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Analogies between scaling in turbulence, field theory, and critical phenomena
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We discuss two distinct analogies between turbulence and field theory. In one analog, the field theory
has an infrared attractive renormalization-group fixed point and corresponds to critical phenomena. In
the other analog, the field theory has an ultraviolet attractive fixed point, as in quantum chromodynam-

1cs.

PACS number(s): 47.27.Ak, 64.60.Ak, 11.10.Jj

In this paper, we shall discuss two distinct analogies
between turbulence at high Reynolds number, statistical
field theory, and critical phenomena. Such analogies are
implicit in attempts to make a useful connection between
these apparently disparate phenomena, but a number of
points deserve to be made explicitly. Some of our re-
marks are essentially trivial observations based upon di-
mensional considerations; nevertheless their ramifications
have not always been respected by approximate theories
ill.

The fully developed turbulent regime is specified by the
condition that the integral length scale L of the largest
eddies should be much larger than the length scale gd at
which dissipation is effective. The latter is usually
defined as the inverse of the wave number kd at which the
peak of the enstrophy spectrum k E(k) occurs.
Equivalently, the Reynolds number Re = UL/v should be
large, where U is a characteristic large-scale velocity and
v is the molecular viscosity. We consider the statistical
steady state with constant mean rate e of energy injection
by the turbulence production mechanism, which, by sta-
tionarity, is also the mean rate of energy dissipation by
molecular viscosity. We shall take the point of view that
the problem of turbulence is to understand the properties
of the stationary (but presumably non-Gibbsian) proba-
bility distribution governing the velocity field of a tur-
bulent fluid; it is this distribution which is used below
when we write averages in the context of turbulence.

The first analog of turbulence is to field theories with
an infrared attractive renormalization-group (RG) fixed
point. This is the situation for field theories correspond-
ing to critical lattice spin systems. For example, consider
a system of spins o(r} in d spatial dimensions, where r
runs over a lattice aZ of lattice constant a, governed by
a (dimensionless) Hamiltonian of the form

'2
o (r+ae„)—tr(r)

H[cr]= g a
2 a

rEaZ

+—cr (r)++cr (r)+
2 4

with e„,p=1,2, . . . , d, being unit lattice vectors. The
parameter ~ depends upon the temperature of the spin
system, with an order-disorder transition occurring at the
critical value r, . In the critical regime (r r, )/r, «—I
there is, for large space separation, universality from the
specific short-distance, or lattice-scale, interactions. On
the other hand, turbulence scaling in the high-wave num-
ber inertial range is believed to exhibit universality from
the small-wave-number stirring mechanisms. Therefore,
in this analogy the roles of space and wave number are
interchanged. A detailed list of correspondences (and
definitions} may be drawn up for an analog along these
lines, which is motivated below.

Turbulence

space separation r
viscosity v
energetic length scale L

mean dissipation c
dissipation wave number kd —=gd

'

velocity correlation function
$2(r) = ( [v(r'+r) —v(r')]')

intermittency exponent p

Critical phenomena

wave number k
temperature variable ~—~,
uv cutoff A

(or inverse lattice spacing a ')
stiffness constant K
correlation length g'

spin correlation function
C(k) =g da e'"'(o (r)o (0) )

correlation exponent g,
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This analog is similar to that pointed out previously by
Nelkin [2], de Gennes [3], and Rose and Sulem [4], the
critical (~~r, ) limit of equilibrium spin systems being
considered analogous to the zero-viscosity limit of tur-
bulence. However, we have made a correspondence of
the constants K and E which does not seem to have been
pointed out before. Also, we propose that p and g, are
directly analogous rather than being related as p~3 g„
as suggested by the earlier authors.

The above analogy can be motivated by comparing
Kolmogorov's 1941 theory of turbulence [5] and
Landau's 1937 "mean-field" theory of critical phenomena
[6]. In both theories, critical exponents are obtained by
dimensional analysis [7].

In the Landau mean-field analysis, it is implicitly as-
sumed that the long wavelength properties are indepen-
dent of the lattice constant a. Thus the limit a~O of
spin correlations is presumed to exist, an assumption that
the asymptotics are of the first kind [8]. In that case the
only remaining parameter with units of length is

ra
' =[(r r, )/E—] ', yielding the Landau prediction

for the correlation length gL ro '~-The .values for the
critical exponents follow from this assumption, for exam-

ple,

C(k}-Ek (2)

C(k)-Kk (ka) ',
for some g, )0, in which the microscopic length a ap-

pears explicitly. Likewise, the Landau scaling of the
correlation length has an "anomalous" correction arising
from a dependence: g-gt(roa ) for some 8&0, or

Vg-ro ' with v, =
—,
' —8.

In the same way, Kolmogorov assumed that the limit
L~+ 00 should exist in turbulence with finite velocity
correlations. In that case, the only remaining length
scale is the dissipative scale estimated as
rtx-(s) ' v . Thus Kolmogorov obtained, by dimen-

sional analysis,

S2(r)-(sr ) (4)

when k&r ))1, if the limit v~O exists for velocity corre-
lations. As with the corresponding assumption in
Landau's theory, Kolmogorov's hypothesis of existence
of the first L~+~ limit is questionable due to the
buildup of 6uctuations of energy Aux in the energy cas-
cade. (Ironically, this criticism originates in part from a
remark of Landau himself [9].} Instead, simple cascade
models indicate that the scaling law should instead be of
the form

S (r)-(Er)

for kg » 1, where it has also been assumed that the criti-
cal limit ra~0 exists. In fact, Landau's first assumption
that the limit a —+0 exists is generally wrong, and the
correct asymptotic scaling behavior is of the second kind

[8]

for some p & 0. Similarly, these models suggest [10] that
the dissipation scale may have a slight dependence upon

5

L, as for 5%0, leading to a scaling
tK

q&-gz with co=1—6.
It is clear that in these formulas, E,a, g„v,are homo-

logous, respectively, to c,L ',p, co. Notice that typically

g, is small in critical systems even in two or three dimen-
sions and JM represents an empirically small modification
to the dimensional analysis result of —,'for the exponent

appearing in the Fourier transform of S2..

E(k)-( ) 'k ' (kl. ) (6)

The constants E and E play a similar formal role in the
two theories. To see this, consider a Martin-Siggia-Rose
(MSR) Lagrangian [11,12] for the steady-state turbulent
cascade state produced by driving with a Gaussian ran-
dom force f, white noise in time, with zero mean and co-
variance

( f;(r, t)f, (r', t') }=25; F(r r')6(t —t') . —

It is easy to check that F has the units of energy dissipa-
tion and indeed it is directly related to the mean energy
injection rate by E=2F(0). Therefore, the quadratic
term in the MSR action corresponding to the "response
field" v is

S' '[v]= ,' f dt f d—rdr'v(r, t)F(r r')v(r', —t), (8)

P(r) =K'~ cr(r), (9)

which has dimension —,'(d —2) in units of inverse length.

As before, a detailed list of correspondences may be
drawn:

which is proportional to c.. S' ' has a formally similar
structure to the quadratic term in the spin Hamiltonian,
which is proportional to E.

A second, rather diferent, analogy can be made be-
tween turbulence and field theory with an uv attractive
fixed point, or field theory for short. (It is generally ac-
cepted that, in order for a continuum field theory model
to be well defined, it must be "asymptotically safe, " i.e., it
must correspond to a lattice model with an uv attracting
fixed point. ) Field theory, such as uv asymptotically free
quantum chromodynamics (QCD), exhibits scaling at
short distances, just as turbulence is believed to do.
Therefore, in this analogy space corresponds to space.
The spin system we examined before may still be used in

this analogy, when it is considered in dimension d &4
along the single RG trajectory which Aows in the uv

direction into the non-Gaussian %'ilson-Fisher fixed point
(previously we considered the theory at a generic point
on or slightly away from the critical surface). It is con-
venient to use the field-theoretic notation, introducing a
(lattice) field
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Turbulence

space separation r
viscosity v

(or Kolmogorov scale ilier)
energetic length scale L
Kolmogorov wave number k„
velocity correlation function

&2(r)=((v(r'+r) —v(r')) )

Field theory

space separation r
lattice spacing a

correlation length g
uv cutoff A=a
field-theoretic Green's

function
G(r) = ( P(r)$(0) )

These correspondences essentially all follow from the
comparison in the last line. For example, the length scale
L gets it name "integral scale" from the fact that it is an
integral correlation length of the longitudinal velocity
correlation f(r) =( tr [v(r'+r) —v(r')]] ), defined by

(10)

Therefore, it corresponds naturally to the correlation
length g defined by the exponential decay rate of G(r}.
Likewise, the dissipation length gz provides a short-
distance cutoff for turbulent velocity correlations, analo-
gous to the lattice cutoff a for the field theory correla-
tions. The correspondences made here, (k„,L)~(A, (),
are the opposite of those made in the first analogy,
(k„,L )~(g, A }. In the present analogy, the zero-
viscosity limit is analogous to the continuum limit a ~0
of field theory.

Having pointed out the analogies between turbulence
and field theory, it is appropriate to emphasize certain
important distinctions. First, we discuss the issue of
universality. In turbulence, short-distance scaling is be-
lieved to be generic and essentially independent of large-
scale statistics or driving mechanisms (hence homogene-
ous, isotropic, etc.}. Scaling laws, strictly speaking, re-
quire an inertial range of infinite extent, so that we
confine our discussion here to the idealized situation of
zero molecular viscosity (i.e., the critical limit according
to our first analogy). We will assume that the stationary
probability distribution governing the turbulent state is a
fixed point in a function space, whose axes may be
thought of as coupling constants for all conceivable local
(and perhaps nonlocal} operators. This distribution is
usually assumed to be the fixed point of a RG transfor-
mation which integrates out short ivauelength degrees of
freedom, just as in critical phenomena. (An alternative to
this procedure will be mentioned below). Short-distance
universality implies that the ultraviolet RG Qows should
all be in toward the fixed point: this distribution is a glo-
bal sink in the ultraviolet. (Here again we ignore cross-
over phenomena associated with finite molecular viscosi-
ty or other short-distance regularization mechanisms).
Thus the usual infrared RG How diagram, moving the
system to longer and longer length scales, will contain a
fixed point with a presumably infinite number of relevant
directions. The physical significance of relevant direc-
tions, in the context of critical phenomena, is that they
represent the parameters that must be tuned in order for
the system to be criticality (e.g., the temperature is at the
critical temperature, the external field is zero). In the

context of turbulence, these relevant directions corre-

spond to the myriad of different large-scale stirring mech-

anisms which generate the same short-distance behavior.
One' of these relevant directions, corresponding to the
temperature, is the "eddy viscosity, " which is the
effective viscosity at a given scale generated by turbulent

degrees of freedom at shorter scales. The eddy viscosity
will tend to the bare molecular viscosity as the turbulence
fixed point is approached at short length scales. In con-
trast, even field theories with an uv fixed point must gen-

erally be tuned to lie on the low-dimensional surface
which attracts to the fixed point, and as mentioned above,
the number of variables that must be tuned is equal to the
number of ir unstable directions at the fixed point: this is

usually a finite number. This general argument does not
distinguish between relevant and marginally relevant
directions.

The second distinction is that scaling behavior may be
quite different in turbulence and typical field theories.
The latter usually show simple "gap scaling" or "hyper-
scaling" in which higher-order correlations scale with ex-

ponents which are just integer multiples of a single field

dimension. For example, if d& is the scaling dimension of
the field P, then typically

as A, ~O. In contrast, higher-order velocity structure
functions S (r) are believed to scale in high Reynolds
number turbulence with r ~0 as

(12)

for x &0 [13,14]. This type of "multifractal" scaling is
found in very few field theories. In the cases where it
occurs, it is 'usually associated with sequences of field
variables with negative scaling dimensions. More gen-
erally, the multifractal scaling occurs if there is a se-
quence of variables "additively coupled" in the operator
product expansion and negative scaling dimensions are
one common mechanism by which such sequences are
produced [15,16]. A representative case is the O(N) non-
linear o model in dimension d=2+e with N &2 [17],
which has such a sequence. This example is closely relat-
ed to Wegner's theory of the mobility edge in disordered
electron systems apd the hypothesis there of multifractal
electron wave functions for the localized states [18].
Note that any variable with scaling dimension x &d cor-
responds to an unstable direction at the fixed point.
Therefore, the variables with negative scaling dimensions
correspond to an infinite set of unstable directions and
the associated fixed point is uv attractive in a large
domain, as suggested in the preceding paragraph.
Motivated by this type of example, a RG theory of high
Reynolds number scaling in turbulence can be developed
[19,20] in which the "anomalous dimensions" are the
negative scaling dimensions x of the powers of the veloc-
ity gradients (Vv Y. In traditional turbulence terminology
this corresponds to generalized fiatnesses for velocity gra-
dients diverging as powers of the Reynolds number,
which is also observed in both simulation and experiment
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[16,21]. The same phenomena lead also to the possibility
of a hierarchy of dissipation lengths gj'' delimiting the
short-distance end of the scaling range of the pth struc-
ture functions S, each having a different dependence on

molecular viscosity gI''- gx'" [10].
The third distinction that we wish to mention is the

form of the continuum limit. In field theory taking the
continuum limit requires making a multiplicative renor-
malization of the lattice field variables

[(()](r)=Z(a)$(r), (13)

where Z(a)-a ~ and y& is an "anomalous dimension"
of the renormalized field [P]. The necessity of this renor-
malization is connected to the uv divergences in the
field-theoretic Green's functions of the "bare" fields (b [cf.
Eq. (3)]. Unlike the fields [(b], which exist only as distri-
butions in the limit a ~0, the velocity field in turbulence
must remain an ordinary function in the limit v~O. The
requirement of finite mean kinetic energy ( —,'U ) ( oo im-

plies this (since the velocity field must then be locally
square integrable with probability one). On the other
hand, the velocity gradients will exist necessarily only as
distributions and uv divergences may appear associated
with their products at a single space point. Only these
products require "renormalization" (by suitable powers
of qx ) in the zero-viscosity limit and any "anomalous di-
mensions" in inertial-range turbulence scaling must
therefore be associated with the velocity gradients rather
than the velocities themselves.

The two analogies we have pointed out differ most ob-
viously in the reverse roles played by scale (wave number)
and space. However, they differ more essentially in terms
of their motivation, the first (with critical phenomena) be-

ing more suggestive in physical terms and the second
(with field theory) arising from mathematical considera-
tions of the formal renormalization procedure.

In our first analogy, the correlation length in critical
phenomena and the dissipation scale in turbulence are in-
trinsic properties of the system, determined by its de-
tailed dynamical and statistical properties rather than
fixed external inputs. In contrast, the lattice spacing in
the first case and the integral scale in the second case are
parameters fixed by the experimental setup or the

definition of the model. The inverse role of large and
small scales in the two cases arises from the different
character of "cascade" in the two instances. According
to the cascade picture, there is a transfer of excitation on
the average from the large turbulent eddies to the small
ones by a stepwise process, which is chaotic in nature and
entails a loss of memory of the large-scale statistics. Wil-
son has emphasized [22] that there is also a "cascade of
fluctuations" in critical phenomena. Droplet fluctuations
nucleated at the lattice scale in the critical state can grow
to the size of the correlation length (and vice versa).
However, it is now the details of the lattice structure
which are lost and the scale-invariant distributions of the
large "droplets" which are universal.

These facts have suggested to several authors [23—25]
that in constructing a RG theory of turbulence, it may be
more natural to reverse the usual procedure and to elimi-
nate low ioaue -numb-er shells rather than high-wave-
number shells as in the Wilson method. Some cautionary
remarks on such a procedure at a physical level are made
in [26]. However, our discussion of the field-theoretic
analogy shows also that to study short-distance uv scal-
ing, an ir-elimination RG is not required. Lattice QCD is
a good case in point, where the short dista-nce asymptotic
freedom is studied by the same uv-elimination procedure
as used in critical phenomena. The uv-elimination RG is
also closely related to an important practical problem of
turbulence theory, that of "sub-grid-scale eddy model-
ing, " and is naturally described in terms of simple "eddy
viscosity" concepts. Indeed, the UV-elimination RG is
deeply connected with such eddy viscosity ideas and RG
invariance under this operation is nothing more than a
restatement of the fact that the inertial range theory is in-
dependent of the molecular viscosity [20].
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