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Dynamic dielectric response function of liquid water
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Our previous theory for the dielectric response of waterlike fluids [Phys. Rev. A 46, 7548 (1992); Phys.
Rev. E 4$, 3172 {1993)]is generalized to take into account the asymmetrical inertia tensor of the water

molecules around the dipolar axis. The frequency dependent dielectric function and the refractive index

are calculated. The resulting behavior of the refractive index is compared with available experimental
data for water. The refractive index, as a function of frequency, shows a slightly better agreement with

experimental data than the previous symmetric molecule model. The "free rotation" peak is reduced in

area and a new structure is obtained.

PACS number(s): 77.22.—d, 33.10.Ev, 34.10.+x

I. INTRODUCTION

Water is the most abundant compound on the surface
of the earth and it is the principal constituent of all living
organisms. Its dielectric properties are of special interest
because they control both the electrostatic forces and the
propagation of electromagnetic waves in biological
media. Nevertheless, a full theoretical understanding of
these properties from classical statistical mechanics has
not yet been accomplished, despite the excellence of some
work [1—14]. The reason is that the dielectric response
involves very different physics at different frequency
scales, so it is very diScult to devise a model that is
suSciently simple to be calculable, yet accurate enough
to capture all the different aspects of the physics.

In two recent papers [15] we attempted to model the
frequency dependent dielectric function of water. In the
first paper [15(a)] we introduced a formalism to calculate
the frequency and wave-vector dependent dielectric func-
tion of a classical fluid, given a knowledge of the static
dielectric function and one phenomenological relaxation
time. The individual water molecule was treated as a rig-
id symmetric top with an intrinsic electric dipole moment
along the symmetry axis. The molecules interacted via
the dipole field and via a contact repulsion. Our ap-
proach was similar to the integral equation approach of
Wei and Patey [12] and is therefore complementary to the
molecular dynamics studies in Refs. [6,9,13,14]. Our
self-dielectric response was generalized to one which is
correct both in the hydrodynamic regime of small wave
vector q and frequency co, as was theirs, and in the col-
lisionless regime of large q and ~. Also, the inertia was
treated in more detail. Specifically, the self-part of the
dynamical von Hove correlation function [11,12,15] was
calculated by solving the Boltzmann transport equation
for the one-particle distribution function in phase space,
in the presence of a time dependent potential (treated in

the linear response approximation). Collisions with other
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molecules were treated in a number-conserving
relaxation-time approximation [1S(a)], which guaranteed
the occurrence of the diffusion regime at small q and co.

The full dielectric function was then approximately con-
structed by combining the dynamical self-part of the van

Hove correlation function with static structural inforrna-
tion from the reference hypernetted chain (RHNC) ap-
proximation calculations by Wei and Patey [11,12]. The
Kerr approximation [16]corresponds to the frequency in-

dependence of the local field factor t)j(q). In Fig. 4
of Ref. [15(a)] the index of refraction was compared to
the integral equation approach of Wei and Patey [12] and
the Stockmayer fiuids (point molecule) molecular dynam-
ics simulation of Pollock and Alder [6]. The Kerr ap-
proximation was found to be very reliable in both cases.
The resulting dielectric function was compared with
those obtained in previous theoretical calculations and
with available experimental data for water. Overall, the
approximation overestimated the refractive index in the
infrared frequency regime. Two striking features of the
result were (i) the peak in the refractive index at the
characteristic frequency of free rotation of symmetric
molecules and (ii) the high frequency zero in the longitu-
dinal dielectric function indicating a collective excitation
of the dipolar type. The peak predicted in (i) was actually
observed in recent experimental measurements [17,18],
but our theory gave a peak that is much too large.

In the second paper [15(b)] the rigid symmetric model
was generalized to take into account the vibrational de-

grees of freedom of a water molecule. The refractive in-

dex of water was satisfactorily reproduced in the optical
frequency range by combining the symmetric model of
the previous paper [1S(a)] with the main vibrational
modes of a water molecule. We could then explain the
major structures in the data over 15 decades of frequency
range.

In the present paper, our calculation of the dynamic
dielectric response function is generalized to take into ac-
count the true asymmetric tensor of inertia of water mol-

ecules. The water molecule is treated as a rigid triangu-
lar structure with one oxygen and two hydrogen atoms at
the corners. The moments of inertia are calculated from
the known masses of the constituent atoms and from
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molecular geometry. The electric dipole moment is
oriented along the intermediate principal axis. We apply
our computational approach to an ensemble of such mol-
ecules assuming that, for simplicity, the static structural
properties remain the same as calculated in Ref. [15].
Thus the asymmetric inertia enters only the calculation
of the self-part of the dynamical van Hove correlation
function. The analytical solution of the classical equation
of motion is complicated by the fact that the dipole mo-
ment of inertia is along an axis of unstable rotation. This
circumstance precludes the possibility of any continuous
limit existing between symmetric and asymmetric models.
The dynamics is strongly nonlinear and the trigonometric
functions of the symmetric model are replaced by the
more complicated Jacobi elliptic functions. The main re-
sults of our calculations are the following: (i) a small
reduction in the value of the refractive index at inter-
mediate frequency, which improves the agreement with
experimental data; (ii) a partial suppression of the free ro-
tation peak of the symmetric model, which also improves
the agreement of the model with experiinent; and (iii) a
hint of a structure in the intermediate frequency regime.
The results are largely unchanged at low and high fre-
quencies.

This paper is organized as follows. In Sec. II, we
briefly review the fundamental theory introduced in the
previous papers. The general ideas of this model were
presented at some length in our first article [15(a)]. In
Sec. III, we describe in detail the calculation for the
asymmetric rigid water molecule. In Sec. IV, a summary
and discussion of our results are presented.

II. THEORY

In the q~0 limit the difference between the two com-
ponents vanishes. Form the usual macroscopic elec-
tromagnetic equations, the dielectric tensor can also be
expressed in terms of the dielectric polarizability y [11]

477+ q co

1 —4m.(qq/q )y(q, co)
(2.2)

The longitudinal and transverse components of y
are the special cases of the generalized response

The formalism introduced in our previous paper [15]
was applied to a collection of rigid molecules. The posi-
tion and orientation of a molecule are defined by the
center of mass coordinated (r) and Euler angles (8,y, g)
of the inertia tensor relative to a fixed frame of reference.
The molecules interact with each other via the electric di-
pole moment p which is oriented along the xs axis as
shown in Fig. 1. There is also a hard core contact repul-
sion whose effects are incorporated in the RHNC calcula-
tion [11]of the static correlation function.

Since the liquid is homogeneous and isotropic, the
dielectric tensor has two components: longitudinal and
transverse with respect to the direction of the wave vec-
tor q of the applied electric field

6 p(q co)=el(q, co)q q&/q +ej(q, co)t5 & qq&/q I—
(2.1)
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FIG. 1. The motion of the water dipole in the Euler angle

coordinates. The angular velocities 8,p, and P are time deriva-
tives of the Euler angles.

function y[L ~ &.L ~ N ], which describes the linear
response of the LMN component of the particle
distribution function in Euler angles [fl MN=fdQ f(8,p, g)PI (cos8)e™e'~] to an external po-
tential that couples linearly to the L'M'N' component of
this distribution. Specifically, the longitudinal and trans-
verse components correspond to diagonal elements of y
with L =1,M —N =0 and L =1,M =+1,N =0, respec-
tively.

The polarizability tensor in Eq. (2.2) is expressed in
terms of its self-part y„and the static local field factor
%(q) as follows [15(a)]:

(2.3)

The self-part of the electric polarizability describes the
polarization response of a single molecule embedded in a
viscous medium. The local field factor %(q) includes the
coherent effects of all the other molecules in modifying
the effective field experienced by any given molecule. A
fundamental assumption in Eq. (2.3) is that the local field
factor depend only on wave vector, but not on frequency.
In other words, the local field factor %(q) has been as-
sumed to be, like y„diagonal in the LMN indices. From
all the above we see that the static local field factor %(q)
is completely determined by the static polarizability ten-
sor y(q, O) and the static dielectric function, provided the
self-polarizability function is known, i.e.,

(2.4)

The main effort in our approach goes into the determina-
tion of this function.

The number-conserving relaxation-time approximation
for the self-correlation function y, has been derived and
discussed in detail in Refs. [15(a)] and [19],so we simply
give the result

(2.5)
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Here y, is the polarizability function of a single molecule
in the absence of the Uiscous medium .The etfects of the
latter are described by the phenomenological relaxation
time ~. The appearance of a single relaxation time is a
consequence of the original relaxation time assumptions
on the dynamics of the one-particle distribution function
in phase space and also of the neglect of coupling be-
tween different angular momentum channels. From Eq.
(2.5) we see that the function y, needs to be known for
complex values of the frequency to+i /r.

The calculation of y, starts from the Kubo
fluctuation-dissipation theorem [20], which relates
g, (q, ro) to the Fourier Laplace transformation of the
self-part of the van Hove correlation function
G, (8rPpr;8'y'f'r', t), the latter being defined as the prob-
ability density of finding a molecule with coordinates
[q' j at time t, given that it had coordinates [q j at time
0. The relation between them is

FIG. 2. The geometry of a water molecule [3]. The two per-
pendicular axes are centered at the center of mass. I& =I2+I3.

y, (q, co) =y, (q, O)[1+iroG, (q, co)], (2.6)

where y, (q, O) coincides with y, (q, O) because collisions
do not aff'ect the static response. G, (q, ro) is the diagonal
(100) component of the full correlation matrix G„which
is given by

G, LMN, L 'M'N'( q ~ )

=5LL'6MM'5NN f dt e' '(e '
PL, [cosy(t}]),

(2.7)

where r is the position of the center of mass of the water
molecule and PL [cosy(t}] is a Legendre polynomial. The
angle y is the angle between the directions of the dipole
at time 0 and at time t. Observe that G, is diagonal in the
angular indices because the electric quadrupole tensor of
the water molecule is neglected. This correction will be
added in future work in the form

The bond lengths are each 0.967 A and the angle between
the two bonds is 104.5' [1—3]. The principal axes are
shown in Figs. 1 and 2. The moments of inertia are
I, = 1.7605 mA ( =I2+I3 ), I2 =0.6127 mA, and
I3=1.1477 mA, where m is the hydrogen mass. The
electric dipole moment is parallel to the x3 axis and its
static value is @=1.855X10 ' esucm [8]. We will as-
sume a single relaxation time ~, which is of the order of
Debye relaxation time [1], and choose r from the com-
parison with the reliable experimental data. In this paper
we chose ~=2.8X10 ' sec at room temperature. More
generally, it could be a function of the applied frequency,
but that possibility will not be investigated here.

The cosy(t) in Eq. (2.9) can be expressed as

cosy(t)=p(0) p(t)/p
=cos8ocos8( t)

@~cosy(t)=p [cosy, (t)+p cosy'(t)] . (2.8) + sin8osin8( t)cos I yo
—y( t ) j, (3.1)

Here we focus on the L = 1 component, which is neces-
sary to calculate the dielectric function in our simplified
model where the quadrupole moments were neglected.
The statistical mechanical average
(e 'q""PL &[cosy(t)]) is calculated by integrating over
all possible values of p and angular momentum L at the
initial time with Boltzmann weight e ~ /Z, where E is
the kinetic energy and Z is the partition function:

G, (q, co)= f dt e' '(e '"""cosy(t)) . (2.9)

In the next section we will discuss the calculation of
cosy(t) from the classical equation of motion of the mole-
cule and the evaluation of G, from Eq. (2.9) with the
neglect of the quadrupole moment. cos8(t) =I3Q(t)/L, (3.2)

where 8o and 8(t) are the values of the angle 8 at times 0
and t, respectively, and the quadrupole tensor has been
neglected. The cosy(t) is invariant under an arbitrary ro-
tation of the molecule about the axis of the constant an-
gular momentum, which we assume to coincide with the
z axis in Fig. 1. This circumstance has allowed us to as-
sume F0=0 with generality. On the other hand, the ini-
tial angles 8o and go can assume any value between 0 and
~ and between 0 and 2~, respectively. We only evaluate
Eq. (2.9) in the q ~0 limit, which is relevant to the calcu-
lation of the refractive index in the suboptical frequency
region.

We start from the observation that

III. CALCULATION OF THE FREE van HOVE
CORRELATION FUNCI ION FOR WATER MOLECULES

Consider a rigid triangular molecule with one oxygen
and two hydrogen atoms at its corners as shown in Fig. 2.

where 03 is the component of the angular velocity along
the water dipole axis and L is the magnitude of the angu-
lar momentum. The other angles are also expressed by
means of the angular velocity components [21,22]
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d y Idt = (Q &sing+ Q2cosy ) IsinH

=L (I,Q)+ I2Q2) I(If Qf+I~ Q3) .

We can express Q, and Q2 in terms of Q3 as

Q, = t L 2E—I2 —I3(I3 I~—)Q3] /I, (I, I~—),
Q2= [2EI, L —I3(—If I3)Q3] /I2(I~ I2—) .

(3.4)

(3.5)

The rotational kinetic energy E can be expressed in the
simple form

E=(L /2I3)f(Hp, fp) . (3.6)

f(8,$) is a dimensionless function of the initial angles
which is defined by

f(Hp, fp) =(I3/I, )sin 8psin gp

+(I3/I2)sill 8pcos 'I//p+cos Hp

where 0 &
Hp

& m and 0 & fp & 2n

Now, we can calculate the angular velocity component
Q3 from the torque free Euler equation of motion [21,22],
that is, dQ3/dt =Q&Qz(I& I2)II—3. Introducing dimen-
sionless variables for time and angular velocity com-
ponents as

b(Hp, gp)=[(1 —a) [(1+a)f—1]/ta(1+a) J
]'

(3.11b)

Then, from the solution of Eq. (3.10),

v3(u)= A3sn(bu+C, m), (3.12a)

uz(u) = A2dn(bu +C, m),

where A2=[[(1+a)f—1]/a]'

Define m' and b' such as

m'(Hp, gp) =1/m(Hp, gp),

b'(Hp, fp) = [(1 af )/(1+—a)]'~

(3.13a)

(3.13b)

where the constants appearing in this expression are
determined by initial conditions as follows:
sn(C, m)=cosHp/A3. With the help of Eq. (3.9) we ob-
tain the other two angular velocities in the following
form: (ii) when f(Hp, gp) & 1,

u, (u)= A, cn(bu+C, m),

where A, =[(1—af)/(1+a)]'
(3.12b)

u =(L/I3)t, v;=(I3/L)Q;,

a =I2/I3 (I, /I3 = 1+a),
(3.8)

By the same procedure we calculate the other case of the
solution. Then the three components of the angular ve-
locities are

then Eq. (3.5) becomes

v f =
t 1 —af —(1—a)v 3 ] /(1+a),

u2= f(1+a)f—1 —au3]/a .
(3.9)

v, (u }= A, dn(b'u +C', m'),

vz(u)= A&en(b'u +C', m'},

v3(u}= A2sn(b'u+C', m'},
(3.14)

d V3 =b 1—
du A3

V3

A3

2 1/2
V3

1 —m
A3

2 1/2

(3.10)

where A3 and m (0&m 1) are the amplitude and
modulus of the above Jacobi elliptic functions [22] given
by

A3 =[(1—af)/(1 —a)]'~

m(Hp, gp)=a(1 af)/[(1 —a)I(1+—a)f —1] ] .
(3.11a)

b is a constant and related to the periodicity of the v;
given by

Depending on the initial conditions, Euler's equation
of motion of Q3(t) in dimensionless variables
dv3/du =v&(u)v2(u) becomes the following elliptic in-
tegral: (i) when f(Hp, 1itp) ~ 1,

with sn(C', m ) =cosHp/A2.
The angular velocity components v;(u) are periodic

functions of dimensionless time u and the period is given
by 4K(m)/b [22], where E(m) is a complete elliptic in-
tegral of the first kind [23]. Similarly, p(u) in Eq. (3.4) is
obtained as an integral form

(1+a)u, (x} +au~(x)~
y(u) = dx

(1+a) v, (x) +a vz(x)
(3.15)

We now have all the elements to calculate cosy(t) in
Eq. (3.1) and obtain the self-part of the van Hove func-
tion G, (co) in Eq. (2.9), the self-electric susceptibility

y, (co) in Eqs. (2.5}and (2.6), and the dielectric function of
water e(co) from Eq. (2.2). From Eq. (2.9) the self-part of
the van Hove function is directly related to the Laplace
transform of the time correlation function of the dipoles,
i.e.,

G, (to+i/~)= f du exp i(co+i/~) f dHpsinHp f dip f dL LexpZ 0 L o o o

L
cosy(u),

3
(3.16)
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where t has been replaced by the dimensionless variable
u. The partition function of the system Z is easily calcu-
lated and equals Z =(2mI3/P) Ia(1+a) I

' . Unfor-
tunately, an analytic form of the Laplace transforms of
the Jacobi elliptic functions does not exist [24]. There-
fore, we proceed in the following manner. First, we
define a complex function 4(z)

oo
2 z4(z)= dx x exp —x ——

0 X

Q

Vi

V3

C3
N

0.8

0.6

0.41

00

oo

dy y exp — —zy
0

(3.17)
—0.4

j I I I I I I I I i
j I I I I I I I I I j I I I I I I I I I j I I ~ ! I I I I I j I I I

/IJ

I
I I I I I I j I I I I I I I I I

This function is defined for a complex variable z satisfy-
ing the condition z =z' —iz", where z')0 and z" ~0.
The real and imaginary parts of this formula for the spe-
cial case z=re ' with H=n/4 and m. /2 are plotted
versus r in Fig. 3. Then the result of the integration over
L in Eq. (3.16) can be expressed as

r

00 pfL 2 I3u 2I3f dL L exp —(1/r i co—) = 4(z),
0 3

9 10 11 12 13
&Og1ptfreq (sec-1)]

14 15

FIG. 4. The real and imaginary parts of the self-electric-
susceptibility g, (co) in Eq. (2.5) are plotted at the wave vector
q~O. The solid line is the real part and the dotted line is the
imaginary part of g, (~).

where z =(f/2)(u /~ icou), —r=rl(PI3)'
ro=(PI3)' rij. f was defined in Eq. (3.7).

@(r,8)
0.6-

0.4.

0.2-

0.0-

(3.18)

and

Finally, the self-part of the van Hove function in Eq.
(3.16) takes the dimensionless form

G, (~+j/, ) ==f dgosinOof dgo
V'pI, Z 0 Ot 0

& f "du cosy(u)e(z),
0

(3.19)

where Z =Z /(I 3 /P) . The remaining three-
dimensional integral is done numerically. We first do the
time integral (u integral) for different values of the angu-
lar initial conditions. Then we average over the angular
initial conditions. The whole procedure is rather time
consuming.

—0.2-
I I I I

j I I I I j I I I I
j

I I I I j I I I I
f

I I I I
j I I I I

j
I I 1 I

j
I I I I
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@(r,8)

j 00!

BOj

0.6

0.4

0.2
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1

(b) 8 = x/2
C
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I
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(

1 1 1 1
(

I 1 1 I
[
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j
I I I I I I i I
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9 10 11 12 13 14 15
1og1pI freq. (sec-1)]

FIG. 3. The real and imaginary parts of the special function
4(z)=4(r, 8), z =re ', as a function of r for (a) 0=~/4 and
(b) 6!=m. /2.

FIG. 5. The plot of the frequency dependent dielectric func-
tion at the wave vector q~O is shown. The solid line is the real
part and the dotted line is the imaginary part.
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FIG. 6. The refractive index of water with three difFerent

values of the relaxation times. From left to right, the relaxation
times are 10~ (some computational noise is shown in the low fre-

quency region), r, and 1/10~.

IV. RESULTS AND DISCUSSION

The real and imaginary parts of the self-electric suscep-
tibility y, (co) in Eq. (2.5) are plotted in Fig. 4. At lower
frequencies the diffusion dominates and at higher fre-
quencies the sign of the response changes. We identify a
small peak between these two regions. This is a new
structure which was not present in our previous calcula-
tions with symmetric molecules. A plot of the frequency
dependent dielectric function is shown in Fig. 5. We see
that the imaginary part of the dielectric function e(ro) has
two well resolved peaks in the low and the high frequency
region and one small peak in the intermediate frequency
region. The low frequency peak is the diffusion peak
found in Debye theory [1] and the high frequency peak is
the free-rotor peak also found in our previous paper
[15(a)]. The high frequency peak is located at the charac-
teristic precessional frequency of the free molecules in
thermal equilibrium (dtpldt ). The intermediate peak is
an interesting feature of the present theory and is entirely
due to the asymmetry of the inertia tensor.

The refractive index of water is obtained from the
dielectric function by n(co)=[@(co)]'iz. We show the
dependence of our result on different values of the single

parameter appearing in our theory, the relaxation time ~.
Figure 6 shows the refractive index of water for three
different values of the relaxation times. In Fig. 7 we corn-
pared our refractive index with available experimental

FIG. 7. Comparison of the refractive index of water with
that of the symmetric and asymmetric models. The solid line is
the experimental data measured from liquid water, the short
dashed line is the results of the previous symmetric model, and
the long dashed line is the results of the present asymmetric
model.

data of water [17,18] and previous results of the sytn-
metric model. The free-rotor peak in the infrared fre-
quency region is lowered and the collective excitation
slightly weakened. Therefore, the refractive index of wa-
ter is in slightly better agreement with experiment.
Again, we find an additional structure of the dielectric
function. Neither the intermediate frequency peak nor
the collective dipolaron mode has yet been experimental-
ly observed. This may be due to the scarcity of experi-
ments in the correct frequency regions, but it could arise
from missing infrared physics in this model. It is true
that 0.1-1 mm wavelengths are a particularly diScult
part of the electromagnetic spectrum to measure, but the
importance of understanding the structure of water
should justify these additional efforts. There may also be
some short range order in the liquid which complicates
or even invalidates the local field factor. The fact that
water has an intrinsic rotational instability, which should
produce chaotic motions, merits additional study and
more research is required to determine these issues and to
obtain improved agreement with experiment.
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