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We study the motion of passive Brownian tracer particles in steady two-dimensional potential Bows
between sources and sinks. Our primary focus is understanding the long-time properties of the transit
time probability distribution for the tracer to reach the sink p (t) and the inhuence of the Sow geometry
on this probability. A variety of illustrative case studies is considered. For radial potential Bow in an
annular region, competition between convection and diffusion leads to nonuniversal decay of the transit
time probability. Dipolar and higher multipole Sows are found to exhibit generic features, such as a
power-law decay in p(t) with an exponent determined by the multipole moment, an exponential cutoff
related to stagnation points, and a "shoulder" in p (t) that is related to re8ection from the system boun-
daries. For spatially extended sinks, it is also shown that the spatial distribution of the collected tracer is

independent of the overall magnitude of the Bow Seld and that p(t) decays as a power law with a
geometry-dependent exponent. Our results may offer the possibility of using tracer measurements to
characterize the Bow geometry of porous media.

PACS number(s): 47.55.Mh, 05.40.+j

I. INTRODUCTION

A passive tracer released in flowing fluid has long been
used as a diagnostic tool to monitor the characteristics of
the Qow field, various processes occurring within the
fiuid, or the material through which the fluid flows. In
the case of porous media Qows, particularly in ground-
water or hydrocarbon recovery, tracer measurements
often are the only source of internal information about
the system [1-4]. For these situations, a considerable
amount of experimental data, theoretical modeling, and
physical insight is available, but largely in situations
where the flow is one dimensional on average. In fact, in
the case of porous media, the only geometrical
configuratio that is understood in depth is the case of
flow along the axis of a long cylinder (or "core") of the
material [3—6]. Typically, a tracer is introduced at one
end of the sample, and convected along the core axis, and
the transit time distribution is monitored upon exit at the
other end. However, in many underground processes, the
Qow is more likely to be radial, or multipolar, than linear.
Typically, Quid is pumped into an "injection" well and
extracted from one or more "producing" wells. Further-
rnore, since geological porous media are usually highly
stratified, the Bow is often confined to a roughly planar
permeable layer of large but finite extent. Thus the sim-
plest plausible approximation to such an underground
Qow geometry is a source-sink dipole in a bounded two-
dimensional region. Additional wells or fractures could
modify the dipole moment or in some cases modify the
multipole order of the Qow field. Furthermore, although
it is sometimes possible to monitor the saturation inside
the sample in the laboratory [7], such measurements are
rarely practicable in the field.

In this paper, we focus on the distribution of transit
times or, equivalently, the first passage -probability be-
tween a source and a sink as a basic characteristic of the
motion of dynamically neutral tracer in steady flows. We
shall study general features of such Qows, largely in two
dimensions, and obtain insight into the physics underly-
ing the transit time distribution. Our primary result is
that hydrodynamic disperion in planar multipole Qows
differs tiualitatiuely from the well-understood quasilinear
case. A simple illustration of this distinction may be in-
ferred from the general theorem [8,9] that the mean tran-
sit time for a passive tracer is given by the system volume
divided by the Quid Qux. In a core experiment, the
volume is finite and the value of the mean time gives the
average Quid velocity in the medium. However, in two or
more dimensions, the volume can be electively infinite
and, correspondingly, the mean transit time can diverge.
Even for finite volume systems, the flow has some radial
character and the notion of a global average velocity is
not necessarily meaningful. Furthermore, the shape of
the transit time distribution shows a qualitative variation
with the details of the system. For the pulse input of a
tracer in core Bows, the transit time is a Gaussian, possi-
bly modified by details of the boundary conditions and
heterogeneities in the material. As we shall see, in mul-
tipole Bows, this distribution generically has a peak, fol-
lowed by a geometry-dependent power-law decay which
ultimately is cut o8'exponentially.

Mathematically, the motion of passive Brownian tracer
particles is determined by their concentration c(r, t),
which satisfies the convection-diffusion equation (CDE)

Bc(r, t) +u(r) Vc(r, t)=DU c(r, t),
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with the velocity Seld u(r) independent of time and typi-
cally the diffusivity D assumed to be constant. Realisti-
cally, in porous media flows one has velocity-dependent
diffusivities [4,5,10],but we shall argue in Sec. III that in
neglecting this effect only some microscopic detail is lost
and that our general conclusions concerning the form of
the transit time distribution remain valid.

In Sec. II we consider tracer motion in radial or mono-
pole flows in a two-dimensional annular region, where
Eq. (1) can be solved in closed form. Because the radial
dependence of the centrifugal term in the I.aplacian and
the drift term are the same, changing the strength of the
flow field is tantamount to changing the spatial dimen-
sion. This gives rise to nonuniversality in the transit time
properties of the system. Section III considers the proto-
typical "Seld" case of a single source and sink in a planar
geometry. This section extends a previous study, by two
of us (J.K. and E.J.H. ) and others, which focused on a
particular configuration and a corresponding experiment.
Here we emphasize the shape of the transit time distribu-
tion and indicate how various features of the flow

geometry manifest themselves in it. In Sec. IV we consid-
er additional case studies, including flows of arbitrary
multipolarity and Bows within an absorbing wedge. Con-
clusions are presented in Sec. V and technical details of
some derivations appear in the Appendixes.

II. FIRST PASSAGE IN RADIAL FLOWS

We begin by investigating the transit time properties of
dynamically neutral tracer particles in radial potential
Sows u(r) =u Or /r ~ ', in spherically symmetric
geometries, where d is the spatial dimension. Due to the
spherical symmetry, the system can be reduced to an
effective one-dimensional problem in which the centrifu-
gal term in the I.aplacian acts as an inhomogeneous bias
of magnitude D (d —1)/r. The competition between this
centrifugal drift and the potential flow determines many
of the interesting transit time or first-passage characteris-
tics of the system.

This interplay is particularly delicate in two dimen-
sions because the centrifugal and potential terms have the
same dependence on r. Consequently, the form of the
CDE for the two-dimensional system with up finite is
essentially the same as that of a system with no drift
(uo =0), but with A %2. Due to this connection, it is rela-
tively straightforward to derive the Laplace transform of
the transit time probability for the two-dimensional sys-
tem with radial drift. The crucial feature of this solution
is that a change in the amplitude up is equivalent to
changing the spatial dimension. This leads to nonuniver-
sal behavior for the asymptotics of transit time properties
as a function of the drift.

For 8+2, the drift and centrifugal terms have different
dependences on r. Consequently, there is a critical length
scale A, =[uo/(d —1}D]'~' ' where the two terms are
of the same order. When d & 2, diffusion dominates over
the drift for r &k, while for r &A, the drift dominates.
These relations are reversed for d &2. The transit time
characteristics of a tracer particle are therefore deter-
mined by whether it is initially released in the dimusive or

convective region. While we have not been able to obtain
the full tine-dependent solution, we can obtain partial in-
formation which can be formulated in terms of time-
independent equations. This includes, for example, the
probability that a tracer particle eventually reaches an
absorber as a function of the initial tracer position. The
functional form of this hitting probability reflects the two
above-mentioned regimes of behavior.

u(r)= 2' r

The coeScient of the potential has been rewritten in
terms of Q, the areal Sux of Suid entering or leaving the
system. From Eq. (2), fds u(r)=Q, for any contour en-

closing the inner circle once. The initial condition is tak-
en to correspond to a tracer particle initially placed at
r =rp. To maintain circular symmetry, this initial condi-
tion can be formulated as a ring of tracer particles which
are released at r =rp.

1c(r, t=0}= 5(r —ro) .
2'1' p

The boundary conditions to be imposed for reflection at
r =R and absorption at r =a are c(a, t)=0 and

j (R, t) =0, where the radial Sux is

j (r, t)= DBc(r, t)/Br+—u (r)c(r, t) .

For this system, we are interested in the time dependence
of the transit probability to the absorbing circle p (t}. Be-
cause the initial probability density is normalized and all
particles that reach the inner circle are absorbed, this
transit time probability coincides with the flux at r =a,
i.e., p(t)=j (a, t) From this co.nnection, we can compute
the basic transit time properties of the system.

By introducing the dimensionless radial coordinate
x =r&s /D and the Laplace transform
c(r,s)=D Jo c(r, t)e "dt, the CDE can be written in a
standard Bessel form

Pe —12'(x, s)"— d(x, s)' —V'(x, s)=—
X

5(x —xo)
27Tx p

(3)

with Peclet number Pe=Q/2nD aad where the prime in-
dicates differentiation with respect to the dimensionless
radial coordinate. Details of the Green's function solu-

A. Time&ependent behavior in two dimensions

For generality, consider an annular geometry of inner
and outer radii c and R, respectively, to encompass all
circularly symmetric geometries. There are two generic
situations to consider. In the "inner" problem, we take
the inner radius as absorbing and the outer radius as
reflecting. For this problem, the interesting asymptotic
properties arise in the limit where R ~ 00. The comple-
mentary "outer" problem involves reflection at r =a and
absorption at r =R For. this situation, interesting long-
time behavior arises for sufBciently strong inward drift.

Consider first the inner problem. To obtain its transit
time properties, we solve the CDE in the velocity field
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P'(s}=

tion to this equation in an annular geometry are given in
Appendix A. From this solution, the Laplace transform
of the transit time probability p'(s) = Jo p (t)e "dt is

I (xo}K +i(R)+K (xo)I +i(R)
xo I (a)K„+,(R)+K„(a)I„+,(R)

(4)

2V I(1—v)( 2 2} s
r(1+v) 4D

+ 0 ~ ~

P(s)=
Xo

"K„(xo)
K„(a) (5)

To extract the long-time behavior, we need to consider
the behavior of P as s ~0. Generically, this quantity has
a small-s expansion of the form

p(s) -p(0) —as '+ bs '+ (6)

By comparison with the definition of the Laplace trans-
form when expanded in powers of s, the zeroth-order
term is just the probability E(ro} that a tracer particle
which starts at r=ro eventually reaches the absorbing
circle. That is, p(s =0)=f0 p(t)dt: E(ro). If thi—s even-

tual return probability is unity, the process is recurrent,
i.e., the tracer is sure to be absorbed, while if the return
probability is less than unity, the process is transient [11].
Additional time-dependent properties can be inferred by
the nature of the correction terms in Eq. (6). When the
exponent of the first correction term a&&1, then the
mean transit time diverges and the probability distribu-
tion in real time has a power-law tail which varies as—al —1

However, when a& reaches unity, then by com-
parison again with the formal expansion of the Laplace
transform, the coefBcient of s coincides with the mean
transit time to the absorbing circle, ( t ) .

For the transit time probability given in Eq. (5), the
first correction to the leading behavior of EC„,and hence
of p(s), is generally nonanalytic. This is the source of
many of the interesting transit time properties of the sys-
tem. There are two cases to consider, namely, outward
flow (Q, v&0) and inward flow. For outward flow, we

use the asymptotic form
V V

2 1

r(1 —v)
1

r(1+v)
X

2
K„(x)-

2 smmv

+O(x ") (7)

in Eq. (5) to yield, for the transit time probability (now in
dimensional units),

Here I and E„arethe modified Bessel functions of the
first and the second kind, respectively, v=Pe/2, and all
lengths have been expressed in nondimensional units.

For the inner problem, the transit time probability dis-
tribution decays exponentially in time for R & ~. Thus
the interesting situation in the long-time limit is that of
R ~ 00, i.e., the first passage to a small absorbing circle
in an infinite system. For this situation, I„(R)diverges
with K,(R) vanishes, so that the transit time probability
simplifies to

P(s) -1— (rP' —a ")I'(1 —p) i z s + o ~ ~

I (1+p) 4D

where p= —v&0. A basic (and not unexpected} feature
from this expansion is that E(ro)=l; a tracer particle
hits the absorbing circle with certainty. Additionally for
p& 1, (i.e., 0& —Pe &2), (t ) is infinite, while for p, & 1,
(t ) is finite. Thus even though the tracer is guaranteed
to reach the absorber for any inward drift (including zero
drift), the transit time is finite only if the drift is
sufBciently strong.

The complementary outer problem of a reflecting circle
at r =a and an absorbing circle at r =R also leads to in-
teresting behaviors. From Eq. (A14) and the transforma-
tion a~R needed to convert the inner to the outer prob-
lem, the transit time probability to the absorbing circle is

R "I„(xo)K„+i(a)+K(xo)I„+i(a)
P(s)=

xo I (R)K„+i(a)+K„(R)I+, (a)
(10)

Generically, interesting behavior occurs when the Bessel
function X dominates in both the numerator and
denominator. This arises because the first correction to
the leading behavior of K„is generally nonanalytic as its
argument goes to zero, while the first correction to I„is
analytic. Since K+„(x)both diverge as x as x ~0, it is

We therefore conclude that the eventual return probabili-
ty E(ro)=(a/ro) "&1. Thus the effect of outward flow
is to render a neutral tracer particle transient with
respect to a circle of radius a. One way to interpret this
result is to notice from Eq. (3) that the outward radial po-
tential flow is equivalent to a purely diffusive system of
spatial dimension greater than two. For such a system, it
is well known that the prol'ability of eventually hitting a
given point (or set of points) is less than unity.

From the correction term in the series for P(s), we also
deduce that (t) diverges for 0&v&1 (i.e., 0&Pe&2),
while for v&1, (t) is finite. Since the eventual return
probability is less than unity for v & 0, ( t ) in this case is
conditional on those particles which actually hit the ab-
sorbing circle. The situation where ( t ) & oo but
E(ro) & 1 corresponds to strongly transient behavior
(which occurs for d &4 in the pure random walk prob-
lem}. Physically, strong transience simply reflects the
fact that for sufficiently large velocity (or, equivalently,
for sufficiently large spatial dimension in the case of pure
random walks}, a tracer particle must reach the absorber
in a finite time if it is to be absorbed at all.

For inward flow (v&0), there is a wider range of phe-
nomenology which is evident from the small-s expansion
of P(s). Using K „=K„,we immediately find from Eqs.
(5) and (7) that as s~0, the transit time probability has
the expansion
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evident that for v& —
—,', the first term in both the

numerator and the denominator dominate as s~0 and
p(s) reduces to a ratio of I„'s.This leads to a series rep-
resentation for p(s) which is analytic in s so that the
probability decays exponentially in time and the mean
transit time is finite. On the other hand, for v & —

—,
' (i.e.,

1 & —Pe), the complementary terms dominate in Eq. (10)
and as s ~0,p(s) reduces to

xo K„(xo)
R Kq(R)

with }u=—v. This is of the same form as Eq. (5). Thus
the probability of eventually reaching the outer circle is
unity, while the p (t} has a power-law long-time tail with
a velocity-dependent exponent t ~ '

Ph. ysically, this
last result indicates that for sufficiently strong inward
drift the tendency for concentrating particles near the
origin more than compensates for the cutoff in the transit
time probability due to the finite extent of the system.
Consequently the mean time diverges and there is an at-
tendant power-law tail in the transit time probability.

0.(i

0.4

0.2

00
n.n 20.n 40.0 60.0 80.0 100.0

FIG. 1. Schematic dependence of the eventual return proba-
bility on the initial radial displacement ro for radial potential
flow in d dimensions. Shown are the interesting cases of d & 2
and inward flow (lower curve for large r) and d & 2 and outward
flow.

B. Time integrated yroperties in d dimensions

For arbitrary spatial dimension d, we have not been
able to obtain the analogous Green's function solution as
in the two-dimensional case. However, we can determine
the properties of the eventual return probability for all d.
This is feasible because E(r), the probability of eventually
reaching the absorbing set when starting from r, obeys a
time-independent equation that can be easily integrated
for all d (see, e.g., Ref. [12]). This feature is perhaps best
appreciated by considering a discrete hopping process,
where E(r ) evidently obeys the recursion relation

(12)

Here p, , is just the probability of hopping from r to r'
in a single step. In the continuum limit, this recursion re-
lation becomes DV E+u VE=O and for radial flow
simplifies to

flow, where E(r) remains of order unity for r &A, (i.e.,
Pr~ 2 & 1 }and then drops precipitously to zero for larger
r. Related behavior occurs for the case of outward flow
for d &2.

III. DIPOLAR FLOWS

We present a full discussion of tracer motion in a two-
dimensional dipole Sow field, corresponding to a pump-
ing well and a producing well in a thin, circular, homo-
geneous porous layer. Some of these results have ap-
peared in our earlier paper [13],where the emphasis was
on different aspects of the problem. The local tracer con-
centration c (r, t) is described by the convection-diffusion
equation of Eq. (1}, where we assume a constant
diffusivity (but see below). Consider a point source and
sink placed symmetrically about the center of a circle of
radius R, at r, 2=(0, T a), with total flux RQ. The dipole
velocity can be written equivalently as

DE"(r)+ D + E'(r}=0 .
r rIj I (13}

By
' Bx

(15)

For the illustrative case of absorption at a sphere of ra-
dius a in an infinite system (R-+ ~ ), corresponding to
the boundary conditions E(a)=1 and E(ao )=0 (except
for d & 2 and ao & 0), the above equation can be integrat-
ed by elementary methods to give

exp(Pr ) —1
for d)2

exp(Pa }—1

E(r)= exp[P(r "—a ")] for d & 2, ao &0

1 for d &2, uo~0,
(14)

where P=uo/D(d —2). The qualitative dependence of
the eventual return probability on the starting radius is
shown in Fig. 1. For d & 2, the interesting case is inward

where the velocity potential P and stream function f are
the real and imaginary parts of the complex potential

Q
1

(z+a)(z+R /a)
(z —a)(z —R /a)

(16)

expressed in terms of z=x+iy. In this expression,
kR /a are the locations of the image source and sink
needed to make the normal velocity vanish on the circu-
lar boundary. The streamlines are plotted in Fig. 2. To
avoid singularities, it is sometimes useful to replace the
point source and sink by small circles of radius
e «a «R. For large Peclet number, it is natural to as-
sume that the Quid and the tracer are emitted uniformly
in angle about the source. (It will be shown below that



4654 J. KOPLIK, S. REDNER, AND E. J. HINCH 50

that the tracer is collected at time t, which varies as

p(r)=p(8) = -'(2~) 2nrdO l
dr 2n r'(8) e

(19)

FIG. 2. Streamlines for two-dimensional dipolar Sow due to
a source at x = —a and an equal strength sink at x =+a. The
dipole is symmetrically placed inside a circle of radius R. Due
to this geometrical constraint, the Suid Qow is purely tangential
along the circular boundary. Note the existence of the stagna-
tion points at x =+R.

the time integrated tracer is then also collected uniformly
in angle at the sink. ) It is convenient to nondimensional-
ize distance in units of a and time in units of 2na /Q,
in which case the coefilcient D in the CDE of Eq.
(1) is replaced by Pe '=2nD/Q, and
%=in{(z+1)(z+R )/[(z —1)(z—R )]].

A. The transit time distribution in an ideal dipole flo~ field

t(8)=2csc (8)[1—8cot8] —+
&-~ (m.—8)

(18)

Although the motion is completely deterministic, a distri-
bution in the transit time results from the distribution in
the initial angle. Since all streamlines lead from the
source to the sink, there is a one-to-one equivalence be-
tween the time dependence and angular dependence of
the transit time probability. This leads to the probability

In the limiting case of pure dipolar convection in an
infinite plane region (R ~ 00 ), the tracer motion is deter-
mined by the velocity field

dr(t) (, (x+1) +y
(x —1) +y

In Appendix B we obtain the analytic solution of this
problem, using a canonical transformation technique.
Mittag and Stephen [14] have independently solved this
and related problems using an ingenious conformal trans-
formation method. For a particle emitted at polar angle
0 with respect to the source, the transit time to the sink is
[Eq. (86)]

In Eqs. (18) and (19) we emphasize the limiting long-time
behavior associated with tracer particles which initially
move away from the sink. It is this aspect of the distribu-
tion that explores the global structure of the Now field
and will be seen to have generic behavior. In contrast,
the early arrival component of the distribution obviously
involves specific geometric features, such as the precise
source-sink separation. Note that the t tail of the
distribution implies that the mean transit time
(t) = fo"dt tp(t) diverges, as expected for an infinite

volume system.
In the opposite limit of pure diffusion in an infinite

volume, the transit time distribution can be computed ex-
actly by a variety of approaches. For a source and a sink
that are a finite distance apart, p (r) asymptotically varies
as 1/(t ln t), independently of the distance between the
two sites. The behavior can be easily obtained from our
earlier treatment of radial Now in an annulus. If we con-
sider the sink to be the small circle of radius a and take
the limit where the outer radius is infinite, then for zero
fiow the transit time distribution is simply given by Eq.
(5) with v=0. As s ~0, the limiting behavior is
P'(s)-1+const/lns. In the time domain, this corre-
sponds to a probability distribution that varies as
1/(t ln t). Although this asymptotic estimate is based on
a system with an initial circular distribution of the tracer,
it obviously applies to the case of a point source of the
tracer. (Indeed, in the point-source case, the initial con-
dition would require a Fourier series in e'", but the
long-tine behavior would be controlled by the n =0
term, and moreover the n%0 terms would not contribute
to the integral over all angles. ) For such a transit time
distribution, all of the tracer eventually reaches the sink,
but the mean time to diffuse from the source to the sink
diverges. If, however, the linear dimension R of the sys-
tem is finite, then the transit time distribution exhibits an
exponential cutoff with a time constant proportional to
R /D (in physical units), the time to diffuse across the
system.

B. Numerical results and their interpretation

For situations more complex than a dipole in an
infinite medium or pure diffusion, further progress by
analytical techniques does not appear possible and we
therefore turn to numerical methods. For example, for a
dipole with pure convection in a finite domain, the canon-
ical transformation technique becomes intractable. To
determine the transit time distribution, we numerically
integrate dr/dt =u, using the full potential Eq. (16), with
R =100 (Fig. 3). This calculation yields the expected
t power-law tail over a substantial temporal region,—f/f,
but eventually an exponential decay p(t)-e ' sets in.
In [13],it was shown that the decay constant can be relat-
ed to the nature of the Sow in the vicinity of the two stag-
nation points at r =(+R,O) and has the value
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IO'

(a)

I I

Illa'

t, =R /2 —3R /2+ . in the present dimensionless
units. The value t, =5X10 deduced from the figure
agrees with this calculation.

In fact, it is easy to show that stagnation points in gen-
eral flows lead to ann exponential decay in the transit time
distribution. Without loss of generality, consider a stag-
nation point at the origin in which the velocity has the lo-
cal form u=dr/dt =(—Gx, Gy). If the stagnation point
is approached along the x axis, then trajectories which
pass near the origin and then escape have the form
r(t)=(xoe G', yoe ') with yo«xo. The time T spent
near the stagnation point can be defined by requiring that
y —Uo, where Uo is some characteristic 0(1}velocity.

dip
p ( &)=pa(yo) ~

—G U
—GTU z.

0 6
po(0)e

7 ~ 00
(20)

Thus the transit time distribution depends on the local
shear rate near the stagnation point, but not on the de-
tails of the initial spatial distribution of the tracer pp. In
the present case of a dipole placed at the center of a cir-
cle, the strain rates at the stagnation points at (+R,O)
may be computed from Eqs. (15}and (16) to be

Since y -yoGe, this gives T-G 'ln(UO/yoG). Typi-
cally, for trajectories that pass near a stagnation point,
the transit time between the source and the sink is dom-
inated by this value of T. The corresponding distribution
of transit times may now be obtained by accounting for
the distribution of initial positions yp. Consequently,

lo-'- Bu ~R 0 4 (1+1/R )

Br R3 (1—1/R~)
(21)

IO-5

lo-' =

lo-9 =

I I I IIIII I I I IIIIII

IO

I I I I I I I II I I I I I I I II

IO2
i I I I I I III I I I I I IIII

IO4
I I I IIII I I I I I I II

IO

IO 9

I
0- lo

IO "-

5x106 4xl06 5 x 106

FIG. 3. Transit tibiae probability distribution for the tracer in
the convective limit for dipolar flow with the source and the
sink at x = + 1 inside a circle of radius R =100. (a) In the re-
gime where the decay is a power law, a straight-line fit to the
data yields the exponent estimate of —1.33. (b) The exponential
decay in a semilog plot, with decay constant 5 X 10 .

Since tracer particles that are emitted close to 8=m en-
counter two stagnation points, the cutoff time constant is
twice G ', or p (t)-e G'~, in agreement with [13].

For the general case of finite radius and finite Peclet
number, we turn to the numerical simulation of the CDE.
The simplest method is a grid-free Monte Carlo time-
stepping procedure using individual random walkers. In
time 4t, a walker is displaced by

br=u(r)bt+n(4ht/Pe)'~ (22)

D~~ =D[1+Pe'], DJ =D [1+Pe'/10], (23)

which approximately fits the accumulated experimental
data on sandstones [10). Here the diffusion tensor is di-
agonal with distinct components parallel and perpendicu-

where n is a unit vector of random orientation. The time
step interval may be chosen at each point on the trajecto-
ry to ensure that individual displacements are less than a
suitable bound, so that there are no pathologies associat-
ed with the large velocities near the source and the sink.
On the other hand, significant diffusion leads to substan-
tial statistical fluctuation in the results. Figure 4 gives a
typical result for specific parameters relevant to our pre-
vious paper [13]:a =1 cm, R =11 cm, D =10 cm s
Q=0. 17 cm s ', leading to Pe=2700, and N=500000
random walkers. In the figure there is an early time
peak, followed by the anticipated t power-law region,
followed by a noisy region, which perhaps exhibits a
shoulder and then an exponential decay. In principle, the
noise could be reduced by considering more walkers, but
such fluctuations only decay as N ' and more sys-
tematic methods are preferable (see below).

We have also used this single-random-walker method
to verify that the power-law tail is not sensitive to the
effects of "convective" dispersion, namely, the enhance-
ment of the diffusivity due to convective pore-scale mix-
ing mechanisms which occur in porous media fiows [4,5].
We adopt the simple parametrization
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FIG. 4. Transit time probability distribution in the combined
dipolar flow and molecular diffusion. Simulation of the
diffusion is accomplished by following the motion of individual
random walks in the background flow field. For this system, the
Peclet number Pe =2700.

lar to the Sow, D is the molecular difFusivity, and Pe' is a
pore-scale Peclet number deffned as uds/D, with ds the
grain diameter and u the local velocity. In applying Eq.
(22), the factor D in Pe ' is replaced by the projection of
Eq. (23) along the direction of the diffusive step. Using
the same parameters as in the previous case of constant
diffusivity and ds =0.025 cm, we Snd a transit time dis-
tribution statistically indistinguishable from Fig. 4, ex-
cept for somewhat more noise in the tail region. The
basic reason we see no effect is that the convective
enhancement of the diffusivity is proportional to Peclet
number, so that at low Pe' the enhancement is absent,
while at high Pe, where it is an appreciable correction to
the diffusivity, the tracer motion is dominated by convec-

vection anyway. In view of this insensitivity, we neglect
convection dispersion in the rest of this paper.

To resolve the effects of diffusion in the tail region, we
treat directly the ensemble of random walkers or,
equivalently, the continuum concentration field. %e
have employed two ~»te difference algorithms which
give the same results. One procedure is simply a "proba-
bility propagation" method, in which initially there is a
unit probability to be at the source, and at subsequent
times the distribution convects and difFuses to an average
position which is, in general, off the lattice. This continu-
um spreading is replaced by motion to a discrete five-site
neighborhood such that the mean position and the
dispersion of the discrete motion about the average coin-
cides with that of the true continuum motion. This algo-
rithm complements the single-walker method by focusing
on the full probability distribution, whose support even-
tually grows to encompass the whole system, rather than
a single walker at a specific location. Details of the algo-
rithm are given in Appendix C.

To test the validity of the probability propagation
method, we reconsider the exactly solved case of radial
potential fiow within a two-dimensional annulus. The
time dependence of the transit time probability distribu-
tion for inward Sow when a =1, r0=10, and R =80 and
an initial localized ring of the tracer at r = ro is shown in
Fig. 5. After a peak associated with tracer which reaches
the sink directly, there follows a temporal regime where

p (t) decays as a power law in t. The power-law regime in
Fig. 5 terminates in a shoulder which occurs when the
time comparable to the diffusion time across the system
td =0(R Pe). Our interpretation of this feature is that it
results from the tracer, which diffuses away from the sink
and rebounds from the outer boundary before diffusing
and convecting back to the sink for collection. To rein-
force this claim, we consider an analogous and exactly
soluble one-dimensional situation, where a similar efFect
arises (Appendix D). Beyond the shoulder, the transit
time distribution decays exponentially, with a time con-
stant proportional to the diffusion time td =0 (R Pe).

A noteworthy feature of the transit time distribution is

10
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10
G4

10

10

10 100
I

1000
time

10000 100000

FIG. 5. Transit time probability distribu-
tion, using the probability propagation
method, in combined radial Now and diffusion
within an annulus of outer radius R =80 with
the initial probability uniformly distributed
within a ring of radius 9.5(ro (10.5. The ab-
sorber consists of a single site at the origin.
Shown are the distributions for the representa-
tive set of Peclet numbers Pe=2, 1, 2, and 4

(narrowest to broadest peak, respectively).
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that the exponent ofp (t) appears to depend on the Peclet
number, as anticipated from the analytic solution. To es-
timate this exponent numerically, we examine the local
exponents, which are defined as the slopes between adja-
cent points in the double logarithmic plot. (For a sys-
tematic analysis of these local exponents, it is essential to
take data at equally spaced points on a logarithmic time
scale}. Plotting this local exponent versus 1/t reveals a
substantial time range where the exponent is &lowly vary-
ing in time and a confident extrapolation to lit~0 can
be performed. As shown in Fig. 6, the extrapolated value
of the local exponent for different values of Pe are in ex-
cellent agreement with the analytic predictions. This
provides confidence that the simulation approach and at-
tendant analysis methods will provide useful quantitative
information when applied to more complicated flows.

We now turn to the simulation results for combined di-
polar flow and diffusion inside a finite circle based on the
probability propagation method (Fig. 7). The transit time
distribution exhibits the same four qualitative regimes of
behavior as observed in radial flow. Additionally, as in
radial flow, the exponent of p(t) appears to depend on
the Peclet number in the power-law regime. This is in
contrast to the pure-convection calculations and single-
walker simulations at large values of Pe, which both indi-
cate a temporal region where p(t) decays as r ~, when
starting with an initial tracer pulse. To clarify the mean-
ing of this apparent Peclet-number-dependent exponent
for p (t), we reexamine the local exponent in the data for
p(t). In the temporal range where power-law behavior
seems to occur (5000 5 t & 50 000), the local slope
changes slowly with time and appears to extrapolate to a
value close to —1.3 for several different values of Pe (Fig.
8). This asymptotic value appears to be more plausible
for data with Peclet numbers near the upper limit of va-
lidity of the simulation method. For smaller values of Pe,
the asymptotic exponent associated with p (t) does appear
to be larger than —~4. Since p(t)-1/(tin t} in the
diffusive limit and p(t)-t ~ as Pe~~, it seems un-
likely that a simulation method that cannot be applied at
large Pe will be able to resolve these two limiting

behaviors clearly. Nevertheless, the extrapolations of the
local exponents are suggestive of a universal behavior in
the tail ofp(t).

As a further check on the probability propagation re-
sults, we have considered an alternative numerical treat-
ment based on a conformal transformation of the CDE.
This approach provides a considerable geometrical
simplification, which is useful in other contexts. Thus
consider conformally transforming the flow domain from
(x,y) into (P, f) coordinates. In the latter variables, the
CDE becomes

2 2

1(&0}l 'a. + a 1 a ~ a ~

ar ap Pe ay' a@'
(24)

That is, the curvilinear flow is transformed to linear flow

by using the complex potential as the conformal trans-
form, but at the expense of introducing a spatially depen-
dent time step which is singular as (O, in ) is approached.
Furthermore, if we simplify by taking the R ~ oo limit of
Eq. (16), the flow domain is a rectangle bounded by the
source and the sink located at /=kin( —,'e), respectively,
with the direct path from the source to the sink on the x
axis mapped into /=0 and the remainder of the x axis
plus the point at infinity mapped into f=rr. The numeri-
cal solution of Eq. (24) is carried out using centered
differencing in space and explicit time stepping. Aside
from the usual numerical checks of varying the grid and
time spacing, we verify that the amount of tracer lost
from the system 1 —f lul cdPdg equals the time in-

tegral of the outgoing flux. Some typical numerical re-
sults of this method for Pe=0.5-10 are shown in Fig. 9,
which is in general agreement with the results of proba-
bility propagation. This finite difference method also ex-
hibits an exponent that appears to depend on Pe. As the
Peclet number becomes large, the finite difference ap-
proach requires a fine grid for accuracy, especially in the
high-velocity regions, which in turn requires an extensive
computation. One could overcome these technical
diSculties by using a suitable variable-sized grid, but our
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FIG. 6. The local exponent of the transit
time distribution (based on slopes of successive
points in the preceding figure) plotted vs 1/t.
Lower to upper curves correspond to decreas-
ing values of Pe. The local exponent appears
to extrapolate to the expected asymptotic
value of —1 —(Pe/2) (arrows) before the trend
is interrupted by the sharp rise and rapid de-
crease in the local exponent due to the finite-
size rebound shoulder and the ultimate finite-
size exponential decay.
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FIG 7 Transit time probability distribu
tion in combined dipolar Sow and difFusion
within a circle of radium 8=400 with the
source and the sink at x = T-20 using the prob-
ability propagation method shown are the dis-
tributions for the representative set of Peclet
numbers Pe = 1.6, 0.8, 0.4, and 0.2 (tallest to
shortest peak, respectively).
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purpose here is to explore general features for a variety of
ffow conffgurations, without resorting to delicate numeri-
cal algorithms.

To summarize, for combined dipolar convection and
difFusion in a ffnite circle, the key features of the transit
time distribution are as follows.

(i) Early time regime. The transit time distribution
rapi y rise'dly rises to a peak shortly after particles that follow a

h-direct trajectory ffrst reach the sink. In this and the ot-
er ffows considered below, the early time behavior de-
pends on the speciffc geometry of the ffow domain and
there are no general system-independent features.

(ii) Power law tail. -After the peak, the transit time dis-
tribution falls as a power of r, with an exponent that ap-
pears to depend on the Peclet number, but tends to the
pure-convection value of —', as Pe increases.

(iii) Rebound shoulder. A shoulder appears in the tran-
S1 1met t'me distribution at times comparable to the diffusion

2 2time across the system td-R Pe (R /D in physics
units).

(iv) Asymptotic decay. The transit time distribution de-

cays exponentially, with a time constant given by the
smaller of the diffusive value rz =0(R Pe) or the convec-
tive value t, =R /2.

Similar regimes of behavior also characterize the quali-
tative features of the transit time distribution for radial
Qow in an annulus. The experiments discussed in our
earlier paper [13]observed the power-law regime and the
beginnings of a cutoff; but did not have sufficient resolu-
tion at small values of tracer concentration to observe the
shoulder or determine the exponential decay constant.

C. Orientation distribution of the collected tracer

We have discussed the transit time distribution of a
t that reaches the sink without regard for the direc-
tion of arrival or, equivalently, where on t e sm e
tracer was collected. Such directional information might
provide a re6ned diagnostic tool about a tracer that sam-
ples speci5c regions of the pore space and fiow 6eld. We
now demonstrate that for a passive tracer that is uni-

formly released in a steady potential Sow between a

-1.0
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-1.6 ' —---———————
0.0000 0.0002

j / /
/ I
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FIG. 8. The local exponent of the transit
time distribution, based on slopes of successive
second-neighbor, fourth-neighbor, and sixth-
neighbor points in Fig. 7, plotted vs 1/t.
Lower to upper curves correspond to decreas-
ing values of Pe. The time range for which
power-law behavior occurs is t ~ 2000. For the
largest Peclet number simulated, the local ex-

ponent appears to extrapolate to value close to
before the trend is interrupted by the

3 t

sharp rise in the local exponent due to the
6nite-size rebound shoulder.



50 TRACER DISPERSION IN PLANAR MULTIPOLE PLOWS 4659

p(g)—= f "dtp(t, g)= —Pe 'f "dt (P„f,t)
io-' = —Pe

—1 (f),g)

102
(27}

103

io~
102

s i s&&sssl I I I I I I III I I I I I I I II
&o-' 10 io'

where n refers to the direction normal to the sink. In the
last expression in (27), the first derivative is a constant
and the second is simply the normal velocity of fiuid at
the sink. Hence

p(f) ~ tt„(g), (28)

FIG. 9. Transit time probability distribution in dipole 6ow
using the Snite ddference method, Pe = 0.5, 1.0, 2.0, 4.0, and
10.0, respectively, for curves whose starting points run from left
to right.

p ae a'e+ a'e
gy2 gy2

(25)

with boundary conditions (1—Pe 'BIB/}/=K at P —$0,
where K is a Pe-independent constant, and /=0 at P =P &.

The solution of Eq. (25) is

(26)

and the time integrated tracer flux arriving at the sink is

source and a spatially extended equipotential sink, the
time integrated tracer flux distributian at a given point
on the sink is simply proportional to the incaming fluid
velocity at this point, independent of Pe. (Note that the
assumption of a uniform tracer fiux at the source is ex-
tremely accurate if the source is nearly pointlike, as it
often is in practice, for then the fluid velocity is radially
outward and large at the source and the tracer simply
convects with the fluid. ) By the linearity of the transport
problem, this theorem implies that the spatial distribu-
tion of the collected tracer is independent of the overall
magnitude af the flow. While this implies that the rela-
tive accumulation of a tracer at different points along the
sink does not provide a useful diagnostic tool for the flow
field, a general equivalence between tracer distributions
for pure diffusion and for situations with both canvection
and diffusion is established.

To prove the theorem, we begin with the CDE written
in (P,g) coordinates in Eq. (24) and deflne

g(P, P)= Jo dt c(t,P, g) The sou. rce is taken to be

/=$0, and if the initial condition is that a 5-function
pulse of a tracer is injected at the source, then in the
equation of motion for g the time derivative term in-
tegrates ta zero, yielding

as claimed.
Notice that the theorem also holds in the pure diffusion

limit, as can be seen by taking Pe~0 either in the equa-
tion for g' or in its solution. In this case, the appropriate
statement is that p(f) is constant for a constant arc
length of the sink. Conversely in the limit of no diffusion
the theorem is obvious, because then tracer particles
remain on their initial streamline and the tracer flux is
simply proportional to the fluid flux. The nontrivial im-
plication is that in the presence of combined convection
and diffusion, the local flux is unchanged. Thus, in sim-
ple dipale flow, the time integrated flux at the sink is in-
dependent of the arriving angle and the Peclet number,
although the transient flux depends on both. Unfor-
tunately, the proof does not readily generalize to multiple
sources and sinks, because each of these would be associ-
ated with different values of P (i.e., a particular source-
sink pair is connected by a certain group of streamlines,
corresponding to a limited range of f},and the solution
of Eq. (25) cannot be written trivially as a function of P
alan e.

IV. MORE GENERAL FLOW CONFIGURATIONS

We have seen that simple dipole flows are character-
ized by a region of power-law decay of the transit time
distribution p(t)-t ", with n=T4. In this section we

consider more complicated fiows and again obtain
power-law decays, but in general with different values of
the exponent n. It is easily seen, however, that the value
of n is constrained to lie between 1 and 2. First, note that
all of the tracer eventually reaches the sink, because two-
dimensional diffusion is recurrent and the additional con-
vection always directs the tracer toward the sink and so

fo p(t)dt=l. Next, recall that the asymptotic power-
law decay would apply for t~ao in an infinite system
and there, as mentianed in the Introduction, the mean
flrst-passage time necessarily diverges: f0"tp(t)dt = ao.
The two integral constraints imply 1 & n (2.

A. Nonsymmetric dipole Bows

We first consider more general flows which originate
from multiple point sources or sinks, but where the veloc-
ity potential still has a nonzero dipole moment. The sim-
plest possibility, which also provides a substantive appli-
cation of the orientation theorem Eq. (28), is that of a
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point source in the presence of an in6nite line sink along
the y axis where the velocity potential /=0. This is
essentially "halP' the dipole problem. Correspondingly,
the streamlines resemble those in the left half of Fig. 2,
the angle-dependent transit times are half those of Eq.
(18) in the convective limit, and the transit time distribu-
tion has the same shape as that of the ideal dipole, except
that the time scale is halved.

The information provided by the orientation theorem
in this case is that spatial distribution of tracer on the y
axis is proportional to the normal velocity
u(O, y)=2l(l+y ). It is straightforward to verify this

resuit directly from the trajectories in the pure-
convection limit. Using the particle trajectories given by
Eq. (B3) for an inSnite system, for x =0 and e—+0, we
have tan8(x =O,y) =2y/(1 —y ). Thus the relevant
probability distribution function is

as required by the orientation theorem. This same result
holds in the complementary case of no convection, as can
be checked explicitly. For pure diffusion, the particle

(a)

FIG. 10. Streaadines for modi6ed dipole fiom configurations: (a) a source and two sinks, each symmetrically displaced in the y
direction; (1) a source and two sinks, both on the x axis; and (c) a source and a Snite line sink.
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concentration is given by

C(X,y, t)= je (x —a) +y ]/4Dt

4mDt
—[(x+a) +y ]/4DtI

f (30)

from which the time-dependent flux at lateral position y
along the sink is

j(x =O,y, t)= D-Bc{x,y, t)
()x y=0

Q ( p 2+y2)/4Dg
28

4mDt
(31)

By integrating this expression over all time, we again ob-
tain Eq. (29}. In fact, this equivalence for pure convec-
tion and pure diS'usion, together with numerical observa-
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FIG. 11. Transit time probability distribution in the convec-
tive limit for the fiow of Fig. 10(a): (a) trajectories emanating
from 8=0 and (b) trajectories emanating from 8=m.

tions of this same spatial distribution for combined
diffusion and convection, led us to the theorem. This sys-
tem provides a striking iHustration that the time integrat-
ed spatial distribution of the tracer is velocity indepen-
dent.

More generally, we have considered the tracer transit
time distribution for representative dipolar fiows given in

Fig. 10. We restrict our analysis of these cases to the
pure-convection limit in an infinite domain. Based on the
results of Sec. III, the inclusion of diffusion does not alter
the interesting and universal power-law regime of
behavior for the transit time distribution. For simplicity,
Srst consider a point saurce and two point sinks at sym-
metric lateral positions [Fig. 10(a)]. The resulting
streamline pattern exhibits a characteristic dipolar form
at large distances from the source and the sinks and a
stagnation point roughly between the two sinks. The
transit time distribution in Fig. 11 reSects these twa
features. The t /3 power-law tail in p(t} is associated
with the streamlines that are directed away from the stag-
nation point and the exponential decay of p(t} stems
from tracer particles that are initially directed toward the
stagnation paint. (Note that the power-law behavior will

dominate an integral aver angles. ) The power-law
behavior is universal because in all of these cases, at large
distances from the source-sink region, the streamlines are
indistinguishable from those of a pure dipole. Thus, ex-
cept for a small fixed correction associated with the
near-Seld region, the trajectories and transit times are the
same as a pure dipole. A more quantitative argument
along these lines will be presented below in connection
with higher multipole flows.

An example of flow with a point source and finite-
length line sink is shown in Fig. 10(c). The Sow Seld in
the vicinity of the source and the sink differs from that in
the previous example in that there are no stagnation
points, although the overall Sow is dipolar at large dis-
tances. The resulting transit time distribution shows the
generic early time peak and the t tail. With multiple
line sinks or with multiple sources, stagnation points and
their resulting exponential behavior would again occur.
For general patterns of sources and sinks, either pointlike
or extended, it is evident from this discussion that one
would find both power-law and possibly exponential de-
cay regimes for the transit time distribution, provided
that there is a net dipole moment in the flow.

B. Quadrapolar flows

Higher multipole fiows leads to a power-law decay for
the transit time distribution, which is characterized by an
exponent that is different from that in the dipolar case.
Consider, for example, quadrupole flow, arising from a
source of Sux 2Q at the origin and sinks of Sux —Q each
at x =+a (Fig. 12). The resulting transit time distribu-
tion in the convective limit, obtained by integrating
dr/dt =u{r), is given in Fig. 13. In this case, p (t) clearly
decays as t over nearly the entire time range, in ac-
cord with a prediction for fiows of arbitrary multipolari-
ty, which will be derived in Sec. IV C.

The corresponding distribution for combined convec-
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hand, the exponent of p(t) appears to depend on the
Peclet number [Fig. 15(b)]. The apparent nonuniversality
is evident in the graphs of p (r) themselves. The dichoto-
my in the behavior of the two types of quadrupoles is as
yet unexplained.

C. Flows of arbitrary multipolarity

The quadrupolar results suggest consideration of the
transit time distribution for a source-sink of arbitrary
multipolarity. We present here a simple argument that
relates the exponents of the transit time distribution to
order of the multiple moment. For an arbitrary distribu-
tion of sources and sinks q(r), the tu(o dim-ensional mul-
tipole expansion of the complex potential is

%(z)= fd2z'q(z')ln(z —z')1

2%
n

d z'q(z') lnz —p-l 2, ,
"

1 z'

2'
&

n z
(32)

FIG. 12. Streamlines for quadrupolar flow.
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tion and diffusion for various values of Pe, obtained by
probability propagation, is shown in Fig. 14 When both
convection and diffusion are operative, time reversal sym-
metry of the trajectories is broken and two situations may
be considered: (a) the quadrupole, which consists of point
singularities of strength ( —Q, 2Q, —Q) located at
( —a, O, a), and (b) the "inverted" quadrupole, which con-
sists of point singularities of strength (Q, —2Q, Q) located
at ( —a, O, a). The qualitative appearance of the transit
time distributions for these two situations with the same
value of the Peclet number is quite different. Following
the same analysis protocol as in the dipolar case, it is seen
that in the quadrupole system the transit time probability
appears to decay as t ' over a substantial time range
[Fig. 15(a)]. For the inverted quadrupole, on the other

r =u((= — -Nr 'sin(N8),d8 8
dr Bp

which can be reexpressed as

(33a)

-R ~ sin 2~~(N8) .
dt

(33b)

The transit time on such a trajectory is the time required
for 8 to vary between 0 and rrlN. If we neglect the small
time interval spent in the near-Beld region at the end
points and use the above approximation for the angular
velocity everywhere, the transit time is approximately

where z=x+iy and similarly for z'. For a 2 pole, the
leading nonvanishing term in the multipole expansion is
n =N. Therefore 4'-z and the corresponding stream-
lines are g=lm(I( —r sin(N8), for a suitable orientation
of the axes. In the convective limit, particle trajectories
are deSned by /=const. This constraint implies that
f(r, 8)=P(R,ml2N)=R, or r =R sin(N8), where R
is the maximum distance from the origin on the stream-
line. The angular velocity on such a streamline is

IO-"

~/(v d 8t=
0 d 8ldt

(34)

lO 6i

&O-' ~

To determine the transit time distribution, we must relate
the value of R to the initial angle of emission 80 at the
source. Suppose the source is at the origin and oriented
so that the long-excursion steamlines are associated with
8o~0. For r ~@, l((=R ~e sin8p~e 80 ol
eo-R . Thus the transit time probability distribution
1s

0 15 I I 1111111 I I I llllll

IO IO

d8o
p (&)=p(80)

1 d8o dR
2m dR dt

R
—2N —2

~
—{2N+2)/{N+2) (35)

FIG. 13. Transit time probability distribution in the convec-
tive limit for quadrupolar flow.

For example, for N=2 (quadrupole), the Sow Geld has
the four-lobed structure shown in Fig. 12 and the ex-
ponent of the transit time distribution is ——', . Another
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FIG. 16. Streamlines for the "five-spot" octupole flow.

tipole case upon making the substitution N~n/a.
Thus, for wedge Bows,

277+2ap(t)-t " with n= (Pe~oo) .
m+2a (37a)

A direct numerical integration of the trajectories for
several values of a confirms this exponent value. At very
long times, however, the distribution is cut off exponen-
tially due to the stagnation point at the boundary r =R.
In the opposite limit of pure diffusion in an infinite
wedge, it is well known [16] that the transit time distribu-
tion decays as

FIG. 18. Streamlines for "perturbed" quadrupolar flow.

particular, the mean transit time always diverges in the
convective limit for R ~~, as the general theorem cited
in the Introduction requires. In the diffusive limit the
mean transit time is finite when the wedge angle is less
than n/2 and the mean time is divergent otherwise.
Roughly speaking, in a suSciently narrow wedge a tracer
tends to diffuse to the walls relatively quickly, whereas a
fiow always advects some tracer out into the center of the
wedge, where a long time is required for it to reach the
sides, and narrowing the wedge simply focuses these
streamlines.

p(t)-r ' "~ (Pe~0) . (37b)
E. Flows in the presence of barriers

Although a power-law decay is found for both pure
diffusion and pure convection, the exponent is nonuniver-
sal and depends on both the wedge geometry and Pe. In

In the Seld, one often has impermeable barriers to Bow
in an otherwise permeable region [1]. A barrier can
significantly distort the streamlines of the fiow and modi-
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FIG. 17. Transit time probability distribution for the five-
spot flow in the convective limit.

l
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t
FIG. 19. Convective transit time distribution corresponding

to Fig. 18; note the crossover from quadrupolar (t ) to dipo-
lar (t ') behavior.
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I

!

FIG. 20. Streamlines for convection within an absorbing

wedge of opening angle ~/3.

fy the transit time distribution. We have considered two
extreme cases of barriers, which illustrate situations in
which such a major distortion does or does not occur,
asymptotically.

Consider first a case involving a "localized" barrier, in
which a source and a sink at x =El, respectively, are
separated by an impermeable barrier extending along the

y axis from b to +b —The un.perturbed streamlines,
which run more or less directly from the source to the
sink, must now detour around the barrier, and the early
time portion of p(t) is certainly altered. However, the
power-law tail is associated with the streamlines which
initially move away from the barrier and sweep around
the barrier at a large transverse distance from the end,
before reaching the sink. These large-distance stream-
lines are negligibly altered by the presence of the barrier
and one expects the usual dipole behavior to ensue. The
result can be seen quantitatively, and in a form easy to
generalize, by considering the complex potential.

To solve the finite barrier flow problem, consider the
conformal transformation z =ib (w+ 1/w)/2, which
maps the interior of the unit circle in the w plane into the
full z plane, with the unit circle in w mapped into the line

b~ Im(z) &—b. Thus the original problem in the z plane
maps into one of potential flow in w with a source and a
sink symmetrically located at w& z and an impermeable
circular boundary at !w! = 1. This is precisely the simple
dipole flow considered in Sec. III, with complex potential

(w —w, )(w —
w& )

4(w) =ln
(w —wz)(w —lz)

where w
& 2 are the image positions. At large z,

w ~ib/2z ~D, leading to

C3
% ~c)+c2w =c(+ (39)

z

where the c, are constants. Equation (39) is precisely the
asymptotic form of the potential for dipole flow and

therefore the dipole decay exponent applies at long times.
To illustrate a case wherein a barrier alters the asymp-

totic form of p (t), consider now a semi-in6nite imperme-
able barrier extending along the full negative x axis, with
a source and a sink above and below the barrier, respec-
tively. Again, the asymptotic behavior of p(t) follows
from the geometry of the far streamlines, which in turn
follows from the asymptotic behavior of %'(s). In this
case, the barrier is the same as a wedge whose sides are at
8=+m, and in analogy to Sec. IV 0 we map the exterior
of the wedge into the right half plane using the conformal
transformation w =z' . The barrier maps into the y axis
and the source and the sink lie somewhere in the right
half plane at w, z. The flow problem is solved again us-

ing the method of images, with a solution of the form Eq.
(36), but now with images N, z in the left half plane.
With this mapping, the z —+00 limit corresponds to
w —+ oo, whence 4~1/w =z '~ . Proceeding again by
analogy to the wedge arguments above, the asymptotic
decay of 4 is equivalent to a multipole of order N =1/2
and from Eq. (35}we have

p(t)~t ~' (Pe~DO) . (40)

A direct numerical integration in the pure-convection
limit confirms this power-law decay exponent.

Examples of crossover behavior can occur for a finite
barrier when, for example, the source and the sink are
very close to the center of the barrier while at the same
time being very far from its edges. While the ultimate
asymptotic behavior is that of a dipole, tracer particles
that initially head from the source toward the middle of
the barrier and then bend and wrap around it to reach
the sink are the same as those encircling a semi inPttite-
barrier and would have the behavior indicated in Eq. (40).
Furthermore, trajectories directed close to the center of
the barrier would pass near a stagnation point and would
be associated with an exponential decay in p(t). Thus,
for this geometry one has a power-law decay whose ex-
ponent crosses over from —', to —'„in addition to the ex-

ponential branch.
It is evident from these examples that there is no gen-

eral exponent that characterizes the decay of p (t} for all
barriers. On the other hand, it is equally evident that the
asymptotic behavior of particular cases can be worked
out by determining the analytic form of the velocity po-
tential and in favorable case inferred from a sketch of the
streamline s.

V. CONCLUSIONS

We have investigated the transit time properties of pas-
sive tracer particles in a variety of steady two-
dimensional potential flows between sources and sinks.
We have focused attention on a range of illustrative case
studies. In radial flows, the interplay between convection
and centrifugal diffusion leads to a nonuniversal power-
law decay of the transit time probability distribution p (t).
For pure 2 -polar convection, p (t) is found to decay as
t ' + ' ' + '. This was verified by a complete solution
of the dipolar problem and by consideration of the "criti-
cal" streamlines for the arbitrary case. There are also
strong orientation-dependent features associated with
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those subpopulations of tracer which are attracted to
stagnation points in the flow field. Furthermore, one has
regimes of exponential decay which may be associated
with stagnation paints in the interior of the flow domain
as well as its boundary. When diffusion is also present,
some of the generic features of the transit time probabili-
ty become more system specific. For spatially extended
sinks, we have shown that the spatial distribution of the
collected tracer is independent of the overall magnitude
of the flow field.

The practical consequences of this paper are that for
planar multipole Bows, the transit time distribution and,
in particular, its power-law decays, cutoffs, and shoulders
reflect the geometry of sources, sinks, and boundaries of
the porous medium in the manner summarized in Sec.
III B. A given power of t indicates a particular multipole
moment of the source-sink distribution, a shoulder indi-
cates rebounding from the boundary of the permeable re-
gion, and an exponential decay indicates stagnation
points in the flow. We hope that such obvious features of
the tracer distribution may permit one to characterize a
subsurface porous medium by relatively simple and inex-
pensive surface measurements. Commonly in porous
media studies one is interested in the effective dispersion
coeScients of the porous medium. We have argued that
these are entirely irrelevant for the generic features of the
transit time distribution, but instead manifest themselves
in various numerical coefficients in p(t}. We have not
studied this (weak) dependence of the transit time distri-
bution on effective dispersivity because other flow
configurations exist (e.g., core fiow} that are more sensi-
tive to these quantities.

There are several interesting directions that might be
suitable for additional investigation. First, it is most im-
portant to extend our predictions for multipole and other
flow configurations to three dimensions. Although the
full power of complex analysis methods are no longer ap-
plicable, the two-dimensional systems considered were
suEciently simple that alternative methods of study may
be available in three dimensions. Although we have ar-
gued that a planar porous medium is a viable starting
point, realistic media have a fully three-dimensional
structure. A change in dimension will certainly change
the values of power-law exponents and could well alter
some of our qualitative results as well. An equally
significant additional consideration is the presence of spa-
tial heterogeneities. One may distinguish two cases de-
pending on whether the disorder is strong enough to
qualitatively change the far-field behavior of the stream-
lines. If the number and the gross shape of the lobes in f
are unchanged, then it is evident from the arguments
above for composite sinks that exponents will not change.
In the other extreme, as in the semi-infinite barrier exam-
ple, a large-enough heterogeneity may alter the whole
streamline pattern and change the decay law. In addition
to providing a more realistic component to the modeling,
strong disorder may provide new qualitative features in
transit time properties.
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APPENDIX A: GREEN'S FUNCTION
FOR THE CDE IN AN ANNULUS

We solve for the Green's function in Laplace space for
the radial convection-diffusion equation

Pe —1, @x xo)
C C=

x 27Txp
(Al)

c & (x)= Ax "[I,(x)K„(a)—K„(x)I,(a)],
c & (x)= x "[BI„(x—)+CK„(x)], (A2)

with v=Pe/2. We now apply the remaining boundary
condition, together with appropriately matching the inte-
rior and exterior Green's function at x =xp, to determine
the unknown coeScients.

At x =R, the vanishing of the flux implies that

Pec&(R)
x =R (A3)

The first derivative c'& is found from the recursion rela-
tions

I = ——I +I K'= ——K —K
V v

v x v v —1 & v x v v—1 (A4)

Notice that in differentiating c'&, the factor that stems
from differentiating the factor xv is conveniently can-
celled by the term in Eq. (A4) that involves the Bessel
function of order v. Thus the derivative reduces to

c'& (x)=x"[BI,(x)—CK„,(x)]

and Eq. (A3) now gives

(A5)

R "[BI„,(R} cK„&(R)]= —R "[BI„(R}+CK„(R)].

(A6)

We therefore obtain

I„,(R) PeI„(R)/R —I„+,(R)
C =B =B . (A7)K„,(R) PeK„(R)/R —K„+,(R)

Using this in Eq. (A2) yields

with c(a)=0 and —c'+(Pe/x)c~„=a=0. Here the
derivative is with respect to dimensionless coordinates,
which have been rescaled by the factor &s/D. Since the
discussion that follows is consistently for Laplace
transformed quantities, the tilde and the Laplace variable
s are generally not written. The above differential equa-
tion has the standard form of Bessel's differential equa-
tion. The Green's function is therefore a superposition of
modified Bessel functions of both the first and second
kinds, I„Ix)and K„(x),respectively, because the range of
x is finite. Since the interior Green's function (defined for
a ~x &xo} equals zero at r=a, it can immediately be
written in a symmetric form that manifestly vanishes at
the inner circle. Thus
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c & (x)=B [I„(x)K„+&
(R )+K„(x)I„+,(R ) ] .

v+ I

(AS)

To fix A and 8, we first impose continuity of the
Green's function at x =xo. After simple manipulations,
the two components of the Green's function can be writ-
ten in the symmetric forms

c & (x}=Ax "[I„(x)K„(a)—K (x)I„(a)]
P(s) =

Xp

concentration vanishes at the small circle. ) Because the
initial probability is normalized to unity and all particles
that impinge on the circle r =a are absorbed, the Bux into
the small circle coincides with the Laplace transform of
the first passage or transit time probability p(s). Per-
forming the derivative and again using the Wronskian re-
lation Eq. (Al 1), we thereby find

I (xo)K +](R)+K (xo)I +](R)
I„(a)K„+,(R )+K,(a)I„+,(R )

(A14)

X [I„(xo)K„+~(R)+K,(xo)I„+,(R)]

c & (x)= Ax'[I„(xo)K„(a)—K„(xo)I„(a)]
X [I„(x)K„~) (R )+K,(x)I„+) (R ) ] .

(A9)
For the complementary situation of reaction at r =a and
absorption at r=R, the transit time probability to the
outer circle can be obtained from Eq. (A14) by the inter-
change a~R.

By integrating (Al) across the discontinuity at xo, the
last condition in the Green's function is

APPENDIX 8:PURE CONVEC. llON
IN AN INFINrra; 2D DIPOLE FLOW

I t 1
C0, C(

2&xp
(A 10) We wish to find the trajectories of particles advected in

the dipole velocity field

I (xo)K —i(xo)+K (xo}I i(xo)=—
one finds

Xp
(Al 1)

A= 1 1

I (a)k„+,(R)+K„(a)K„+,(R)
(A12}

Finally, the interior Green's function is given by

c&(x)= 1 x
2s xp

I (xo)K +&(R)+K (xo}I +l(R)
X I,(a)K„+&

(R )+K,(a )I,+ &
(R )

[I„(x)K„(a)—K„(x)I„(a}]

(A13)

From this interior Green's function, the Aux to the ab-
sorbing circle is given by j~„,=2nac'& ~„,. (We can
ignore the convective contribution to the Bux since the

where the derivatives are evaluated at x infinitesimally
greater than and infinitesimally less than xo, respectively.
In computing c', note that by (A4), there are contribu-
tions that are proportional to c itself, but these can be ig-
nored because. of the continuity of the Green's function at
x=xo. Thus we only need to retain the term in the
derivative where the order of the Bessel function is re-
duced by one. The relevant term for c'&

~ + is
0

Ax o [I„(xo)K„(a)—K„(xo)I,(a ) ]

X[I )(xo)K ~](R} K ](xo)I ~](R)]

while the relevant term for c'&
~

is
0

Ax o [I —i (xo )K„(a)—K —
&
(xo )I„(a)]

X[I (xo}K ~](R) K (xo)I +](R)]

For these relevant terms, we now impose the condition
Eq. (A10}. After several simple but cumbersome steps,
and using the Wronskian relation

2p'
tang =

(1—x —y )

or y= —cotp++1 —x +cot p
(B3)

is the equation satisfied by the particle trajectories. At
t=O we have x= —1+ecos8, y=esin8, e«1, corre-
sponding to the release of the tracer from a small circle
about x = —1 at angle 8, so that p =B+O(e) In order.

u=VQ, /=Re(%'), 4=in z+1
z —1

which is equivalent to the equations

B1( . Bf
By

'
Bx

with g =Im+ =tan ' . (B1 )
2g

1 x

The latter are the equations of a conservative Hamiltoni-
an system where x is a coordinate, y is a momentum, and

f is the energy. Our method of solution is to find a
canonical transformation to a coordinate-momentum pair
(p, q) whose transformed Hamiltonian K(p, q) is simple.
In the notation of Goldstein [17], we seek a generating
function F2(x,p} such that

BF2 BF2y=, q=, K=H
Bx Bp

with the special requirement K =p, so that the equations
of motion simplify to P =0 and q = l.

We first illustrate the method with the simple case of
pure radial fiow, where V=lnz and /=tan '(y/x). The
condition /=K =p implies y =x tanp =BF2(x,p)/Bx, so
that F2= —,'x tanp+f (p) and q= —,'x sec p+f'(p). Now
with K=p, P =0. Therefore p and hence y/x are con-
stants and the motion is along a ray from the origin. Fur-
thermore, q=l, leading to t=q= —,'(x~+y~)+ f'(p), or
r =2(t to), the ob—vious solution to r'=1/r.

Returning to the dipole case, we again wish to have
K =p so that
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for y to remain finite as p ~0 the plus sign in the second
equation is required. We obtain the generating function
from Eq. (B2) as

Fz(x,p) = —x cotp

+—,
' [xQcsc2p —x~

(x,y)

+csc p sin 'x sinp]+ f (p)

and the trajectories are

(B4)
(-i,o) (o,o) (&,o)

q=t=

=csc2(p)[x —cotp sin '(x sinp)]+ f'(p), (BS)

where the constant f'(p) is fixed by the initial conditions
on x and 8. As a check on these manipulations, the limit-
ing behavior for p, 8~0 is t~x/2 —x /6+0(p )

+f'(0), which can be verified directly. In general, the
trajectories are symmetric about the y axis, so the transit
time is

FIG. 21. Illustration of difFusive redistribution in the proba-
bility propagation algorithm.

so that the mean square displacements correspond to
diffusion. We have allowed for anisotropic dispersion
coefBcients D„„for generality. Finally, we have

t'=2t(x =0)=2csc2(p)[cotp sin 'xpsinp —xo] CO 0+C1 0+C 1 0+CO ]+CO —1 =CO (C3)

~ 2csc (8)[1—8cot8] .
e—+0

(B6)

For more complicated flows this method unfortunately
becomes too cumbersome to be useful. For example, for
a dipole inside a circle, the condition f=p is a quartic
equation for y and it is awkward to find F2.

APPENDIX C:
THE PROBABILITY PROPAGATION ALGORITHM

1[ci p c i p]=x f o] o, —]]=y (Cl)

so that the mean location of the probability is (x,y) and

(1—x) ci,o+x [co,i+co,o+co, —i}

+(1+x)c,p=2D„dt,
(C2)

(1—y) co, i +y [ci,o+co,o+c i,o]

+(1+y) co &
=2D~bt,

We are concerned with the probability distribution
c(r, t) that random walkers released from the source at
time 0 are at point r at time t. Suppose that at time t one
has probability c; (t):co for a—random walker to be at
site i, j on a two-dimensional lattice of spacing l. In time
h, t, this probability is first translated through a distance
hr=u(r)ht to a position (x,y), which is not in general a
lattice site, and then redistributed to the nearest-neighbor
sites of the new position. The redistribution rule is
chosen to ensure that the average displacement is hr and
that the fluctuation in displacement is constant. In effect,
the probability propagation method is a finite difference
calculation with a particular (physical) form of interpola-
tion.

Referring to Fig. 21, if we choose the origin of coordi-
nates (0,0) at the lattice site closest to (x,y), and for the
moment return to physical units, then we require that

to conserve probability. Notice that with five constraints,
five-site spreading is the simplest possibility; if more
spreading were desired, higher-moment constraints
should be considered as well. The solution of these equa-
tions is

cop=1 [x +y +—2(D, +D„)ht]/1

c& p
= [2D,ht+x(1+x) ]/21

c, o
= [2D,ht —x(l —x)]/21

cp &

= [2D~ht+y(l+y)]/21

c i p=[2D bt —y(l —y)]/21

(C4)

which should be applicable in the range )x ~, ~y ~
&1/2.

A surprising constraint is implied by these equations.
Taking D„=D„=Dfor simplicity and letting
d=2Dht/12, if x=y=l/2, then cop= —,

' —2d, while if
x =1/2 and y =0, then c, p

=
—,'(d —

—,
' ). Since c; J must

be positive, d =—, is the only possibility, and recalling the
definition of d, this constrains the space and time step
lengths. A further constraint is that the convection dis-
placement

~nest

~
should not exceed 21; the maximum ve-

locity occurs at one site from the source or the sink,
where u =Q/2ml, which leads to b t (4m 1 /Q. Combin-
ing the two constraints, one finds the bound Pe & 16! The
relatively strong bound could be avoided at the expense
of additional complication by using a variable-size lattice
or spreading to more than five sites, but we have not ex-
plored these possibilities. Another peculiarity of this al-
gorithm is that it does not always interpolate smoothly as
a function of x and y. For example, if the convection
point (x,y) varies from (n+ —,

' —e, O) to (n + ,'+ e, O), it is-
easy to check that c„.and c„+&. for j=0,+1 jump by
finite amounts. Despite these diSculties, the probability
propagation method has one distinct advantage—
extreme simplicity and ease of programming.
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APPENDIX D:THE REBOUND SHOULDER
FOR Dli FUSION IN i ilVil K DOMAINS

If the tracer is released near a sink in the presence of a
distant re6ecting boundary, then at early times, the dis-
tant boundary plays no role and the transit time probabil-
ity p (t) decays as t ~ in one dimension. Conversely, in
the long-time limit, p(t) decays exponentially in time.
While the analysis of these two limiting behaviors is
straightforward, there are subtle implications which arise
from the "rebound" of the tracer from the reflecting
boundary that are worth etnphasizing. Thus consider

IO

IO 2=

L

(a)

t)c t) c . t)c

t)t t)x 2 t)x
with c(0,t)= (l, t)=0 (D 1)

and with
0&a «1.
transform
the Sux or

P'(s) =

the initial condition c (x,0)=5(x —a) and
It is straightforward to solve for the Laplace

0'(x, s), from which the Laplace transform of
the transit time probability to the absorber is

cosh[(1 —a)~s ]
v

(D2)

lo-'=

lo-' lo-' IOO

A direct numerical inversion of this expression leads to
a transit time probability distribution that exhibits a
shoulder, shown in Fig. 22(a). We attribute this
enhancement to the contribution of probability density
which "rebounds" for the reflecting boundary. This in-
terpretation is based on Srst examining the limiting
behavior of p(s). For relatively short times, where the
tracer has reached the near boundary at x =0 but not the
far boundary at x =1, a « t «1, the relevant range of
the Laplace variable is s&&1, but a s«1. For this
range of s a Taylor expansion gives P(s)
—1 —ass —a s+, which leads to

IO

IO-4-

p(t)-t '", a'«t «1. (D3)

IOOIo-[

FIG. 22. Transit time probability distribution for the
diffusive rebound example in one dimension: (a) p (t) vs t and (b)
p(t)=t'~2p(t) vs t. This is a clear enhancement of the distribu-
tion relative to a pure power-law decay before exponential de-

cay sets in.p (t) e dt/4 (D4)

Precisely this power-law decay is seen in Fig. 22. Howev-
er, the ultimate asymptotic behavior is controlled by the
rightmost singularities of P(s) in the complex-s plane,
which, in this case, are the poles at ~s =him/2) This.
singularity structure leads to an asymptotic exponential
decay

Thus the short-time power-law behavior is ultimately
cut off by an exponential decay whose time constant is of
the order of the diffusion time to the boundary. At the
crossover between these two regimes, there is a relative
enhancement in the Srst-passage probability compared to
a simple crossover between the two asymptotic behaviors.
&n Fig. 22(b) we plot the quantity p (t)t ~ vs time to em-

phasize the power-law region as well as the strength of
the shoulder. The location of the shoulder at the
difFusion time to the boundary indicates that this
enhancement stems from particles that re6ect from the
boundary before being collected at the sink.
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