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In the frame of real-time Green's-function formalism a generalized Lennard-Balescu equation is
derived, which includes external 6eld effects to arbitrary 6eld strength as well as many-particle ef-
fects. This kinetic equation is gauge invariant and shows retardation effects connected with 6elds as
well as collisional broadening. Consistent with this treatment the dielectric properties in nonequilib-
rium are described by the generalized dielectric function. From the kinetic equation the Suctuation-
dissipation theorem is derived, which is strongly modi6ed in the presence of high 6eld strengths.
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I. INTRODUCTION

The problem of high-field transport in semiconductors
has played an important role the past 30 years. Semi-
classical studies are presented, e.g. , in [1]. With increas-
ing improvement of technological facilities the quantum
transport efi'ects have become more interesting [2]. The
size of modern electronic devices is becoxning continually
smaller while applied voltages remain the same. This
trauslates into very strong fields with rapid spatial varia-
tions. While the problem of high-field quantum transport
[3] in strongly inhomogeneous conditions is far from be-
ing solved at present, the problem of high-field transport
in uniform electric fields is more easily treated and some
progress has been made recently [4,5]. A further moti-
vation for the investigations of high electric fields is the
infiuence of strong laser fields to matter [6,7]. The inter-
actions of intense femtosecond laser pulses [8] give rise to
surprising new physics at this time scale [9,6,10,11].

In this paper an attempt is xnade to bring together
the high-field description of long-range Coulomb systems
and quantum kinetic theory. The aim of the study pre-
sented here is the following. It is shown in a systexnatic
way how dielectric properties and collision integrals can
be derived on a consistent level of the random-phase ap-
proximation (RPA). This will lead to a nonequilibrium
description of dielectric properties of long-range inter-
actions of fermions or bosons resulting in a quantum
Lennard-Balescu equation. Further, all these approxi-
mations are derived in the case of arbitrary high field
strength and are considered therefore as a generalization
of the theory, which was developed in [12]. First, a short
overview of the development of kinetic equations without
completeness is given.

The kinetic description, which started with the founda-
tion of Boltzmann's famous equation 120 years ago [13],
has been rapidly developed further &om important clas-
sical contributions made by Chapman and Cowling [14],
Enskog [15], Kirkwood [16), Bogoliubov [17), and Pri-
gogine [18) to quantum extensions, where the pioneering
work along these lines was done by Bogoliubov and Gurov
[19] and Mori and Ono [20].

The general starting point in deriving kinetic equa-

tions is the coupled set of equations of motion for the
reduced density operators. This set was first derived by
Irving and Zwanzig [21]. The formal structure is sim-
ilar to the so-called Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy [22] for reduced distribution
functions in classical statistical physics. The first to
use this BBGKY hierarchy in deriving kinetic equations
were Bogoliubov [17], Born and Green [23], and Kirk-
wood [16]. The quantum Boltzmann equation differs
&om the classical one in the collision term, which takes
into account that the final scattering states can be oc-
cupied and consequently blocked by the Pauli exclusion
principle. Moreover, the quantum-mechanical transition
rate is used rather than the classical one. Of the var-
ious other extensions proposed for the ordinary Boltz-
mann equation, the works of Klimontovich and Kremp
[24] and McLennan [25] should be mentioned, which treat
quantum gases with bound states. For a comprehensive
overview see [26].

The most powerful and elegant techniques to describe
the entire region of density and temperature as well as sit-
uations far &om equilibrium, where linear response fails,
is the method of the quantum-statistical Green's func-
tion. It was introduced in 1955 by Matsubara [27] for
describing many-particle systems. The Green's functions
used by him are also called imaginary-tixne Green's func-
tions because their time arguments are only allowed to as-
sume purely imaginary values. For this reason, they can
only be used to describe equilibrium systems. In 1959,
Martin and Schwinger [28] introduced Green's-function
techniques for the description of many-body systems. As
a starting point they constructed a hierarchy of equa-
tions of motion for the imaginary-time Green s functions,
nowadays known as the Martin-Schwinger hierarchy.

A few years later, in 1962, Kadanoff and Baym [29]
presented a coxnplete transport theory based on these
many-body techniques. An important component in the
construction of this transport theory was an analytic con-
tinuation of the Green's function from imaginary times
to real times. This step was necessary to describe non-
equilibrium situations.

At about the same time Schwinger [30] initiated the use
of real-tixne Green's functions. These functions are de-
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fined on a directed contour and sometimes are also called
path-ordered Green's functions. Both Keldysh [31] and
Craig [32] used this concept and formulated, with the
help of perturbative methods, a Dyson equation. The
real-time Green's functions allow the properties of many-
particle systems to be investigated in a ground state, in
a finite-temperature equilibrium state, and in a nonequi-
librium situation, in a consistent manner. Applications
of real-time many-body methods range from problems of
quantum chromodynamics [33], through nuclear physics
[26,34—36], to theory of liquid helium [37],physics of plas-
mas [38], physics of condensed matter [39], astrophysics
[40], and cosmology [41]. Thus it is indeed the most gen-
eral formalism of many-particle theory we have today.

The outline of the paper is the following. A brief
rederivation of the basic equations appropriate for the
coupling of high electric 6elds is given in Sec. II. The
main problem is to formulate the gauge-invariant equa-
tions [42—44]. This is done in Sec. IV, with the result of
easily applicable rules.

Once the general equations are laid out, the self-energy
has to be determined, which is the central quantity in
the theory. Kadanoff and Baym [29] introduced the two
fundamental approximations, the so-called screened po-
tential and the T-matrix approximation, which are still
the basic equations of nonequilibrium Green s-function
technique. Any subsequent studies merely provided an
alternative derivation either of the kinetic equation it-
self or of the T-matrix equation, the most elaborate of
which was given by Danielewicz [45]. This derivation
mostly based itself on a simple approximation by means
of a perturbation series. However, in doing so, it was not
clear what this approximation implied for higher-order
Green's functions. This method was extended by Kremp,
Schlanges, and Bornath [46,47] and later on was used by
Danielewicz [48] as well as Botermans and Malfhet [26].
For the screened potential approximation a general treat-
ment was given in [49], yielding a generalized Lennard-
Balescu equation.

The aim of Sec. III is to show how the screened poten-
tial approximation can be generalized to include arbitrar-
ily high external electric fields. Sec. VA then presents
the resulting general kinetic equation. This kinetic equa-
tion is valid for interacting particles in arbitrarily high
electric fields describing the long-range density fluctua-
tions. The explicit non-Markovian behavior of the re-

sulting collision integral is a generalization of the 6rst
Born approximation to an infinitesimal sum of interac-
tions. This is an extension of the results in [12] and [49].

H = ) dr 4,*(r, t) H;
~

—.7', —-A(t)
~

C, (r, t)
fh e

e )
1

+—) drdr )I(;. (r, t) 4'(r, t)
)2

x V;,.(r —r) 4', (r, t) 4, (r, t) .

With Coulomb interaction V

e ZZ'
V;~(r —r) =

A. De6nition and equation of motion

In order to describe correlations in highly nonequilib-
rium situations, we de6ne various correlation functions
by different products of creation and annihilation opera-
tors

(2)

Here the () denotes the average value with the unknown
statistical nonequiLibrium operator p and the numbers

(1,2. . .) correspond to the variables (r, R, s, ..., t).
From the above de6nitions we can build a causal func-

tion with the help of the step function 0,

g(1, 2) = O(tg —t2)g (1,2) —O(t2 —tg)g (1,2). (3)

Furthermore, it is useful to introduce the retarded and
advanced values

g'~ (1,2) = +0[+(tg —t2)] [g (1,2) —g (1,2)]. (4)

Instead of determining the nonequilibrium statistical
operator we follow another concept of statistical mechan-
ics and use the equation of motion of the creation and
annihilation operators to derive kinetic equations, which
may be solved with the appropriate choice of boundary
and initial conditions. Applying the equation of mo-

tion for the field operators in the Heisenberg picture,
one 6nds the famous Martin-Schwinger equation hierar-
chy [28], where the one-particle Green's function couples
to the two-particle one, etc.

A formally closed equation can be reached with the
introduction of the self-energy

d2V 1 —2 g2 12, 1'2+ = d1Z 1, 1 gg 1, 1'

II. REAL- TIME GREEN'S-FUNCTION
TECHNIQUE

The self-energy can be split into two parts [46]:

Z(1, 1') = ZHF(1, 1') + E(:(1,1')

with the so called Hartree-Fock part

We want to consider a system of charged particles of
fermions or bosons under the influence of an applied con-

stant electric field. Coupling of the field in vector poten-
tial gauge we have the Hamiltonian

+iV(r —r )g~(r t r't') b(t —t')
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and the correlation part

Zc(1, 2) = O(tz —t2)Zc(122) —O(t2 —tz)Zc(1, 2). (8)

In order to obtain solutions and the way of integration
it is necessary to specify the initial conditions. In many
physical situations, the condition of weakening of initial
correlation is an appropriate choice

lim g2(121'2') [g, d, +, ——g(ll')g(22') —g(12')g(21') .

(9)

tion (3), the Kadanoff-Baym equation [29,31] is obtained

t (9 [-", (I)'g —-'A(tg)]~ )
g~(1, 1')

dt'1ZHF(T12 r). 1 tl)gy (rl1 tl'1 )

dl [Z~~(1, 1) —Z~+(1, 1) gP (1,1')

I

dlZ~+(1, 1) g~+(1, 1') —
gq (1,1')

From this condition we get

dlZc(111)g(1, 1')
C

dl Z, 11g11' —Z, 11g 11' . 10

It is easy to see that the boundary condition is fulfilled
since the contribution (10) vanishes in the limit tz

—oo. For the case t z ( t ~ we can write, e.g. ,

Subtracting this equation from its conjugate and intro-
ducing Wigner coordinates T = (tg + t2)/2, 7. = tg —t2,
etc. , we finally obtain the time diagonal part for space
homogeneous systems [50]

8
i fear(p, T)

0
dr(gr (p, r, T ——), B~ (y, r, T ——))—2) E 2

g& p, 7-, T ——,Z~ p, —7-, T —— . 14

dl (Z(1, 1)g(l, 1') —Z+ (1, 1)g+ (1,1'))
t,y Ci

Z (1,1)g (1, 1') + Z+(1, 1)g+(1,1')
—OO Ci

+ Z (1,1)g (1, 1') — Z+(1, 1)g+(1,1'),
—OO

Here f~(p, R, T) = pig+ (p, R, T, 7 = 0) denotes
the Wigner distribution function and (, ) is the anti-
commutator over integrals of Wigner coordinates indi-

cated on the right-hand side. This equation is exact
in time, but according to the assumed space homogene-

ity we used gradient expansion for space variables and
dropped all R dependence for simplicity.

which vanishes for tq ~ tq —+ to ———oo. If we split the
last integral on the right-hand side of (11) into two parts
according to

I

dt's = dt's + dt's ,
1

a contour of time integration follows that is equal to the
Keldysh contour. In other words, this means that the
weakening of initial correlation, which breaks the time-
reversal symmetry, is equivalent to the Keldysh contour
integration. With the expressions (5) and (10) we can
finally write the first equation of the Martin-Schwinger
hierarchy in the form

( 8 [-",. Vg —-', A(ti)]i + * ' g~(1, 1')
( (9ty 2m

= b(1 —1') —i d2V(1 —2)g2(121'2+)
C

dlZ (1, 1)g(1,1')
C

B. The Langreth-Wilkins rules

With the help of (9) it is possible to establish useful al-
gebraic rules known as Langreth-Wilkins rules, which de-
scribe the way to obtain correlation or retarded functions
&om causal ones. They were first developed by Langreth
and Wilkins [51]. For example, if we have products of
Green's functions and integration over inner variables

C(1,2) = f dlA(1, 1)B(1,2),

we can show that, with the help of (9), the following rules
can be obtained, building up correlation functions &om
(»):

C (1,2) = dlA"B + dlA B

C' (1,2) = J dlA B'
Using these relations, one can derive the following gener-
alized Kadanoff-Baym equations from (12) by using the
inverse interaction free Green's function go [50]:

d1 Z 1, 1g 1, 1 —Z 1, 1g 1, 1'

(12)

With the help of the definition of the causal Green's func-

g —ReZ, g
()= Z~, Reg +-(g~, Z~)

--(g' Z )2
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Here [, ] and (, ) denote the commutator and anti-
commutator of integrals (15), respectively. This result
is a compact written form of the KadanofF-Baym equa-
tion. Nevertheless, it is sometimes advantageous to use
this operator notation in order to investigate properties
beyond the quasiparticle picture [26,52,53]. From this op-
erator equation it is possible to derive the time diagonal
equation (14) as well [50,5].

III. DENSITY' FLUCTUATIONS

In order to describe Buctuations in the nonequilibrium
many-particle system in terms of Green s functions, it is
useful to introduce the correlation function [49]

(bp(11+)bp(22+)} = iL (12) = iI (21). (23)

Apart fmm the density Buctuations, it is also useful to
consider the field Buctuations, which may be expressed
in momentum space as

gE(I) = —i ' hn(k).

For these Buctuations it is useful to define a symmetrized
correlation function by

I(12) = O(ti —t2)L (12) + O(t2 —ti)L (12). (22)

It follows immediately that the correlation function of
density Buctuations is given by

L (121'2') = i[g2(121'2') —gi(ll')gi(22')].

The density Buctuation is given by

(19) (bE(1)~E(2)} =
2

[(~E(1)~E(2})+ (~E(2)~E(')}]

e'k' L~ (12) + L~ (12)
(24)

bp(11') = 4+(1')@(1)—(4'+(1')2I2(1)).

Now we consider the special function

L(121+2+) = L(12),

which may be written as

(21)

In order to derive an equation of motion, we apply the
differential operator &om the Martin-Schwinger hierar-
chy to the definition of L (19). With the help of the sec-
ond equation of the Martin-Schwinger hierarchy, which
couples the two-particle Green's function to the three-
particle one, we obtain the following equation for L:

—i i + ' ' L(121'2') = h(l —1')G(22') —b(1 —2')G(21') —8(1 —1')G(22')
( (9 [-",. 7'i —-'. A(ti)]' )

(9ti 2m )
+G(22') d3V(13)I (131'3+)+ d3V(13)G(33+)L(121'2')

+1G(11')G(22') f d3V(13)G(33') —~' f d3V(13)G3(1231'2'3 ). (25)

Instead of taking into account binary collision, which de-
scribes short-ranged potentials, we are now interested
in systems where long-ranged Coulomb potentials are
important. Therefore, other approximations are neces-
sary, which take into account collective effects (shielding).
Such effects can be described in a convenient manner in
terms of the defined Buctuation quantities. Therefore,
let us consider the three-particle Green's function in the
approximation [49]

iGs(1231'2'3+) = iG(11')G(22') G(33')
+G(11')L(232'3+) + G(22') L(131'3+)
+G(33+)I,(121'2'), (26)

which describes the three-particle interaction for all pos-
sible two-particle Buctuations. This approximation will
turn out to be the RPA approximation. For the equation
(25) of L we now obtain a closed equation

-"V —-A t
)I (121'2'

~
39ti 2m

The occurring integrations should now be specified and
the appropriate solutions selected. Therefore, the con-
dition of the weakening of the initial correlation (9) is
rewritten by the definition of L (19) into the form

L(121+2+)~2,
——PiG(12+)G(21+) = Lo(121+2+).

(28)

The equation (27) of motion for L can then be solved by
neglecting higher orders of interaction in the following
manner:

L(421'2') = L()(421'2'} + L() (411'1+)V(13)L(232'3+ }.

We note the special case of Eq. (29) for the two-point
function (21)

L (12) = Lo (12)b + ) L() (14)V '(43)L' (32).

= —ib(1 —2') G(21')

—i d3V 13 L 232'3+ G 11' . (27}

The different kinds of particles have been explicitly
marked by latin letters. Obviously, the relation I o
holds true. In the following, we will drop this notation for
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L = Lo + Lo VL + Lo VL

/(~) LR/(A) + LR/(A) VLR/(A)
0 0

(31)

Using the second equation one gets &om the first equa-
tion the optical theorem

L,& —
( &)—iL,&(e&)—i (32)

where we introduced the operators of retarded and ad-
vanced dielectric functions, whose most general form in
many-particle theory is given by

simplicity and remember the right notation at the end.
Equation (30) is a causal one, which means that all

functions entering are causal ones. Therefore, we can
apply the Langreth-Wilkens rules to end up with

kinetic equation. One fundamental problem is the in-
clusion of all field sects and approximations for many
particle efFects which do not touch the validity of the
obtained equations to any field strength. It is known
that the gradient expansion in time corresponds to a lin-
earization of fields [56]. To get an unambiguous way of
constructing approximations we have to formulate our
gauge-invariant theory. This can be done by following
a procedure known from field theory [42] and applied to
high-field problems in [43].

One can introduce a gauge-invariant Fourier transform
of the diff'erence coordinate x,

dx
(27rh)4

(i l e
xexp — dA z„[k"+ —A"(X + Az)]

1 AC )
xg(zX). (36)."=1—L", V =1+VL"

= 1 —VLO ——1+L V.

(33)
For constant electric fields, which will be of interest in
the following, one obtains, for the generalized Fourier-
transform,

The discussion of this nonequilibrium dielectric func-
tion and the resulting instability can be found in [54,55].
At this point we see that from the RPA equation (31)
no initial correlation terms follow. This means that
the condition of weakening of initial correlations (28)
may be poor in the case of particle-plasmon interac-
tions because there one needs an additional equation for
the nonthermal plasmons [10,6]. Here we are restricted
to particle-particle interactions and the corresponding
density-density Buctuations in arbitrary high fields.

With the help of all these tools we are now able to write
down the form of the self-energy. From the definition of
L in (19) and the introduction of self-energy (5), one sees
that the following relation holds true:

g(k, X) = egi ~" "'
~g(z, X),

(2z h)4

where the y function was chosen in such a way as that
the scalar potential is zero A" = (0, cET). T—herefore,
we have the following rules in formulating the gauge-
invariant kinetic theory: (i) The difference variable z
Fourier transfors to the canonical momentum p. (ii) The
momentum shifts to the kinematical momentum accord-
ing to p = k —eET. (iii) The gauge-invariant functions

g are given by

g(p, T) = g(k —eET, T) = g(k, T) = g(p + eET, T).

(37)

We will make use of these rules in the following sections.

d2V 12 L 121'2+ = Z' 12 G 21' . A. Free particles in a uniform electric field

Here Z' denotes the self-energy minus the Hartree part.
The Fock part can be split further to obtain the corre-
lated self-energy

Z'(12) = Z, (12) + iV(12)g&(12).

The required correlation self-energy is then easily derived
in the following way:

Z~~(11') = i) fd2dg'Vg(12)L~~(2'1')V (2'1')g~(11 ).
C

This expression will serve as a starting point for discus-
sions in Sec. V, where we derive kinetic equations with
Geld dependence.

We want to consider next the retarded Dyson equation
for a particle in a uniform electric Geld, where the field

is represented by a vector potential E(t) = —c A(T)

i——e p —-A(t) g,"(p, tt') = b(t —t').
Bt C

(38)

For &ee particles corresponding to parabolic dispersions
the gauge-invariant spectral function [5,57] follows:

This equation is readily integrated [5,57]

t I

go (p, tt') = —ie(t —t')exp i du e[p —A(u)] . —
t

(39)

IV. SPECTRAL PROPERTIES

In order to describe high-Geld eKects and many-particle
behavior correctly, it is necessary to determine the right

1 ( k' e'E'
dio(k, (d) = 2 drcos-

2m 24m
2n. . Kk2/2m —Furl

eE ( eE )
(40)
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A Ic /2m —Ru —her

R d4) &E

ge (k, ur) =—
27i EE ALO —ZC

(41)

Applying the Airy function orthogonality [59], the fol-
lowing relation holds true:

where Ai(x) is the Airy function [58] and we defined
(It e E~/8m)~~ .It is instructive to verify that

(40) satisfies the frequency sum rule.
Let us return to the interaction-free retarded function

(39). In frequency space, it reads

which means that (45) is an exact form of the inverse
operator of retarded functions including any interaction,
whereby no approximations were made. The problem is
merely to Bnd the function itself, since the knowledge of
the retarded one provides the spectral function and thus
the spectral properties of the system. It can finally be
stated that the form of (45) is easily written in gauge-
invariant form (see Sec. IV), which is as well an exact
relation

—Z (kR(uT),

k~
ct)A ——+ z62'

= go (E = O, k, ~). (42)

B. The quasiparticle picture

This means, in other words, that the interaction-&ee but
field-dependent retarded Green's function go can be ob-
tained &om the interaction-&ee and field-&ee Green's
function by a simple Airy transformation. This is an
expression of the fact that the eigenfunctions of the
Schrodinger equation with constant electric Beld are Airy
functions and the retarded functions (4) can therefore be
diagonalized with those eigensolutions [60,43].

where all quantities are then gauge invariant. It is not
possible, however, to derive the required inverse of this
form simply by inverting the right-hand side and consid-
ering the &equency singularity placed on the upper half
plane corresponding to the retarded character. As we

demonstrated in Sec. IV A, this would merely yield the
interacting yet field-&ee spectral function. Instead, we

have to transform additionally with the Airy transforma-
tion to get the correct Beld-dependent spectral function
(42).

With the help of this procedure we include now the
many-particle effects in the quasiparticle picture. There-
fore, we follow a standard procedure for the field-free
case. With conventional gradient expansion, one can in-
vert the field free D-yson equation (43) directly and ob-
tain in the second-order gradient expansion the spectral
function

Next we want to include collisions, which can be done
by the Dyson equation with self-energy

(-", V'g+ eEtg)2 I

zh g (1, 1')
(9tg 2m )

= g(1 —1')+j dlE (1,1)g (1, 1) . (43)

1 0 . 0= — ih- —ih—
2 OT 07

[-",. -'V —-", V„—eE(T ——)]2
+ b(T)b(r).

2m
(44)

Here we have introduced %igner coordinates following
v = t —t and T = (t + t) j2. If one adds the conjugate
equation, one Bnds in the momentum-&equency domain

+eET 2

( R) —1( ~T) ~jj
(p ) ZR(pR(dT)

2m

(45)

Prom this equation it is now possible to derive an exact
solution for the inverse retarded Green's function. First
we see from (43) the following form of the inverse func-
tions, which may be understood as operators in space-
time when the internal integration is performed:

(g ) '(rR7.T)

az=o (per RT)

ImZ (p(uRT)

[~h —~ —ReZ (p~RT)] + [-'ImZ(p(uRT)]

(46}

For small imaginary parts of self-energy, and conse-
quently small damping, the b function introducing the
quasiparticle picture is derived

a@ 0(purRT) = 2mb
~

+ReZ (p(JRT)
~(2m

27r

~1 —c) Rez(p(dRT)
~

(47}

with the quasiparticle energy e, which can be found from
(47) by the dispersion relation

2

~h — —ReZ (p~RT) = 0.p R
2m

{48}

This is the required approximation for the many-particle
inQuence.

As long as it is justified to introduce a quasiparticle
picture by vanishing damping, we find the field free spec--
tral function as a sharp peak around the quasiparticle
energies, which are now independent of u This means.
that we can apply the transformation (42) to obtain the
field-dependent spectral function including many-particle
in8uences. In a convenient time domain one finds



50 THEORY OF FLUCTUATIONS IN HIGH ELECTRIC FIELDS 4631

i ( e'E'
aE(krRT) = exp ——

~

ear +
24m

or in &equency space

. (I
a@(ku)RT) = —Ai

~

—(u)h —es)
i

e@ (e@ )
(49)

C. The problem of the ansatr

In order to close the kinetic equation (14), it is neces-
sary to know the relation between g and g . This prob-
lem is known as an ansatz and must be constructed con-
sistently with the required approximation of self-energy.
The conventional way to do this is to change the correla-
tion functions into the generalized distribution function
and into the spectral one, which is an exact transforma-
tion

g = gaia(gxuRT)F(gxuRT),

g+ = ia(~RT) [1 p F(pur RT)],
(50)

where the spectral function is known from Eq. (49).
Assuming the conventional ansatz, i.e., to replace the

u dependence of the distribution function by its quasi-
particle value corresponding to the Wigner distribution
function fw, we get, for g(,

g (k~RT) = gaia(kurRT) fw(kRT).

This is quite good as long as the quasiparticle picture
holds true and no memory effects play a role. As we noted
&om the discussions made following the gauge invariance
in Sec. IV, the formulation of kinetic equations with high
fields are basically connected with a careful formulation
of retardation times. Therefore, the simple ansatz called
the KB ansatz, will certainly fail.

Another obscure discrepancy is the fact that with the
old ansatz, one has some minor differences in the re-
sulting collision integrals if one compares it with the re-
sults &om the density operator technique. With the old
ansatz, one gets just one-half of all retardation times in
the various time arguments [50,5]. This annoying dis-
crepancy had remained obscure until the recent work of
Lipavsky et al. [61].

I

with k = p —eET. This is the main result of this sec-
tion. The derived spectral function will be called a joint
spectrol function, according to [57]. It is the natural gen-
eralization of the quasiparticle picture to high-field sit-
uations and takes both efFects into account: the gauge
invariance and the many-particle influence. It might be
informative to note that the dispersion relation (48) itself
is gauge invariant.

Lipavsky et al. [61] give an expression for the g( func-
tion in terms of expansion after various times. Using only
the first term, we can write, in Wigner coordinates,

g((k, T, r) = pifw
i

k —,T ——
~

&(k)r)T) ~

(
2 2 )

(53)

g )( kT, r) =i 1p fw
~

k — T ——
l A(k, r, T).

,E
2

' 2)
In the end, we can use the joint spectral function derived
in the Sec. IV B (49) to obtain the resulting ansatz valid
for any applied electric Beld strength

i ( e'E', 'I
g (k7 RT) = piexp ——

~

esr +
24m

xfw~k—
2

' ' 2) (54)

In order to get xnore physical insight into this ansatz we

transform it into the frequency representation

OO

g (k~RT) = p i2 drcos —(her —e(k, R, T)r
0

g&E&

By neglecting the retardation in fw we recover the or-
dinary ansatz (51) with the spectral function (49); see
also (40). The generalized ansatz takes into account his-
tory by an additional memory. This ansatz is superior
to the Kadanoff-'Baym ansatz in the case of high exter-
nal Belds in several respects [55]: (i) It has the correct
spectral properties, (ii) it is gauge invariant, (iii) it pre-
serves causality, (iv) the quantum kinetic equations de-
rived with Eq. (18) coincide with those obtained with the
density matrix technique [50], and (v) it reproduces the
Debye-Onsager relaxation efFect [62] .

V. FIELD-DEPENDENT KINETIC EQUATIONS

With the help of the gauge invariant forxnulation of
Green's function (Sec. IV), we can write the general ki-
netic equation (14) in the gauge-invariant form

(p, T, r) = gi fw
~

p, T ——
~ A(p, r, T).(

2)
The 0KB ansatz of Lipavsky is an exact relation if the
self-energy is taken in the Hartree-Fock approximation.
M¹ing into account the requirement of gauge invariance
(Sec. IV), the GKB ansatz Snally reads

i f(k, T)+eE.%sf(k, T) = dr g i
k — r, r, T ——~, Z

i
k — r, —r, T ——

~

—jg
0 ) ( eE ri ( f eE

2
' '

2&
'

2 ' ' 2) +
' +

(56)
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where all functions are now gauge invariant. In Sec. V A we will show the explicit form of the kinetic equation obtained
with the help of the derived fIuctuation approximation.

A. The generalized random-phase approximation

As already been obtained in Sec. IV, the collective efFects caused by long-ranged Coulomb potentials can be described
by fIuctuating quantities. We obtained the expression of self-energy in the shielded potential approximation for the
RPA Eq (35). It is now quite simple to introduce this form in the generalized kinetic equation (56) and consider

the gauge-invariant correlation function g+ &om (54). The resulting collision integral can be written in the following
manner, where we have used a saddle-point approximation for the inner fast oscillating time integration:

OO

I (k, T) = ) dr h(k +ks —k' —ks)
Q 2 jr

x(f(k")f(k")[1p f(k')][1 p f(k')] —f(k') f(k')[1p f(k")][1p f(k")]}
esE ~ ) esE &

xRe V:s ks —k„e( k', —
2 )

(, esE l ( esE &
xVi' k' —ko, e

I "s r
I

~
(

ks — r I, T'
s 2

E (k e kses k'e' kses't
xexp —i e k + e kg —t' k' —~ k& v —— +

2 I, m ms m' ms)
(57)

Again, the shorthand notation f(k') = f(k —eEr, T—
r) is used. Furthermore, it was useful to introduce the
shielded potential in the following way:

) (es) 'V, =V

) v..(.:,)-'=v:,".
(58)

We see that the Geld inQuences the collision integral by
two main points. First, it widens the b distribution of en-
ergy conserving to an oscillating part ~2 and second,
some retardation occurs, which causes a non-Markovian

[

behavior of the collision integral. To summarize, this
Beld-dependent collision integral contains two important
effects: (i) collisional broadening, which is a memory ef-
fect also existing in the zero field case [52,63], and (ii) the
intracollisional Geld efFect, which is determined by Geld-
dependent two-particle dynamics [62,55]. These field ef-
fects can be estimated by introducing a relaxation Geld

[64,62,65,66].
The derived Lennard-Balescu collision integral (57) is

a generalization of the known one (see, e.g. , [12]) to arbi-
trary external Gelds as well as including memory efFects.
The latter one are discussed in another paper [53].

It must be especially pointed out that the dynamical
behavior in V, is infIuenced by the Geld. If we neglect
the center of time retardation in V„we get just the Born
approximation, but with the static screened potential

1, , eEr' (k ks
x dr2cos — (e~ + es —e~ —~' ) s—r

~

+
2 (m

x (fafs(1 —f )(1 —fs) —f fs(1 —f')(1 —fs)}~„,E~T, ~l

k'

(59)

This equation was investigated for high-Geld problems in
[50,67] and was first derived by Levinson [68] for elec-
tron phonon interactions by the density operator tech-
nique. Other authors have redeveloped this result by the
Green's-function technique [69,44]. This field-dependent
Boltzmann equation is most commonly used in integral
form [70], where it is named the Barker-Ferry equation
[5]. In [4] it was shown that this equation reduces to
the semiclassical Boltzmann equation for very high Geld

I

strengths.
Similar kinetic equation were derived for a pulse ex-

cited semiconductor transport [7,10,6]. Without the used
saddle-point approximation one retains with double time
integrations [71]. There an additional damping is intro-
duced to ensure convergence. It can also be found in the
generalization of magnetic fields in [72,73]. Further it is
interesting to remark that this equation fulfills the global
energy conservation, i.e., the sum of the kinetic and the
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correlation energy [52,63].
The explicit discussion of the dielectric function using

the GKB ansatz is given in [55]. The field dependence
of the collision integral (59) leads to a relaxation field
diminishing the applied electric field, the quantum re-
sult of which is given analytically in [62]. The solution
of the field-dependent kinetic equation and its applica-
tion to high-field transport in plasmas can be found in
[74,75]. Among these results an optical bistability can
be observed [54]. If the field dependence is switched off,
memory eEects will remain due to the retardation, which
leads to a modification of the transport properties [52,53].

B. The fluctuation-dissipation theorem arith Belds

Sometimes it is useful to have another form of collision
integral. Therefore we do not apply the optical theorem

I

(32) in (35), but rewrite the function L+ in the following
way:

0 1 1
L = (L— +L ) p (L— —L )2 2

e2k2= (bE(1)bE(2)) y Im L (60)

Here we made use of the definition of field Buctuations
(24). Remembering the relation between the dielectric
function and the fluctuation L (33), one recognizes

V Im L = Im(e )
Finally one finds

L~ = [(bE(l)bE(2)) p Im(e ) ] —. (61)

It is now possible to express the general collision integral
(56) with the help of (35) and (61) in the form

dp/ dpllI (k, T) = ) dr b(k —p' —p") V (p')
s

2nh s

E '
x2Re exp —i e~k +&~p" & — 7 EEp, p'y 7)T &p ~k*

2m
m

+&m(a5) '
(t ', —., & - -) (f.(h') (t+ f.(t "')) + f.(t "*)(t~ f.(h')) ) (62)

From this form one deduces in thermodynamic equilib-
rium, in which case the collision integral vanishes, the
following condition for fermions or bosons:

0 = tt ~ ~

(bEbZ)(tt', ru —a)taah (/2~b ),/2~b) 2kT i

—Im(e ) '(p', (d —x)

with

27(. 2—g ~ ~

= 2 cos(~r+ br )dr,
b ( /2mb) p

(64)

(b'RbR)(p', m)taah ( )
= Im(P) (p', m). (65)

As is recognizable, the conventional Buctuation-
dissipation theorem can be obtained only in the limit
of small fields or transversal momentum, where the pa-
rameter b vanishes and the function g collapses into the b
distribution. This means that in high fields only integral
forms of Buctuation-dissipation theorems can be given.

which can be expressed in terms of Fresnel functions [58].
Here b stands for ' '~ . The field-free limit of (64) is

27rb((d) for b ~ 0. In this case, which coincides with
transverse electric fields, (63) leads to the conventional
quantuin fluctuation-dissipation theorem [76]

I

respect to arbitrary high electric fields. Generalizations
are found for the shielded potential approximation valid
for any field strength. This results in non-Markovian be-
havior of the obtained collision integral, also known as
intracollisional-field effect, and in a broadening of the
energy conservation, the so-called collisional broadening,
caused by applied electric fields.

From the shielded potential approximation a gener-
alized Lennard-Balescu equation is derived containing
field-dependent screening in the RPA for external electric
fields of arbitrary strength. From this equation general
fluctuation-dissipation theorems can be concluded only
in an integral form, which is also a direct expression for
the nonequilibrium situation in high electric fields, even
if stationary cases are available.

As a forthcoming work the RPA has to be exceeded
for high field transport because it is known from ordi-
nary transport theory that the local field corrections by
Hubbard [77] and Singwi et al. [78] provide a more re-
alistic description of dielectric properties. The inBuence
of bound states [79,80] should also be included, but this
is connected with the treatment of the field-dependent
T-matrix calculations. This will be published elsewhere.
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