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Nonequilibrium molecular dynamics simulation of free-molecule gas flows in comylex geometries
with ayylication to Brownian motion of aggregate aerosols
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A nonequilibrium molecular dynamics method is presented for the study of free-molecule, rarefied gas
flows in complex geometries. Simulation results for a system of N rigid spheres in a rarefied gas are
given, including particle friction tensor and force autocorrelation function. For single spheres, simula-

tion results are shown to agree with known analytical results. For a two-sphere system, computational
results are presented that indicate the two-sphere friction tensor is nonsymmetric, as opposed to the
symmetric behavior in continuum and near continuum fluids. The nonsymmetric behavior can be traced
to geometric shielding effects and leads to an effective attractive force between two spheres in free-
molecule flows. It is possible to use the nonequilibrium molecular dynamics method given here to deter-
mine the many-sphere friction behavior for combined use in Langevin dynamics. Such a procedure, in

principle, could allow for a rigorous, long-term dynamical analysis of particles in complex fluid systems.

PACS number(s): 05.20.Dd, 02.70.Ns

I. INTRODUCTION

In many practical problems involving the dynamic in-
teractions of gases with surfaces, the gas flow in the vicin-
ity of the surface is so rarefied that the intermolecular gas
interactions can be neglected. This regime, known as the
"free-molecule" regime in gas dynamics, is quantified by
a large, local Knudsen number (Nx„»1), where the
Knudsen number represents the ratio of the mean free
path of the gas to a characteristic length scale of the sys-
tem, e.g., the characteristic length of an object immersed
in the gas flow. Practical systems where such flows exist
include the Brownian motion of aggregate aerosols in
rarefied gases, the dynamics of space vehicles in rarefied
planetary atmospheres, gas dynamic interactions of parti-
cles and walls, and the flow of gases in catalytic pores and
membranes, among others. Despite the simpler molecu-
lar nature of rarefied gas flows, these "practical" systems
are characterized by complex geometries making analyti-
cal solutions extremely difBcult. Fortunately, as will be
shown here, molecular dynamics methods for nonequili-
brium systems can be developed to numerically evaluate
all types of rarefied gas flows in complex geometries, in-
cluding such complex issues as the Brownian dynamics of
arbitrarily shaped particles.

Specifically, the nonequilibrium molecular dynamics
technique used in this study has been called the natural
nonequilibrium molecular dynamics (NNMD) method
[1]. In this technique, the boundary conditions and/or
initial conditions are included in the simulation as they
actually or "naturally" occur in the physical experiment
[2]. A signi6cant concern for the use of NNMD is the
possibility of a large spatial system dimension and, hence,
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a large number of molecules necessary for simulation
studies. Despite the necessarily large system size, howev-
er, NNMD has been applied to a number of flow systems,
including Couette flow and flows over simple objects,
such as Sat planes and cylinders [3,4].

In the case of free-molecule flows, it is shown here that
a computationally simple NNMD scheme can be con-
structed that allows for a comprehensive analysis of
rarefied gas flows in highly complex geometries. The
simplifications are associated with the free-molecule as-
sumption that reflected molecules from object surfaces do
not a8'ect the distribution of incoming molecules from a
given source [5]. It is to be noted that Chan and
Dahneke [6] have previously addressed this problem us-
ing what they called a type of "direct simulation Monte
Carlo method" [7]. Their (Monte Carlo) method was
based on ensemble averaging of allowed or possible col-
lisions with small geometric segments of the surfaces by
the self-collisionless gas molecules and was used to pre-
dict the steady-state gas frictiona1 forces acting on a
chain of spheres. As will be shown here, the current
molecular dynamics method is more general and, for ex-
ample, can take into account important time dependent
phenomena, such as memory dependent friction, Browni-
an motion, and force autocorrelation functions. The
NNMD method also readily allows for a11 types of com-
plex geometries and gas-surface interactions, as well as
being readily extended to include gas intermolecular in-
teractions. We also note that the force autocorrelation
functions for Brownian particles of arbitrary shape (ob-
tainable here) are particularly important for the resolu-
tion of generalized Langevin equations and subsequent
use in applications, as discussed in more detail below.

We begin with a presentation of the computational
technique followed by a comparison of the results to
known analytical solutions for problems involving parti-
cle dynamics in rarefied gas Bows. Finally, some alterna-
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tive results are presented for complex particle geometries
not accessible analytically.

II. FREE-MOLECULE
MOLECULAR DYNAMIC SIMULATIONS

In the NNMD method, the nonequilibrium system is
usually connected to equilibrium reservoirs. For exam-
ple, in Poiseuille Qow the inlet fluid to the tube comes
from an equilibrium reservoir maintained at some fixed
temperature and pressure or density. Similarly, the Quid
exits to another equilibrium reservoir maintained at
diff'erent conditions. The equilibrium reservoirs (iso-
thermal, isoenergetic, isobaric, etc.} can be generated by
well-known equilibrium molecular dynamics methods
(see, e.g. , [8] or [9]). The interactions of the fluid mole-
cules with vessel walls can be treated using simple specu-
lar or diffuse reflection conditions, or more exactly by
considering the Quid molecule interactions with the wall
molecule s.

A problem of specific interest here is the relative
motion of a Quid over objects of complex shapes, such as
aggregate aerosols. In this problem, equilibrium condi-
tions persist at distances far from the object. Therefore,
it is necessary to surround the objects with an equilibri-
um reservoir maintained, for example, at a fixed tempera-
ture and number density (canonical equilibrium ensem-
ble). The nonequilibrium system contained within the
reservoirs will be called the control volume (CV) in this
study. Generally speaking, for unbounded systems, it is
not known a priori exactly how far from the object to fix
the position of the equilibrium reservoirs. For example,
in low-Reynolds-number Qow over a sphere, it is well
known that the equilibrium conditions occur at distances
some eight to ten sphere diameters from the sphere
center [10]. However, since we are presumably interested
in problems where analytical solutions are difBcult to ob-
tain or not known, the decay length to an equilibrium
state is generally an unknown quantity. The position of
the reservoirs, must, therefore, be determined by trial and
error, i.e., moving the reservoir outward until no changes
in macroscopic variables (as averages over molecular
properties) are observed. In free-molecule flows, howev-
er, not only can collisions between the molecules be
neglected in the CV, but also the reflected molecules from
the surface are assumed not to affect the incoming mole-
cules from the reservoirs. As shown below, a rather sim-
ple nonequilibrium molecular dynamic simulation can be
constructed for this practically important case.

For free-molecule flows, a cubical control volume with
side lengths lo is selected to surround the object but lie
within a standard equilibrium cell (e cell) common to
equihbrium molecular dynamics simulations as shown in
Fig. 1. The side lengths of the equilibrium cell are denot-
ed by /, with number density and temperature denoted as
n „and T, respectively. Molecules that enter the con-
trol volume from the equilibrium cell are identified—
these molecules are denoted as "active molecules. "How-
ever, in order not to afFect the "incoming" molecular dis-
tribution, in space and time, a "passive image" of the
molecule moves freely throughout the control volume
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FIG. 1. Illustration of the molecular dynamics method for
free-molecule flows over complex objects. Equilibrium-cell (e-
ce11) molecular trajectories are denoted by dashed lines; control
volume molecular trajectories are denoted by solid lines. For
free-molecule flows, the flux of molecules to surfaces follows an
equilibrium Maxwellian distribution.

with its trajectory unaltered, except perhaps by collisions
with other passive molecules, as shown in Fig. 1. This
ensures that all molecules that arrive from infinity to the
surface of the object are Maxwellian distributed mole-
cules. The equilibrium cell molecules are subject to the
usual periodic boundary conditions along the sides of the
cell, as well as to intermolecular interactions. Alterna-
tively, the control volume could be surrounded by repli-
cated, equilibrium cells reducing the total number of in-
termolecular interaction calculations required in the equi-
librium cell. In any case, within the control volume the
gas Qow is assumed to be rarefied and intermolecular in-
teractions among "active" molecules can be neglected.

Generally, n „and T„are in the range such that the
free-molecule flow criteria, A, &)d,„ is satisfied, where

(n „,T„, ) is the mean free path of the gas and d,„
is the maximum length scale of the object. The equilibri-
um cell dimension, I, must be greater than k in order to
have a statistically meaningful equilibrium ensemble. As
shown in the numerical examples below, for gas Qows
around submicron particles at standard conditions this
generally results in a large number of molecules, X
( =n „I, ), in the equilibrium cell (typically 10 or higher).

At the start of the simulation, N molecules are generat-
ed in the equilibrium cell with a Maxwellian velocity dis-
tribution at temperature T„and average velocity in
direction I denoted by ui (see, e.g., [11]}.Corrections to
the sampled velocity distribution are then invoked to en-
sure the correct temperature and average velocity (see
Appendix). Molecules that initially lie in the CV, but not
within the object, are the first "active" molecules.

The determination of molecular trajectories and col-
lisions with surfaces in the CV or their escape from the
CV can be carried out in a variety of ways. Here, we use
the so-called time table method [12],which is adapted to
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the gas dynamic problem as follows.
First, it is determined whether or not molecules within

the control volume will follow a trajectory that intersects
with the surfaces present. For example, if the surfaces
represent an aggregate aerosol comprised of spherical
subunits, a "hard" collision of a molecule with any one of
the spheres will possibly take place if

(n;+d )

IJ 2

where o; is the diameter of the ith molecule, d is the di-
ameter of the jth sphere of the aggregate, and b; is com-
puted as

R(v, ~v,')=~(v,' —v, ) n, ~

1

2mkT, /m,

m, /v,
' —v, f'

X exp .
J

(10)

T is the surface temperature of the jth spherical subunit
and n is a unit vector normal to the sphere (j) surface,
viz. , n =r,"/~r J ~. For a spherical coordinate system at
the center of sphere j (or local Cartesian coordinate sys-
tem at the surface of sphere j},we have

distance vector at the point of contact. For "diffuse"
re6ection, on the other hand, the post-collisional molecu-
lar velocities, v,', are selected from the following probabil-

ity distribution for an impinging molecule of velocity v;
to be reemitted with a velocity v'; [5],

(r;1"v;1 } —bz
EJ

(3)
EJ

iJ Vij

In the last equation, r,"—=r; —r is the separation vector
between the molecule (i) and the sphere (j ) and
v,"=v, —v is the relative velocity (v; =~v,"~). Further-
more, the time for the contact between the molecule and
sphere for a "hard" collision is easily determined as

1 (o;+d )

R„=
kT

~(v,
' —u, )(exp

Pg I J

m, (u„' —v„)

2kT
' 1/2

2mkT
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2kT

R =R„(—v„;~v,'; )Rs(vs, ~us; )R&(v&; ~u&; ),
where

(12)

(13}

and

2MJ (v;J'r;~—)r;Jhv;=
[—,'(o;+dJ )]

(4)

We note that by "hard" collision, we are not taking
into account the detailed gas-molecule-surface molecule
interactions. However, the method could easily be
modified to do so by expanding the diameter of the
sphere outward to encompass the interaction force range
(see, e.g., [13] for MD with continuous interaction poten-
tials). The relatively short-time "soft" collision could
then be determined in a separate routine. Complicated
features such as surface roughness, molecular condensa-
tion, among others, could also be treated by this method.
For centra1 force interactions, effective hard-sphere diam-
eters can be used (see, e.g., [14]). For a "specular" col-
lision of a spherical molecule and a spherical subunit the
velocity change is simply given by

' 1/2
2mkT

2kT„
(14)

v =sin8 cosPv +cos8 cosPu —sing v (15}

v,
' =sin8singv +cos8singu +cosPv, '

3' I' 8

v =cos8v —sin8v

(16)

(17}

where

Thus, R& and R& represent normal distributions with
variance (2kT„/rn } '~ and mean values ve and v&, re-

J J
spectively. R, may be sampled following Ref. [7] [see Eq.
(7.9) therein].

Once sampled the velocity components in the spherical
coordinate system are converted to rectangular com-
ponents, viz. ,

+2M;(v r; )r;
EVj =

[—,'(o, +d )]

where the reduced masses are defined as

Pg.
M. =

(m;+m. )

M;=
(m;+rnJ )

and the post-collisional velocities are given as

(5)

(6)

and

ZI ZJcos8=
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sinO=
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cosP= [(xx)2+(yy)2]1/2

sing=
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(18)

(19)

(20)

(21}

Vg =Vi+kV;

VJ =Vj+EVj

Also, note that r; in the above formulas is the separation

The post-collisional surface velocity follows from
momentum conservation. Of course, the above analysis
simplifies considerably when the surfaces are held fixed
(vi =v' =0) or they are so massive (M~ =-m. and M; =-0)
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that their velocity change can be neglected (b,vJ. =-0).
Finally, we need to know the escape times of molecules

in the CV whose trajectories will not intersect with sur-
faces and will, therefore, escape the CV. These are easily
determined as I12]

(I +o,).
2

V; Ck

ek -v,.

—e r-k i

(22)

ht =min(t~, t;, t'„) . (23)

After selection of the time step, ht, the molecules (passive
and active) are then moved along straight line trajectories
as

hr; =v;ht (24)

where ek is a unit vector in the space-fixed Cartesian
frame (see Fig. 1).

An analysis similar to that of Eq. (3}must also be car-
ried out for collisions between the "passive" molecules of
the equilibrium cell. This will also lead to the corre-
sponding time denoted by t „,where the equilibrium-cell
molecule interactions are treated as effective hard-sphere
collisions for the sake of simplicity.

Now, the timetable method is a variable time step
method where the time step of the simulation, ht, is
selected as the minimum time, i.e.,

and

hr;'=v;'ht,

where the superscript "e" denotes the equilibrium-cell
molecules. For passive molecules that escape the equilib-
rium cell, periodic boundary conditions are applied.
Also, for any passive molecule that enters the CV, an
"active" molecule is created with that position and veloc-
ity. Thus, the flux of molecukes into the CV is an equilib-
rium flux consistent with the boundary conditions of the
problem. Over the time step, ht, if an active molecule
collides with a surface, new velocities are assigned and
the momentum changes are recorded. If an active mole-
cule escapes the CV, it is eliminated from the simulation
(lost to the infinitely large reservoir}. Thus, the molecular
number density in the CV fluctuates somewhat with time
about an average value, as expected for this open, non-
equihbrium system. Of course, the molecular number
density remains constant in the equilibrium cell. Note
again the satisfaction of the free-molecule criteria of al-

ways maintaining a Maxwellian distribution of incoming
molecules (with a certain number density, temperature,
and average velocity) and that active molecules should
not alter this distribution. Figure 2 gives a more specific
breakdown of the simulation procedure.

An important aspect of rarefied gas flows in complex
geometries is the phenomena of "shielding" and multiple
reflection of gas molecules o5' object surfaces, which is

! l. Set input parameters: n, t, I, 1,' o' e'
molecular properties.
and object properties.

2. Generate velocity and space
distribution of e—cell molecule».

4. Compute molecular collision times
with objects and escape times for

ij i
molecules in cv: t" and t. .

3. Determine first set of active
molecules in cv.

5. Compute intermolecular collision
times for molecules in e—cell: t mn'

6. Find integration time step
ht: At~in (t;. t; . t „}.

7. Move molecules over the
time step h,t.

in cv.

I

e—cell.

9. Activate new molecules
arriving in cv from e—cell.

1r

8. If At=t", compute molecule (i)—surface (j) collision dynamics1J'

j
If ht= t, renumber molecules in cv.k
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If At=t, compute molecule —molecule collision dynamics in
e
mn'

FIG. 2. Nonequilibrium molecular dynam-

ics simulation procedures using the timetable
method. The time steps are associated with in-

termolecular collisions in the equilibrium cell,
collisions of active molecules with surfaces in

the control volume (CV), and escape of active
molecules from the CV.

11. Update real time
forces on objects.

and

r

10. Apply periodic boundary

!
conditions to e—cell.

12. If real time within total
simulation time, go to 4.



50 NONEQUILIBRIUM MOLECULAR DYNAMICS SIMULATION OF. . . 4613

implicitly included in the present approach. For concave
objects, or complex surfaces, the active molecule may
strike other surfaces upon refiection, and the entire
molecular trajectory is followed in time until escape.

III. FORCES ON OBJECTS: FRICTION, DI1 FUSION,
AND FORCE AUTOCORRELATION

For hard collisions, the forces acting on the objects
consist of a series of impulses due to colliding molecules.
The time-average force acting on the object in any direc-
tion can be obtained by summing the momentum changes
from molecule-surface collisions as

fy
(Ft ) = »m —f Fidt

= lim —f g JIk5(t tk)dt=—lim —g Jik,
0 k g~~ oo t)

(26)

where J&k is the impulse of change in momentum in direc-
tion 1 associated with the kth collision.

An equally important quantity is the force autocorrela-
tion function defined as

R& (~)=(F&(~)F (0))= lim f FI(t+r)F (t)dt,s
s~~ 2S —s

(27}

which for impulsive forces becomes

tensor through (short-time) molecular dynamics force au-
tocorrelation function calculations allows the analysis of
relatively longer time step Brownian dynamics via solu-
tions to the generalized Langevin equations (see, e.g.,
[18]). Such a (two-time) procedure (molecular dynamics
followed by Brownian dynamics}, in principle, allows par-
ticle phenomena for large characteristic time scales to be
rigorously determined. The computationally prohibitive
problem of determining large time scale particle phenom-
ena through molecular dynamics alone is recently illus-
trated in protein dynamics (see Fig. 5 of Ref. [19]).
Long-time protein dynamics are currently inaccessible by
molecular dynamics. Here, we advocate a two-step pro-
cedure using molecular dynamics followed by generalized
Langevin equation theory. Indeed, the generalized
Langevin equation itself has been obtained by the so-
called multiple time scales method [20]. Below, we
present some example calculations of NNMD for single-
sphere and multisphere aggregate particles.

IV. SINGLE-SPHERE AND TWO-SPHERE RESULTS

The friction tensor and force autocorrelation function
for single isolated rigid spheres were determined in order
to compare to known analytical results and test the accu-
racy of the computations. In the first "experiment, " the
equilibrium-cell molecules were given a finite average ve-
locity v& in direction I with the friction coeScient defined
according to

(32)

R(m(r) = (F((r)F~(0) &

1= lim gg JI J 5[v (t, t )—], —
s~ cc 2S ~ ~ ™J

J
(28)

(33)

An analytical expression for g is, of course, well known
and given by (see, e.g., [21])

~mn v& a
f(s),

where J& is the change in momentum in direction I asso-

ciated with the ith collision at time t;.
In generalized Langevin equation theory, the particle

friction tensor (for mj »m; } is related to the force auto-
correlation function as ([15-17], and the references
therein}

when n is the molecular number density, m is the mass of
a single gas molecule, a is its radius, and f(s ) is given by

1 4$ +4$ + 1

$2 2$

g(t }= f (F(t —t')F(0))'qdt',
kT o

(29) 2s+1,2 2o~—
(34)

where ( )'q denotes an equilibrium average force acting
on a particle held in a fixed position in the fiuid. For im-
pulsive forces, the particle friction tensor expression be-
comes

with s=~v&~/(2kT/m)'~ and o=1 or 0 for difFuse or
specular molecular refiection, respectively. The asymp-
totic limits are of practical use and are given by

(30)gt~(t)= »m g g J„J,. for (t, t, )&t—1 1

s 2S kT
I J

f(s)~2 as s~ao,
1 1 16 2f(s ) =— — +—a m for s ((1 .
s v'g s 3

(35)

(36)

D=kTg (31)

Importantly, the determination of the particle friction

In simulations, the period S is finite and the above formu-
la is approximate, but in any case S should be much
greater than t. The generalized Einstein relation allows
the computation of the particle diffusion tensor, D, from
the friction tensor as

Note that in writing Eq. (34) it is assumed that the
momentum and energy accommodation coefBcients are
equal and that the sphere temperature and gas tempera-
ture are also equal (for more details, see, e.g., [21]).

A specific system was selected for comparison purposes
as detailed in Table I. Because of the necessarily large
number of molecules in the equilibrium cell (25000) as
discussed above, the velocity distribution obtained
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TABLE I. Input Parameters.

n „=2.5 X 10 (number)/m'
=25 000

/, =1.0X10 m

lp =2.0X10 8 m
m =6.625 X 10 kg
d =1.0X10 ' m
T„=T =2.93.15 K
a.; =0.0 m
Total number of time steps =10'

through Gaussian sampling followed closely the true dis-
tribution function. Note that for a smaller sample,
molecular collisions or interactions in the equilibrium cell
serve to create a true Gaussian distribution over time in
the equilibrium cell (see, e.g., [22] and [23]).

Also, for the standard gas conditions selected as shown
in Table I, the intermolecular collisions or interactions in
the equilibrium cell are so infrequent that the
equilibrium-cell gas can be approximately taken as an
ideal gas system neglecting interactions entirely; this, of
course, greatly reduces the computational time required
(N steps for each time interval). Of course, for other gas
conditions in the equilibrium cell this may not be possi-
ble. All calculations reported here assume that the equi-
librium cell gas is ideal except as noted.

Figure 3 gives a comparison of NNMD results for the
friction coefficient under specular reQective boundary
conditions with the analytical solution for the parameters
listed in Table I. The results are normalized with respect
to the small asymptotic limit of g,„~(s &&1). As can be
seen, excellent results are obtained from NNMD. Fur-
thermore, the standard deviations in the NNMD calcula-
tions (not shown) were less than a couple of percent of
the mean values (shown). The standard deviations are
obtained by repeating the calculations several times for
different values of the initial seeds for generating the
molecular velocity and space distributions. Similar excel-
lent comparison for diffuse molecular reNection were also
obtained, as shown in Fig. 4. No significantly different

TABLE II. Force autocorrelation calculations of the friction
tensor, g& (t)lg,„„.Mean values are given below; standard de-
viations were with s%%uo or better for the values given below.

t=0. lSX 10-" s
0.998 O. OOS O. OO6

0.003 0.988 —0.016
—0.008 —O. 016 l.016

t=O. 6OX1O "s
1.016 —0.065 —0.052
0.036 1.016 —0.031

—0.006 —0.060 1.001

1 =0.105X10 ' s
0.998 —0.060 —0.006
0.000 l.003 —0.038
0.032 —0.034 1.055

results were obtained by including intermolecular interac-
tions in the equilibrium cell for this system. The average
time in the simulation was on the order of 10 ' sec for
this system, and the total number of time steps was 10 .
Also, the total number of molecular collisions with the
fixed sphere was on the order of 10 collisions.

Alternatively and more comprehensively, the friction
tensor can be determined through calculation of the force
autocorrelation function from NNMD, Eq. (29) or Eq.
(30). Table II gives a typical calculation for the values of
g(t)lg, „,& under specular re6ective boundary conditions
for various times t and for the same parameters listed in
Table I. As evident, the friction tensor is predicted to be
diagonal (within experimental error) and independent of
time. Note that each value listed is a mean value com-
puted by repeating the "experiment" four times using
different seeds for the random number generators; the re-
sults could be further improved running each simulation
for a longer time. In any case, it is clear that the friction
tensor is diagonal, isotropic, and independent of time as
expected analytically. It is to be noted that the average
velocity of the equilibrium-cell molecules, v, ("free-
stream" velocity), is taken to be zero for the force auto-

~ molecular dynamics

g/I o alyaical solut«on

FIG. 3. Simulation results for free-molecule
flow over a single spheres for small to large
speed flows and specular reflective boundary
conditions. Standard deviations are within a
few percent or better of the mean values
shown.
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FIG. 4. Simulation results for free-molecule
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speed flows and diffuse reflective boundary
conditions. Standard deviations are within a
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correlation calculations displayed in Table II as con-
sistent with the basic theory underlying Eq. (29}. For
more discussion of the force autocorrelation function and
Brownian motion theories in nonuniform systems, see
[24]. Likewise, g, ! is taken from the low-speed result
and is independent of vi under these conditions.

More interestingly, a two-sphere system was selected
for computational study that has only limited analytical
results in the small Knudsen number gas region (see [25],
and [26]) and no analytical results in the large Knudsen
number, rarefied gas region. We note that this particular
problem of many relatively massive spheres, with specu-
lar reflecting boundary conditions (scatterers) in a
rarefied gas is dynamically the same as the so-called
Lorentzian gas mixture [27].

In Fig. 5, calculated friction coeScients for two sta-
tionary equal-size spheres with free-stream gas velocity
directed parallel to their line of centers is shown as a
function of the intersphere separation distance. The
remaining physical parameters are identical to those
given previously for single spheres (Table I). Some in-
teresting results are obtained in the two-sphere geometry

including unequal friction coefBcients and, hence, un-

equal aerodynamic forces exerted on the two spheres. In
particular, the gas frictional force on sphere (1) is greatly
reduced due to shielding by sphere (2). Thus, a relative
or efFective aerodynamic force exists in the two-sphere
system that will cause the two spheres to coalesce, i.e.,

F,2=F,—F2=v, (g, —g, )e, . (37)

Expressing this force in terms of a potential as

V&2(r ) =v, I (g! (2)dr'—,

where r=~r, 2~ is the intersphere separation distance.
The magnitude of this potential is shown to be quite large
for the system of Fig. 5. In particular, it is estimated that
V,2(r =d }=300 kT for this system. This behavior
should be contrasted with the low-Reynolds-number con-
tinuum hydrodynamic behavior which predicts equal hy-
drodynamic forces on the two spheres (solid line in Fig. 5)
and a symmetric two-particle friction tensor [10,28,29].
Small Knudsen number gas corrections to continuum

(1/(0 02/(0
)E

0-———————————————————————————————l.
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0.8—

0.6—

touching
0.4 spheres

l

0.2—

)
r (1/(0

x

12

U =-900m/s

FIG. 5. Simulation results for free-molecule
flows over two spheres as a function of the
intersphere separation distance at relatively
large free-stream velocities. The frictional
force is, in general, less on the downstream
sphere due to geometric shielding effects. Con-
tinuum hydrodynamics, and near continuum
theories, predict parity of the frictional forces
and a symmetric two-particle friction tensor.
A typical standard deviation obtained for this
system is sho~n for r» =2d (cf. Fig. 6).

2d 3d 12
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FIG. 6. Simulation results for free-molecule
Aows over two spheres as a function of inter-
sphere separation distance at relatively small
free-stream velocities. Here, again, the fric-
tional force on the downstream sphere is less,
although the differences are not as great as in

Fig. 5 and only occur at small intersphere sep-
arations. Standard deviations in the time-
average values can be reduced by running each
simulation for a longer time.

behavior in the low-speed domain (s «1) [25] also pre-
dict the equality.

An important result here is that the two-particle fric-
tion tensor for rarefied gas Bows is not, in general, sym-
metric. This result is true for low-speed rarefied gas Bows
as well (s «1) as shown in Fig. 6 and is a geometric
"shielding" effect. For completeness, we also compared
our results for touching spheres in parallel flow (Fig. 6}
with those obtained by Chan and Dahneke [6]. In terms
of a dimensionless drag coefficient c *, as defined in Chan
and Dahneke [6], we obtain c"=13.66+1.14 from the
data in Fig. 6 (at r!z

=d ) as compared to
c'=c,'+4.59+0.04 given by Chan and Dahneke [6],
where c

&
is the dimensionless drag coefficient for a single

sphere and the variability of +0.04 is for the inner-half
sphere calculations only. Using c! =So/3 (see, e.g.,
[21]), the two mean values are seen to be in agreement
within the standard deviations of the "experiments. "
Note that Chan and Dahneke [6] used a noise reduction
scheme to reduce the variability of their results, and their
technique was not employed here. As mentioned previ-
ously, the variability in the set of time-average values re-
ported here (variance in the mean values) can be reduced

by running each time-average value for a longer time in
order to approach the true mean.

It is also interesting to note the effects of secondary
molecular collisions in the two-sphere system, i.e., mole-
cules that make more than one collision with object sur-
faces. In general, as expected, secondary collisions are
more important at small intersphere separation distances
and small free-stream gas velocities. More quantitatively,
however, the ratio of secondary collisions to the total
number of collisions is around 8% for touching spheres
in Fig. 6 (low velocity case} and less than l%%uo for the

r,2=3d case. These results suggest that a perturbation
expansion in terms of a collision frequency parameter
would appear to be a fruitful analytical approach for this
system. In addition, secondary molecular collisions act-
ing on the upstream sphere [sphere (2} in Figs. 5 and 6
tend to reduce its friction coefficient. Conversely, secon-
dary collisions acting on the downstream sphere tend to

increase its friction coefficient. The multicollisional effect
is, however, of secondary importance to geometric shield-

ing for this system.
Finally, we mention that the majority of the calcula-

tions reported here were obtained on a CRAY YMP
computer with four CPU's. The average computational
time for each data point, including variance determina-
tion shown in Fig. 5, for example, was 5000 seconds util-
izing 2.7 megawords of memory.

V. CONCLUSIONS AND SUMMARY

A nonequilibrium molecular dynamics method has
been developed and utilized for the study of free mole-
cule, rarefied gas Rows in complex geometries. The MD
method for self-collisionless gas fiows is far less computa-
tionally prohibitive as compared to collisional fiows al-
lowing for a wide-range investigation of the overall sys-
tem dynamics. The MD method is a real-time simulation
that allows for the analysis of important dynamical
features, including force autocorrelation functions for
geometrically complex objects in gas Qows. A system of
N spheres in a rarefied gas was selected for study because
of its practical importance and lack of dynamical infor-
mation on its behavior. Computations of the friction
coefficient and force autocorrelation function for single

spheres, under both specular and diffuse gas molecular
boundary conditions, mere shown to compare favorably
with analytical solutions in the free-molecule gas regime.
Interesting computational results for two spheres showed
a nonsymmetric two-sphere friction tensor that leads to
an effective, attractive gas dynamic force acting between
the two spheres. The nonsymmetric nature of the two-
particle friction tensor can be traced to geometric shield-

ing effects and could have important consequences in

such omnipresent phenomena as the coagulation of aero-
sols, among many others. The current computational
method also demonstrates some exciting possibilities of
probing long-time particle dynamics in complex systems

by coupling molecular dynamics with generalized
Langevin equation theory. The method could include not
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only complex geometries, but also other complicated phe-
nomena such as unique gas-molecule-surface interaction
effects, among others. These problems and systems are
under current investigation.
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APPENDIX:
VELOCE Y DISTRIBUTION ADJUSTMENTS

ensure the correct linear momentum a quantity Pt is sub-

tracted from each velocity vl; where,

N

Pt = —g v,',-'s —
ut (l =x,y, z)

i=1

and

new
V

old
Vli Vli ~l

This ensures that the average linear velocity is vl.
Next, a correction to the deviation velocities is made to

ensure the proper kinetic energy. Let
I

V =V Vli li l

The Maxwellian velocity distribution is defined accord-
ing to

3/2

and

N

—,'m v,' v,'

f„(v,)=
2rrkT „

Then

—', NkT

Xexp — [(v, —u„) +(u —v )
V

&old

new- Vli
Va

+(v, —u, ) ]

The values of v; can be determined from the above distri-
bution by a variety of methods (see, e.g., [11]). Then, to

will ensure that the average kinetic energy is ( —', )kT„.
Note that this latter adjustment, involving the deviation
velocities, will not affect the previous linear velocity ad-
justment involving Pt.
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