 0)A(q, p, 0),

where

G(q, (u) G(p, 0 —(u). (4.12Gi')(q p 0) q, ~
ro erties of G at large &equencles

we now

by I, is

(4.8)

e ends on the particular form and
I l dde scaling functions. n a

this
corn

onl the first rung w'con aini
hall ulto ave a divergence, we

d
hwe

llalso the first rung with kq - k2 an e

Int srehi lation the coe cient of q, p,A 0) is the part that
"tai" in the res»mme d diagrammaticth reprod d "

. Tod t'o f

„,(kg, ki, q, p, 0). The first erm'
gives

f cAcydk2 tidy d4)3

2.)
~g) g(k2, g, 0 —(ug) b(erg + (us)xk& k2g(kq, p, ~q

-„f" dk f" 1k'
~ . " ——

,
ln" (L/rI).k„n!

(4.9)

=-p. &Gi'&( q 0) (4.13)

used the form (4.4). Referring tow ereh we have again used the orm
5 the second term givlg.

g (k, ,k~k„k,, Q)

' JVNI'
+

2JINf 4

AR
I

2ZUNI AN/'

"Ax
K,

'

"'WP

&NIR

2JVUU' 4

Green's function.c non near ree 'FIG. 5. Single-frequency
the series fora diagram anFIG. 6 Section of a gr

g„~ (kg, kg, kg, k4, 0).
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lg Ig lip II d

x'R(k)(q" Ps p")Q(p", p, ur)Q(q", q, 0 —~)b(p'+ p" + k)b(q'+ q" —k)

3 p+k =q —k G' q —k s p+kO A q —kp+kO 'R k p P~q G& q p O .

(4.14)

To achieve a closed form equation for A(q, p, 0) we
consider the most divergent part in Eq. (4.11) which
arises from the contribution proportional to k in (4.14).
This contribution comes from the region of integration
p, q « k, which allows us to neglect p and q with re-
spect to k. Denoting k' = max[p, q we combine now
Eqs. (4.11)—(4.14) and cancel p qG&3 (p, q, 0) to arrive
at

tions, for which we have a closed form equation, Eq. (3.4).
Therefore one may calculate explicitly the terms of the
series for g„L and determine thereby their ratio. This is
a task which we will leave to a future paper.

The aim of the rest of this paper is to show that the
exponent 6 reappears in the evaluation of higher-order
structure functions, as well as in the scaling exponent of
the dissipation correlation functions.

A(a', 0) =1+, dI k'A(k, 0)G~')(I, ~, 0)x(a)a'.

(4.15)
V. HIGHER-ORDER CORRELATORS

Here due to the limits on k all the dependence on p and
q has canceled, and remains only in the lower bound I).

"

in the integration, allowing us to replace the arguments
of A by this value.

To proceed, we note that as a result of the scaling
form for G(k, u), G&3&(k, k, 0) must also be a function of
0/k'. For small 0 we can use the scaling relation (3.29)
to arrive at the final equation

A. The four-point simultaneous correlation function

The four-point correlation function of the quasi-
Lagrangian passive field is de6ned by

dk
A(k') = 1+6 A(k) —,

k» k' (4.16)

2m'%4(ki) k3) k3) k4) (dl) M2) M3) M4)

X b((di + Lds + td3 + 4/4)

where 6 is determined as before by the coeKcients of
the various scaling functions. Taking the derivative of
this equation with respect to k' we find

= (O(ki) uri) e(kz) urP) e(k3) (lies) O(k4) ~4)) . (5.1)

dA(k') - A(k')
dk' k'

The solution of (4.17) is

A(a ) =(&k )-n.

(4.17)

(4.18)

We remind the reader that we have suppressed the ro
label since we have chosen ro ——O. Integrating (5.1)

We refer to the exponent L as an "anomalous exponent. "
Although we have used a form for the spatial dependence
of the Green's function (4.4) in demonstrating the exis-
tence of such a 4, the mechanism itself does not de-
pend on this, although its numerical value will. We refer
in future to the value of the anomalous exponent to be
found using the true Green's function as L. It is im-
portant to realise that, as in this case, it is possible to
obtain an equation determining b„, like Eq. (4.16), which
is composed entirely of kaown quantities. The nonlinear
Green's function itself is composed of linear Green's func-

'IPA WN/I . I)NNMN III'
I

ASM& JNN"

FIG. 7. Typical form of diagram in the series for
P4(k), kg ~k3, k4).
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+ ql 'III

k .--
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FIG. 8. Four-point correlator F4 (kq, k2, ks, k4) in time rep-
resentation.

+ qi'III,
I
I

q2 'Ntlh

+ \ ~ ~

over all &equencies, we get the four-point simultaneous
correlator (2m) F4(kq, k2, ks, k4)b(kq + k2 + ks + k4).
The diagrammatic expansion of the quantity is shown
in Fig. 7. The structure of the diagram is based on two
"highways" which consist of chains of Green's functions
with only one correlator embedded, at which point the
Green's functions change to complex conjugates. The
two highways are connected both to themselves and
to each other by the double velocity correlator dashed
lines. Every highway connects two k vectors, for ex-
ample, k1 to k3, and k2 to k4. The whole set of dia-
grams is a sum of three coatributions that we shall de-
note individually by F4(kq, k2~ks k4) F4(kg, ks~k2) k4),
and F4(kq, k4~k2, ks). Note that when the highway con-
tains only the scalar correlation wavy line we obtain the
Gaussian contribution to F4. Each F4 has one Gaussian
contribution. We can thus focus now on one typical F4
and later take care of combinatorial factors.

To classify the diagrams for F4 it is useful to think
about them in time representation. The time direction is
showa by the arrows in Fig. 7. To take advantage of this
time ordering, we shall redraw the diagrams as shown in
Fig. 8. In this representation points on a vertical axis
share the same time. It is now obvious that the dou-
ble velocity correlators should all be vertical in the limit
(p/I') -+ 0. Only connections with vertical dashed lines
between the highways are not suppressed by the factor
(p/I') ~ 0. Notice that the wavy line of the scalar cor-
relator is allowed to have any slope.

FIG. 9. Three-point correlator E,qT .

B. Simultaneous higher-order correlations
ofv and 8

We begin by computing the correlation

F„,2T (k, qz, q2) (2x) b(k + qq + q2)

= (v(k, t)T(q„ t)T(q„t)). (5.2)

Using the expansion for e(kq, t) we find the diagram-
matic series for (v(k, t)e(qq, t)O(q2, t)), the first few
terms of which are shown in Fig. 9, in time representa-
tion. This correlation function is identical to the desired
correlation (5.2) because for a same-time quantity the
Eulerian and quasi-Lagrangian quantities coincide. Also,
we do not need to carry the time explicitly, since the
quantity is time independent. The first two diagrams are
the only surviving ones in the limit (p/I') ~ 0. This is
because all higher-order diagrams must contain a nonver-
tical velocity correlation dashed line. Those higher order
diagrams in which the extra dashed line of the 'R(k) is
vertical must have that line at the first vertex, as in the
Grst two terms. Such diagrams are already included in
the resummation into the 6rst diagram. The 6rst two
diagrams read

(v(k)T(ql)T (q2)) s (k) [V(kl I k& k2)Q(ql&

klan

~1)+(q2& k2& ~2)
~1dk2~1 ~2

+ +(k2& ky kl)'0(q2& k2I ~2)+(qly klan ~1)] . (5 3)

This gives

,27'(» e q2) = —-&(&)Ps [q2F(I2) + q~F(I~)j.

(5.4)

Notice that the non-Eulerian contributions in the vertex
cancel exactly.

It is also straightforward to compute the simultaneous
correlation F 4T (k, qq, q2, qs, q4) which is defined anal-
ogously to (5.2). Since we have displayed already the
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diagram for F4, it is easy to see that the diagram for this
new quantity is the one shown in Fig. 10. To see that
this is the only possible configuration remember that to
average our scalar quantity E4 against a v(k, t) we need
to expose a vertex that contains another factor of v(k, t)
This results in an additional Green s function and a two-
point velocity correlator. As all the exposed legs must
have the same time label, and the dashed line must be
vertical, it is obvious that Fig. 10 together with the per-
mutations of the exposed legs is the quantity that we are
seeking. Analytically we have

q2 'It[t'

q, 'll'

l

I

I

I

I

i

(
I

i
1

I

I

i

i

I

(v(k)T(ql)T(q. )T(q.)T(q.))

g(ql, p', ~)V(p', k, p)%(k)
dpdp' dyed

FIG. 10. F„,4z in time representation: schematic of a typ-
ical term.

xF4(p, q2, qs, q4) 6(p + q2 + q3 + q4)
Z—-)i(k) f &pp P & x( 4ep~ee a, )i(4+pe~+es+e )4

+ (three other permutations). (5.5) x[6(ql+k+p) —6(ql+p)j (56)

Integrating the Green's function over frequencies gives a 6
function (2m) 6(p'+ ql), so we may perform immediately
the integration over p' to obtain for the first of the four
contributions

When we perform the integration over p we again find
that the contributions from the non-Eulerian b func-
tions cancel. As in the case of the three-point correlator
(vTT), only the Eulerian vertex contributes to the final
result,

,4T(k) 'qly q2 q3 q4) = —-&(k)p]'p qlE4(ql + k, q2& q3 q4) + q2E4(ql q2 + k& q3 q4)

+q3F4(ql q2 q3+»q4) + q4F4(ql q2 q3 q4+ k) (5 7)

Comparing (5.4) and (5.7) one can see how the equation for F„2„Tappears:

, 2 T(k 'ql " q2 ) — 2+(~) [qlF2 ('ql + k q2 " 'q2 ) + q2E2 (ql, q2 + k " 'q2 )

+" +q2 E2 (ql q2 " 'q2 +k)]. (5.8)

C. Structure functions Similarly we can define J2 (r) in terms of F2„

In this section we consider the functions S2„(r),
172 (r), and J2„(r), defined in Eqs. (1.1), (1.10), and
(1.11). The n-order structure function of the scalar Beld
is related to F2 by

2n

Jg (x) = —Zx(kx)'xf k, ', [i —exp(ik, r)]
j=l

2n

Sg (x) = (Px)'f ' [i —exp(iki r)]
j=l

x6] ) k
i E2„(kl, ..., k2„). (5.10)

x 6 ) k E2„(k„..., k2„).
)

(5.9)
Finally, 'V2 i.s written as
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2n 2n

D2~(r) = in(27r) (1 —exp [i(k6~ 2„+q ) r])6 k+ ) q~ q2„F„,2„T (k, qq, . . . , q2„).2' 3 ..". 27r 3
j=l

(5.11)

To analyze D2 (r), we substitute for F„2„T Eq. (5.8); rearranging, and using the 6 functions and the symmetry of
I"2 with respect to all its arguments, we obtain

D,„(r) = n(2n —1)(2~)
dkdqzdq2 -

"- dq;
[1 —exp(iq. r)](l —exp[i(k + qq) r])[1 —exp(iqz r)](2n)s ." (2z)sj=3

x[qi (k) ql]6 k+ ) q [&2 (qi, q2+k, -, ql ) —+2 (qi+k, q2, ",q2 )]. (s.12)

From this form it will be very useful to proceed to de-
termine a difFerential relation between Dz„(r) and S2„(r).
It is convenient to make use of an identity

2n

Re & [1 —exp(iq. r)] & 6(qq+ q2+ + q2„)
~ h ~ 1

j=1

In the 6rst term let us make the transformation q2+ k ~
q2 and in the second q1+ k ~ q1. Such a substitution
will not afFect the remaining terms of the expression for
'Dz„due to the orthogonality of 'R(k) and k. Elementary
manipulations show that (5.14) now becomes

'2n
=2Req

2

[1 —exp(iq; r)] ) 6(qq+ q2+ + q2„).

(5.13)

exp(iq2 r) [1 —exp( —ik r)]h ) q

x Eq„(qq, q2, ..., q2„). (5.15)

Then one may immediately replace in the above expres-
sion the factor 1 —exp[i(k+ qq)] r) by 2. Let us focus
now only on the factors

Now substituting back into the full expression for 'V2„
and deaning the tensor of velocity difFerences in r space

[1 —exp(iq2 .r)]6 k+ )
m=1

x [+2~(qi, q2 + ky" y q2ra) +2ta(qi + k, q2~ ~ ~ ~ t q2m)].

chich(r):
(2z)s [1 —exp( —ik r)]'R(k), (s.i6)

(5.14) we find that 'Dl„ takes the form

'D2„(r) = h p(r)(2z') [1 —exp(iq. . r)]
2=3 '

2n

xglag2p exp(iq2 r)6 ) q E2„(qi, q2, ... q2 ).
m=1

(s.i7)

The function h as defined in Eq. (5.16) has the same scaling as the eddy diffusivity, Eq. (1.13), i.e., h(r) r~". Now
examining the expression for Sq (r), it is easy to show that
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V VpS2„(r) = 2n(2n —l)(2m)
dq1dq2 = —= dq-

[1 —exp(iq . . r)](2x)s ".(2x)sj=3

xgl 92p exp(&q2 ~ r)b ) q F2„(qi, q2, ..., q2 ),
m=1

(5.18)

which shows directly that

172„(r) = h p(r)V VpS2„(r). (5.19)

+2m(qadi "~ q2ra)

(2&) +2(qt)~(qi + q2)&2ra —2(q3 ~" q2n, )

+P.-(q~ q2lqs - q2-). (5.20)

Then we can write J2 in terms of reducible and irre-
ducible contributions in the same sense. In the integral
kq is special and will be one of the k vectors in the pair.
The other one can be any of the vectors k2, . . ., k2„..

J2„(r) = n(2n —1)J2(r)S2„2(r) + J2„(r), (5.21)

where J2~ is given in terms of E2~ as J2„ is given in terms
of Fs„. Using the same decomposition (5.20) in (1.1) we

get

S2„(r) = n(2n —1)S2(r)S2„2(r)+ S2„(r). (5.22)

In the following section we will make use of this decompo-
sition to compare the contributions due to normal scaling
and that of the anomalous terms.

VI. THE ANOMALOUS EXPONENT IN THE
STRUCTURE FUNCTIONS

Projecting this into scalar form and using the divergence-
free nature of h(r) one obtains the difFerential equation
given by Eq. (1.12).

For future reference it is useful to write J2„ in terms of
reducible and irreducible contributions with respect to
a pair of k; variables in I'2„. Therefore we decompose
F2„(qq, ..., q2„) into a sum of reducible and irreducible
parts with respect to the first two arguments, where the
latter is denoted with a tilde:

J4 and S4 lies only in the addition of a factor of Icz in
the case of J4. Without this factor of k, every diagram
in the series of J4 converges in both the ir and the uv.
After the addition of the k2 factor each diagram will gain
a logarithmic divergence via the same mechanism that we

discussed in detail in Sec. IV. These diverging logarithms
can be as before res»mmed into the ladder contribution,
giving an important contribution to J4 that we represent
in Fig. 11. This contribution is obtained &om the range
of integration in which the two k vectors k1 and k2 are
large.

tA'e need to argue that the exponent 4 which appears
here is the same 4 which appeared previously, and whose
value we can calculate as outlined in Sec. IV. The reason
for this is that the ladder series have the same topol-

ogy. The terms which arise in J4 differ slightly &om
those in the calculation of A [defined in Eq. (4.11)] in
the prefactor [1 —exp(ikq r))[l —exp(ik2 r)], and in
the appearance of k~ instead of k1 ~ k2. Let us return
to the argument given in Sec. IV concerning the nonlin-
ear Green's function, where we obtained a multiplicative
series of nested integrais displayed in Eq. (4.8). These
difFerences will affect only the first multiple, after which
each term will contribute a factor of 4 in the coefEcient,
and for the infinite series the value of the exponent will
not be affected. In any case, for large k1, k2, the expo-
nential term is negligible, and the difference between a
prefactor of k1 kq and kz is only an integration by parts.
Therefore it is clear that the value of 6 arises out of the
structure of the repeating terms in the ladder and will
not be affected by the details of the initial terms.

To continue, we see that the resummed sequence in J4
will contribute a large factor of the order of (r/rI) a com-
pared with the remaining contributions that we do not
consider explicitly. The details of the remainder of the
diagram are not important and are represented in Fig. 11

In this section we collect the results of the preceding
sections with the aim of understanding the origin of the
anomalous scaling of the structure functions. The situa-
tion can be clarified completely within the analysis of J4
and S4.

The calculation of J4 and S4 is based on the diagrams
for I"4, which are shown in Fig. 8. The diagrams for
I"4 have the structure discussed in the preceding section,
within which series is contained a sequence which has the
form of a ladder as introduced in terms of the nonlinear
Green's function in Sec. IV, here multiplied also by some
other terms. The cMerence between the calculation of

k)~
k2~

/

r

I

I

kg

k4

k CJ = 1 — exp(ik r)

FIG. 11. Schematic representation of J4(r ).
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by the "egg." In addition to this important contribution
to J4(r), there is the contribution that arises from the
reducible part which equals 6J2S2, see Eq. (5.21). Us-

ing the differential equation Eq. (1.12) and the balance
equation (1.9) for the case n = 1, one obtains

J2 ——6tc(2(T)h(r) 2
——6tc(2(T)Fh(0),

S2(r) (6.1)

where we have made use of the scaling relation (3.31).
Adding the two major contributions we can write

J4(r) 6 ~C4
~

—
~ 2 + J2S2(T)

fr ) S4(r)
&~)

(6.2)

= Ki((2(T))J2S2 + K2((4, (i,) 2, (6.3)
h(r) S4(r)

where t,'2„has the obvious meaning of the scaling ex-
ponent of S2„. The coefficients Ki ——8(z and K2 ——

4(4(4(4+ t,"& + 1) are determined by the differential equa-
tion (1.12). The question as to whether there is or is
not anomalous scaling in S4 now depends crucially on
the numerical value of the anomalous exponent L. If,
on the LHS, the term in 4 is negligible in comparison to
the simple scaling terra, then on the RHS one must have

(4 ——(2. This implies a critical value of b, as the point
where the scaling of the terra in 4 balances the simple
scaling term, i.e., b„„t= (~. Therefore we predict that

In achieving Eq. (6.2) we need to convince ourselves that
contributions to the diagram in which three or four k
vectors are large, i.e., of the order of 1/g, are negligi-
ble compared with the displayed contribution with two
large k vectors. Consider first the case with four large
k vectors. Since the separation distance appears only
in the exponential factors, and their contribution disap-
pears for large k, the resulting diagram is independent
of the separation distance. In this case, by dimensional
reasoning, all the diagrams should be of the same order
for r g. Therefore we may evaluate their contribution
from the above estimation (6.2) at r = g. Accordingly
the contribution with four large k's is small. The case
when three k's are large is also negligible. Consider first
the small k leg which connects to the egg, where a11 other
incoming k vectors are large, through a Green's function.
The local integral at this entry point is of the order of
f dkku kG(k, u), where the k is the estimate of the ver-
tex. After integrating over &equencies, this integral is of
the order of J dk k, which contributes in the uv. This has
been taken into account in the four large k vector contri-
bution. If the incoming leg has a correlator instead of a
Green's function, we use the symmetry of the correlator
under k m —k to see that the Grst-order contribution in
k vanishes, and the next order again contributes mostly
in the uv.

Equation (6.2) can be used now in conjunction with
Eqs. (1.9) and (5.22) to write the balance equation

6 ~C4
~

—
~

+ J2S2(r)
(r ) S4(r)

VII. THE DISSIPATION CORRELATION
FUNCTION

The aim of this section is to calculate the scaling ex-
ponent of the two-point correlation function K(r) of the
dissipation field e(x, t):—+~VT(x, t) ~, which plays in our

problem the same role as the energy dissipation rate in
Navier-Stokes dynamics:

K(r) = (e(x+r, t)e(x, t)) —(e(x, t)) . (7.1)

We will argue that the decay properties of K(r) with
r are strongly in8uenced by the presence or otherwise
of multiscaling. In a separate paper [25], we shall show
that in cases in which K(r) decays slowly with r we will
expect corrections to scaling, but not true multiscaling.

We first evaluate the Gaussian contribution to K(r),
denoted as K~(r) Rewrite (7..1) as

K(r) = (V T(x+ r)V T(x+ r)
xVpT(x+)VpT(x)) —(e) .

There are three Gaussian contributions, one of which can-
cels (e), and we are left with

K~(r) = 2(V T(x+ r)VpT(x))(V' T(x+ r)VpT(x)).

(7.3)

In order to determine the scaling exponents of the contri-
bution we relate it to S2(r). It is easy to see that Kz(r)
and S2(r) are related by the exact expression

for b, ( b„„t,, .S4(r) oc S22(r) in the limit tc ~ 0. We
stress that this does not mean that there may not be se-
rious corrections to scaling as 6 approaches (q. When
4 reaches the critical value t,"g, S4(r) gains anomalous
scaling and becomes the dominant term. Further anal-
ysis of this situation in the context of the Navier-Stokes
dynamics has been presented in [25]. Our present con-
trol of the theory, and in particular of the coefficients of
the scaling functions, does not allow us to compute all
coefficients completely. This is where we cannot repeat
the analysis that was sketched after Eq. (1.13) in the
Introduction. Regrettably, we think that the deference
between our findings and the assumptions of Kraichnan
will not go away. We have exhausted already the bene-
fit that could be extracted &om the separation of time
scales between the velocity field and the scalar Geld, and
we believe therefore that some of the ass»mptions used
by Kraichnan are uncontrolled. Therefore we believe that
Eq. (1.15) which relates the values of t,"2 to (2 is incor-
rect.

We have previously seen that 4 may be computed &om
first principles through the nonlinear Green's function.
We show now that it is also an experimentally measure-
able quantity. To this end we turn to the analysis of the
two-point correlation function of the dissipation Huctu-
ations. We find that 6 appears measurably in this cor-
relation function. We will show in the following section
that the critical value 4„;q reappears in this context.
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( )
1B's2(r) B's,(r} 4((.,(T),)
2 Br~Brp Br~Brp

Note that this exponent is negative.
To calculate the total scaling behavior of K(r), we

need now to also consider the irreducible contribution
K& '&(r), which can be related to E4 according to

K& 'l(r) = (2x) ' exp[i(ki+k2) r]
dk~

j=l

x (ki k2) (ks k4)b ) k
)

ing (6.3) and the scaling relation (3.31) we discover that
normal scaling is destroyed when

(7.7)

If 4 is too small to destroy normal scaliny in the struc
ture functions, it is also too small to compensate the de
cay of K(r) that is caused by the Gaussian contributions.
Mutatis mutandis, when 6 is large enough to lead to a
high correlation between dissipative events which are sep-
arated by r in the "inertial range, " then the very notion
of the "inertial range" becomes untenable. These dissi-
pative efFects show up throughout the scaling range via
an anomalous contribution in the structure functions.

xE4"'l(ki, ..., k4), (7.5)
VIII. SUMMARY AND DISCUSSION

K(r) = KG(r) 1+C(r/rl)
4~&~ |T'~—~~ + g7 4X~ ~T'~ —&j+2& (7.6)

It is important to realize here that due to the negative
sign of the exponents, the anomalous contribution will
dominate for all nonzero b„allowing b, to be experimen-
tally observable even in subcritical conditions.

Note that a similar result for the correlation of the
energy dissipation rate in "usual" hydrodynamics was
found in Ref. [19]. Using the condition for multiscal-

where E4"' is the irreducible part of E4 As .in the
quantities that we discussed in Secs. IV and VI, the
largest contribution to (7.5) comes from the regime of
large k vectors. In fact, the regime ki, k2, ks, and
k4 ~ 1/q )) 1/r is the most important one. How-
ever the exponent forces upon us the additional con-
straints ~ki + kq[ 1/r, and due to the b function also
~k3 + k4~ 1/r The .regime in which all the k vectors
are of the order of 1/r (the local contributions) leads to a
scaling behavior that is identical to the Gaussian contri-
bution, as simple power counting in (7.5) will show. We
are thus led to consider the diagr~~ in Fig. 12. It has
now two ladder contributions, connected by an "egg."
Since (ki + k2~ 1/r, and the same for (ks + k4(, the k
vector e that connects the two ladders is of the order of
1/r or smaller. We can estimate the contribution from
the ladders to the diagrams as (r/g)2+. The quantity
K&"'l(r) is of the order of K~(r)(r/rl) + Writing . the
Gaussian and the irreducible contributions together we
get Bnally

2(2+((u) & 1, condition for normal scaling. (8.1)

Writing as in Eq. (2.20) 'R(k) but now with the additional
exponents

II(k) - as'"i and r, - k'~"i, (8.2)

we can easily use the scaling relations (3.29) and (3.31)
to conclude that (8.1) is only obeyed if

The main result of this paper is the demonstration of
a mechanism for the destruction of normal scaling in this
model of a passive scalar driven by a fast-varying veloc-
ity Beld. This mechanism stems from the accumulation
of the efFects of the dissipative processes that cannot be
eliminated even when the scale of interest is much larger
than the traditionally deBned dissipative scale. This
anomalous exponent appears very cleanly in the non-
linear Green's function and in the two-point correlation
function of the dissipation K(r). From the point of view
of the latter quantity the central result of this paper is
Eq. (7.6). The very same anomalous exponent reappears
in the structure functions of the scalar Beld as a term
coinpeting with the Gaussian term which by itself would
lead to simple scaling. We found that when the correla-
tion function K(r) stops decaying for r even in the scal-
ing range, the anomalous term in the structure functions
becomes dominant.

It is interesting to notice that in this problem we
have some external control on the appearance of anoma-
lous scaling. Let us return to the rigorous bound (1.6).
Ass»me that there is no anomalous scaling, and then

. The bound then implies that

z(u) & t,'(u) —1. (8.3)
k) y
k2+

k3y

FIG. 12. Representation of K(r)

Obviously, as long as (8.3) is obeyed, we can have normal
scaling in (6.3), implying that E ( (q. When (8.3) is
violated, we must lose normal scaling. Since the violation
of (8.3) can be achieved by choosing appropriately the
parameters of the driving velocity Beld, this model must
allow multiscaling. It would be interesting to determine
whether the violation of (8.3) and the crossing of E„;t
by 4 occur in a related fashion.

Notice that our theoretical development is somewhat
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dangerous. In all our work we have neglected the term
ek2 in the bare Green's function, arguing that for k in
the inertial range this term is small. On the other hand,
multiplying by k various diagrams in the theory resulted
in divergences that led to anomalous scaling. It may be
checked that expanding the Green's function to expose
the ~k2 contributions results in a ladder sequence that is
of higher order in 7/F. The appearance of e in S2„oc-
curs in our theory in a nonperturbative way through the
balance equation, which is not an order-by-order relation.

A separate issue is that in evaluating the diagrams with
ladders and "eggs" as the ladder contribution times sim-
ple scaling contributions is really justified only as long
as b, & gp, . When b, exceeds (a the "eggs" may contain
other divergent contributions that we have no control
over. Therefore our theory should be considered as rig-
orous only up to the threshold of applicability of (8.3) or
(6.3). We stress, however, that even if we have additional
divergences that put a question mark near equations like
(6.2), the mechanism is still the accnmulation of dissipa-
tive contributions that ruin simple scaling.

Finally, we need to consider the implications of the
Bndings in the context of this passive scalar model to
the issue of the scaling theory of high Reynolds number
turbulence. In a separate paper [25] it has been shown
that in the case of Navier-Stokes turbulence the anoma-
lous exponent turns out to be just too small to destroy
the KO41 scaling in the structure functions in the limit
of infinite Reynolds' number. However, due to its "dan-
gerously irrelevant" nature, this field causes important
corrections to scaling that do not go away even in at-
mospheric conditions. We shall argue that this picture

ofFers a self-contained description of all the known phe-
nomenology in turbulence.
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The equation of motion in these variables reads
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(&~+~&')0..='f ', ', v, (t, t„t,) v„(kg, t)8„(kg, ~)+p„(k, '), (A4)

where V„(k,k1, k2) is a new vertex defined by

V, (k, k1, k2) = V, (k, k1, k2)e *"+"'+"'' (A5)

Considering the definition (2.9), we see that

V„(k,k„k2) = V„R(k,k1, k2). (A6)

+ra(kl ~ k2~ ~1) +ra —R(kl) k2) (dl).

From the definition of the tilde variables we have

+o(kl k2 ~1) +o(kl k2 ~1)e

(A7)

(AS)

Combining these relations we get the transformation rule

&r. a(kl&k2&~1) = &r. (k1,k2&~1)e'"'+"' . (A9)

Consequently the equation of motion of 8„(k,t) coin-
cides with the equation of motion of O„n(k, t). The
correlation functions of the two fields must therefore be
equal. In particular, if we define T„as the correlation
function of the tilde variables, then

This transformation rule re8ects the space homogeneity
of the equation of motion of T(x, t) The trans. forma-
tion rule for the Green's function of the scalar Beld is
identical to (A9). Higher-order correlation functions will
transform in an analogous fashion, simply by changing
(k1 + k2) in the exponent to the sum of wave vectors of
0„'s plus the sum of wave vectors of 0,, 's. To get sim-
ilar transformations for the velocity field one just needs
to ass»~e that its dynamical equation is also space ho-
mogeneous.

APPENDIX B:CALCULATION OF Z

In order to show explicitly the dependence of the terms
in the series for Z, given by Eq. (2.23), on the ratio F/7,
we return to the calculation of the diagram Z( ) given
in Sec. III. In order to consider explicitly the frequency
dependence we choose for definiteness a form for the scal-
ing functions that captures the essence of the frequency
behavior and allows the calculation to be performed sim-
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(~l
('Ys ) ~ + i Yk

(ru ) F2
k

EF, ) ~ +F

(Bl)

(B2)

This is known as the one-pole approximation. The details
of this choice are not important for the result, but merely
serve to simplify the computation.

Let us begin by calculating E&2l. Integrating out the
second k-vector dependence of the Green's function one
obtains

Z (ki, k2, ~) = V(ki, q, p)

~R(q) ~ —(di) V(p, q, k2)
x G(p, u —(di), (B3)

where G(k, u) is defined by (3.5). Now inserting the scal-
ing forms (Bl) and (B2), let us consider only the inte-
gration over the frequency

S((u) =
2' 4P~ + I QP —Q)y + & fp

~ ~ (B4)

Closing the contour of integration in the lower half plane
gives (di ———iF~; then using the limit I' )& p u, we

recover the &equency-independent result of the calcu-
lation of Sec. III, but now with the explicit coefficient
S(u) F~. Therefore

(4 4) = ~/ ( )3 (
p+(~1 q P)'Pq

V(p, q, k2)
H(q) (B5)

q

To proceed, let us estimate the k dependence by assum-
ing that the major contribution results &om kq k2 k,
and using locality. Therefore we find that

ply. The scab'~~ functions appearing in the definitions of
the propagators (2.18) and (3.7) are taken to have the
Lorentzian form

over frequencies, we are left with two independent fre-
quency integrations and five I(,'integrations (dependent
due to the vertices):

m=1
(3) dye dq2 dp~Z (ki, k2, ur) =

( )3 ( )3 (
)3V(ki, qi, pi)

3

'(ql Oi) . V(pi, q2 P2)(q2 O2)

V(p3, q2, k2) G(pi, ~ —Ai)
X G(p2, (d —Al —A2)G(p3 (d —A2).

(B7)

Isolating the &equency integration as above results in

1
S((d) - —. (B9)

Again estimating the k dependence using locality gives
for the total

(3) [I(:3H(k)]2
p3 (810)

which, making use of Eq. (B6), shows that

g(3) g(&) &~

I k
(Bll)

We stress again that this coefficient is a result of the
structure of the diagrams and the limit F &) p, and is
independent of the particular choice for f and g.

dO1 dO2 1

2~ 2m ((d —Ai + iyi)
1

X
(u) —Oi —A2 + i')

1 r, r,
( —O, + ~3) O', +F', O', +F",

where p; = pzi, I';:—Iq, Integrating first over Oq,
there is one pole in the lower half plane, Oi ———iI'1,
and similarly 02 ———iI'2. Therefore the result, again
neglecting p with respect to I', is

~„—=ImZ(')- ksH(k)
(B6) APPENDIX C: SY'MMETRY' OF THE GREEN'8

FUNCTION
Now consider the second-order diagram as displayed

in Fig. 13. After integrating out one of the k vectors
of each Green's function and performing the b functions

We can rewrite Eq. (2.21) in the form

Qp 012 (2&) b(kl + k2) + +13032i

021 (21') ~(kl + k2) + +23&31)

(Cl)
(C2)

where we use the shorthand notation introduced in Sec.
IIIB. In Eq. (Cl) we can use the fact that the Dyson
equation can be resummed &om either the left or the
right, and an equivalent form to (Cl) is

Qp 'R2 = (2~)'b(ki+ k.) + 01&32.

Since Z is symmetric [cf. Eq. (3.4)] we subtract (C2)
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&om (C3) to obtain

s Eggs (2z ) g() 'b(kg + k2) —Z23 —0, (C4)
2K 8

where b,gqs ——gqs —gsq. Noticing that go is a function
of ~ while it has been shown that Z23 is not, we conclude
that b,ggs must vanish.

APPENDIX D: THE ASYMPTOTIC
PROPERTIES OF THE TWO-POINT

PROPAGATORS AND THE FREQUENCY
CONVERGENCE OF THE DIAGRAMS

To find the asymptotic properties for large frequencies
of the Green's function g(kq, kz, (d) assume first that its
real part is much larger than its imaginary part when
~ ~ oo. From Eq. (3.4) we then see that

g'(kg) k2, ~) = go(kg, k2i(d)
= (2z) 6(kg+ k2)/(u 1/(d. (D1)

It is clear &om Eq. (3.6) that this form will also hold for
the integrated Green's function (3.5). We proceed now
to analyze the imaginary part of (3.5), G"(k, (d). The
imaginary part of Eq. (3.6) gives

wg"(ki, kq, ~) = k f q
sin Haq'N(q)

x [G(q —k, (d) —G(k, ur]. (D2)

We have previously introduced for G(k, (d) the scaling
form (3.7). In the asymptotic regime of large (d ((d » k'),
we take the form

1
G"(k, ~) oc —

i

—
ik Ek') (D3)

(D4)

where the exponent a is to be determined. There are
two relevant regimes in the evaluation of the integral
(D2): the region q k, and the region q' ~ ci), i.e.,
q && k. In the Brst case, we invoke the asymptotic form
G(k, (d) 1/(d, and realize that this contribution will
be small due to the cancellation of the leading order
terms. In the regime q » k, G(k, ~) is already in the
asymptotic regime and is negligible in comparison with
G(k —q, ~) ~ G(q, ~) which as q' ~ is not asymptotic.
Therefore the integrand reduces to a function of q only,
and the integral is proportional to k due to the prefac-
tor. Now we may determine the exponent a by balancing
powers of k. The result is

equation (2.22). Replacing again the Green's function
by its real part and using the independence of 4 on &e-

quency, we conclude that for large &equencies

X(kg, k2, ur) ~ 1/(u .

Next we prove that the integrals of the propagators
over &equency exist with the scaling forms ass»~ed for
them. In other words, we need to prove that the si-
multaneous propagators exist in the sense that they are
independent of the viscous cutoK. For the Green's func-
tion this is immediate because of the &equency s»m rule
(3.2). For small &equencies it follows &om the fact that
P(kz, k2, (d) is &mte. This follows directly from Eq. (Cl),
using that g is finite at ~ = 0 [cf. (3.5)], and that 4 is
&equency independent.

Having established these properties, we can show now
that all the integrals with respect to &equency in our
diagrammatic expansion converge. Let us start with
Z. The way to see the convergence is to note that the
n»mber of independent integrations with respect to &e-
quency is always the same as the number of correlators.
Therefore, we can choose as the independent &equencies
of integration the frequencies of the correlators, making
the &equencies of the Green's functions linear combi-
nations of the above. Since the Green's functions are
bounded for any &equency, the convergence of any di-
agram is guaranteed if the integral over the correlator
itself is bounded. The latter is guaranteed whenever the
correlator is P(kq, k2, ur) by the properties given above.
However when the correlator is R, we need to discuss the
issue further, since we took '8 as &equency independent,
and the integral of 'R is therefore unbounded. On the
other hand, as argued above, the '8 correlators appear in
all the diagrams as vertical dashed lines. This means that
each loop contains exactly two Green's functions, except
in the first diagram, where there is only one (see Fig. 3).
In this first diagram, the &equency integral converges due
to the sum rule (3.2). In all the other diagrams the two
Green's functions in every loop ensure convergence due
to their asymptotic properties (Dl) and (D5), and the
finiteness of g(kq, k2, u = 0).

In the series for 4 we have one additional correlator
E(kq, k2, u) in every independent integration. Given the
asymptotic properties of P(kq, k2, ~) it is easy to see that
the above arg»ment is not destroyed.

APPENDIX E: THE IMAGINARY PART
OF THE GREEN)S FUNCTION

We will use the following fact concerning the imaginary
part of a product of functions aPph

Therefore in the limit u ~ oo, the imaginary part of the
Green's function indeed falls oK faster than the real part,
according to

II 1
G (k, ur) oc

p g )ti ~P'7~ ' ~ P 'Y

2i
(~"p'~'~' "+~p—"~'~' ".

p II(II + ) (E1)

TLU. ning now to the correlation function, we use Wyld's
which can be verified directly by replacing each n with

The Dyson equation (2.21) may be expanded dia-
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FIG. 14. Expansion of the imaginary part of the Green's
function.

grnnImatically as in Fig. 3(a). Performing the expansion
(El), one replaces every term in the above with combi-
nations of terms of the form shown in Fig. 14.

Resumming the series one finds that

012 go + 013~34g24.

Neglecting the small term Ick2 we end up with (3.13).

APPENDIX F: THE LOCALITY OF %2(R)

Examine the integral (5.12) in the case n = 2,

(2z ) dk dqI dq2&()=
( ) ( ) (

)]1— p(q )~

x[q2 'R(k) q1][F(q1) —F(q2)]
x 6(k+ qI + q2). (F1)

The ir convergence is analyzed by examining the range of

integration in which either one of the three k vectors is
much smaller than the other two, or all three are small,
and of the same order. If k is much smaller, then q~
and q2 are approximately equal, making the difFerence

F(q1) —E(q2) small. Expanding this difference in k, the
linear order vanishes after integration, and the second
order contributes an integral J k2H(k) dk which is con-
vergent in the ir in our case. In the case q2 small, the
factor q2 'R(k) . q1, which can be written equivalently
as q2 . 'R(k) q2, contributes the most dangerous CQII-

tribution q2F(q2) dq2, which is again convergent in the
ir. The case qq small is less dangerous since then the
term [1—exp(iqI r)]2 contributes an additional factor of
q&. Lastly, the case k, qq, q2 small and of the same order
is estimated by power counting to be convergent since
J' qsH(q)F(q)dq is ir convergent

In the uv regime we have either two large k vectors
and one small, or three large k vectors. Take qq and
q2 large, and of order q» k. The factor q2 'R(k) q2
contributes q2. The factor [F(q1) —F(q2)] contributes,
after expansion, k2F(q)/q2. One integration over q is
taken care of by the 6 function, and we end up with
k2 f F(q)dq which is convergent in the uv. Now with
k and either qq or q~ large and of the same order, the
dangerous integral is jH(k)F(k)dk, which converges in
the uv.
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