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Hydrodynamic behavior of lattice Boltzmann and lattice Bhatnagar-Gross-Krook models
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We present a numerical analysis of the ranges of validity of classical and generalized hydrodynamics
for lattice Boltzmann and lattice Bhatnagar-Gross-Krook (BGK) methods in two and three dimensions,
as a function of the collision parameters of these models. Our analysis is based on the wave-number

dependence of the evolution operator. Good ranges of validity are found as long as the BGK relaxation
time is chosen smaller than or equal to unity. The additional degree of freedom in a two parameter
BGK model can give further improvements.

PACS number(s): 05.20.Dd, 05.50.+q, 05.60.+w

I. INTRODUCTION

Recently, lattice gas automata (LGA) methods have
been developed as a new computational approach to fiuid
dynamics [1-3]. Using purely local Boolean operations
to represent particle collisions, they have proved to be ex-
tremely eScient, although, due to the fluctuations in-
herent in the method, statistical averaging is necessary in
order to extract information. The lattice Boltzmann (LB)
method [4—6] and the lattice Bhatnagar-Gross-Krook
(BGK) method [7—10], by using continuous distribution
functions, eliminate this statistical noise and offer
significant computational advantages.

When the LB method was first introduced [4], a col-
lision operator was constructed directly from the col-
lision rules of the underlying LGA. It was soon realized,
however, that the collision operator could be linearized
about an equilibrium distribution function and replaced
by a collision matrix [5,6]. Furthermore, it was realized
that the collision matrix and equilibrium distribution
function need not be constrained to follow the original
LGA and there was in fact a great deal of freedom in the
choice of these entities [10—13].

It is important to define ways in which these choices
can optimize the behavior of the models. In the past one
of the main applications has been the study of flows at
high Reynolds number and it has been customary to min-
imize the viscosity by tuning the parameters of the col-
lision operators. However, since applications to low Rey-
nolds number flows are becoming increasingly important
[14,15], other criteria become relevant.

For specific applications, of course, there are always
particular ways to improve numerical stability and repro-

ducibility, but in all cases it is important to define the
spatial scale for which the models reproduce hydro-
dynamics and to investigate how this scale depends upon
the parameters of the simulation. Without such informa-
tion, it is diScult to give unambiguous interpretations of
the numerical data [16].

In the literature, this approach is well known from the
application of the k-dependent Boltzmann equation to
continuous fluids [17]. For lattice gases, the analysis was
first considered in detail by Luo et al. [18]and developed
by Grosfils et a1. [19] and Das, Bussemaker, and Ernst
[16] for the study of LGA's. The latter authors show
that some of the simplest LGA models reproduce classi-
cal or even generalized hydrodynamics only over very
large spatial scales and point out that observations in the
literature of "negative viscosities" [20] can be traced to
this restricted regime of applicability. The k-dependent
analysis of the LB method has also been used by various
authors [5,13,12] to help understand the limits of validity
of the new method. We present in this paper a full
analysis of the validity of hydrodynamics for the com-
monly used models in two and three dimensions, using
the k-dependent wave-vector approach.

In Sec. II we consider in detail the specification of the
models and concepts related to the LB method. We
characterize the collision matrix by its eigenvectors and
eigenvalues so that we can study the original LB method,
the BGK method, and possible generalizations using a
common formalism. In Sec. III we set up the wave-
vector formulation and in Sec. IV consider some results
for general models. We consider the unit relaxation time
model separately in Sec. V since it is a special case. Fi-
nally, in Sec. VI we draw conclusions on the ranges of va-
lidity of the models and discuss related factors.
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II. SPECIFICATION OF THE MODELS

In a typical LB model a set of nodes form a regular d-
dimensional lattice. Each node is connected to other
nodes in its local neighborhood by a set of n links, there
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being an identical set of links for each node. To denote a
typical model we use the symbol DdQn, following the no-
tation of Qian, d'Humieres, and Lallemand [9], to mean
an n-link model on a d-dimensional lattice.

An occupation number f, (r, t. } is associated with link i
of node r at time t. The occupation numbers undergo
collisions at the nodes, where the behavior is determined
by the collision matrix and the equilibrium distribution
function, and then propagate along the links to the neigh-
boring nodes, where the process repeats. Each cycle of
collision and propagation constitutes a time step. Thus
the occupation numbers obey the kinetic equation [13]

f, (r+c, , t +1)=f;(r, t)+ g w, C,,[f,(r, t) —f,"q'(r, t)],
J

where C;1 is a linearized collision matrix and f q'(r, t) is
an equilibrium distribution function. The sum is over the
set of links j connected to the node: w is a weight associ-
ated with link j.

As well as connecting nodes on a regular lattice, the
links must be chosen to achieve isotropy of tensors up to
fourth rank formed from sums over the set. Denoting the
magnitude and direction of the ith link by a vector c;,
they must satisfy

d(d+1)l2 stress mode eigenvectors, and a number of
ghost mode eigenvectors which span the remaining link-
vector space. We denote these eigenvectors by A~, A,
A, and A, respectively (so that A, for example,
represents both the individual eigenvectors and the set of
eigenvectors depending on the context). Normalized den-
sity and momentum mode eigenvectors are given explicit-
ly by

A~= 1 A =1

~b i~ i
D

bc
Cia ' (4)

The stress mode eigenvectors may be constructed from
the d (d +1)i2 linearly independent components of

Q;ap=c;ac;p c /D—5 p

via a Gram-Schmidt orthogonalization procedure for ex-
ample [21]. The ghost mode eigenvectors are model
dependent and we will not need explicit expressions for
them.

The reason for the names of the eigenvectors is that
they project out the relevant quantities when they act on
the occupation number link vector f at any particular
node. Thus

p= g w; f; —Ai'a f, J = g wi f;c; —A a f,
gw;=b, gw;c; =0,

S p=gw f g, p-A of, (6)

bcg w& ciacip 5apy g w& ciacipciy 0

bc4
X wiciacip iycis ~ (L}+2}[5ap ys 5ay5ps+5as5py] ~

where greek subscripts a, P, etc. denote spatial indices;
the 5 p, etc. are conventional Kronecker delta functions;
and b, D, and c are parameters. These parameters must
be regarded as being defined by Eqs. (2), although the no-
tation has derived from the LGA. Note that the parame-
ter D is not necessarily the same as the space dimension
of the lattice d. Specific details of the lattices and links
for several common models are given in the Appendix.

The weight w; appears in nearly all sums over i and we
introduce the extension in notation proposed by Vergas-
sola, Benzi, and Succi [12] in which we regard A;, 8;, etc.
as components of link vectors A, B, etc., which lie in an
n-dimensional link-vector space. A generalized dot prod-
uct

AaB—:g w; A;B; (3)

is then defined. The collision matrix can likewise be re-
garded as a linear collision operator C, which acts on link
vectors. We sha11 also have occasion to use the conven-
tional spatial dot product, which we denote x.y or x y .
Summation convention wilI be used with spatial indices
a, P, etc., but not with link indices i, j, etc.

In a typical LB equation the linear collision operator
can be characteriked by its eigenvectors and eigenvalues
as follows [12]. The matrix has one so-called density
mode eigenvector, d momentum mode eigenvectors,

where p, J, and S are the density, the momentum, and the
stress in the fluid at the node in question.

The eigenvectors form a complete set in the sense that

x =p, J,S, G

xAx
J EJ

SG x x 'J DP-. A;A
b bc

Thus P~ projects vectors onto that part of the link-vector
space spanned by the density and momentum mode
eigenvectors of the linear collision operator, and so on.
Other projection operators such as P~, etc. can likewise
be defined.

Now let us apply the formalism developed above to a
discussion of the kinetic equation (1}. First, we consider
the equilibrium distribution function. This is chosen so
that the Navier-Stokes equations are recovered correctly
in a multiscale expansion [10]. In general f q' involves
nonlinear terms in the mean velocity of the lattice gas,
but in a linear analysis we may drop these terms and just

The sum is taken over the complete set of density,
momentum, stress, and ghost mode eigenvectors in an ob-
vious extension of notation. We have defined a general-
ized identity operator I appropriate to the generalized
dot product introduced above.

To facilitate later arguments we construct projection
operators such as

1 D
J J b
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consider [10]

f( q) —E+ J,cD
I

where p and J are the density and the momentum of the
fiuid at the node in question (it can also be shown that
this equilibrium distribution function gives rise to the
Stokes, or creeping liow, equations). As already suggest-
ed by Eq. (6), the equilibrium distribution function can
also be written as

c 1 1

(D+2) A, 2

Note that v & 0 also requires X E ( —2,0).

III. WAVE-UKCTOR FORMULATION

To analyze the hydrodynamic behavior of these models
we introduce an evolution operator H(k) defined by
Fourier transforming the kinetic equation (11)such that

f(eP) PPJ (10)
f, (k, t+1)= bio H;, (k)f, (k, t) .

w;
c; c +(Acr) g A,

—
, A, (12)1 D X X

bc' X=S

since P =I—P —P~ and P; =g„sA,"A" This tw. .o-
parameter BGK model is the same as the original models
derived from the LGA, when the ghost mode eigenvec-
tors are fully degenerate in the latter. It reduces to the
conventional BGK model when A, =o.= —1/v. .

Linear stability analysis requires all eigenvalues to lie
in the interval (

—2, 0) [13]. Additionally the kinematic
viscosity is explicitly determined by the stress eigenvalue
via [13]

using the generalized dot product notation and the pro-
jection operator introduced above. Inserting this expres-
sion in the kinetic equation (1) shows that one may write

f, (r+c, , t+1)=f,(r, t)+ g io C,",f, (r, t),
J

where a right-projected collision matrix C =Co P has
been introduced, the projection operator having been
defined in Eq. (8).

This analysis now allows us to consider the original LB
model, the BGK model, and possible generalization using
a uni6ed approach. First, in the original LB model de-
rived from the LGA [5], the linearized collision matrix
conserves particle number and momentum; thus the den-
sity and momentum mode eigenvectors have eigenvalue
zero. The stress mode eigenvectors are degenerate with
eigenvalue X and the ghost mode eigenvectors may be
wholly or partially degenerate, having one or two eigen-
values depending on the model in question. Given that
A~ and A are eigenvectors with zero eigenvalue it is ap-
parent that, in this case, C is identically equal to C.

In the single relaxation time or BGK method [8,9], the
collision matrix is C= —I/r so that all the f; relax to-
wards f ' by the same factor at each time step (r plays
the role of a relaxation time). The right-projected col-
lision matrix is given by C"= P /r It—is clear. that
C has density and momentum mode eigenvectors again
with eigenvalue zero and stress and ghost mode eigenvec-
tors with a common eigenvalue A, = —1/r.

We can also consider a two-parameter model, slightly
more general than the BGK model, in which we allow
separate relaxation parameters for the stress and ghost
modes. We set Ca=A, Ps+o PG, where o is the common
eigenvalue of the ghost mode eigenvectors. Explicitly

In terms of the right-projected collision matrix intro-
duced above, H(k) =D(k) ~ (I+C"), where D(k) is a di-
agonal displacement operator with components
e' "5;Jlut; [note that D(0)=I]. The eigenvalues of
H(k) defined from

H(k)oe„(k)=e" e„(k)

then give information about the transport coefficients
corresponding to the collision matrix C.

In the long-wavelength regime (k ~0, where k = ~k~ ),
two types of modes exist: soft hydrodynamic modes, re-
lated to the conservation laws, with Re[z(k)]-O(k ),
and hard rapidly decaying kinetic modes, with
Re[z(k)]=O(1)(0, without any physical significance.
The transport coefficients are related to the hydrodynam-
ic modes [16]. In a model without explicit energy conser-
vation d + 1 such hydrodynamic modes exist: two propa-
gating but damped sound modes (denoted +) and d —1

diffusive transverse shear modes (denoted l). The real
part of z(k) represents damping and, if the imaginary
part Im[z (k) ]=kc, (k)k is nonvanishing, the mode prop-
agates with speed c,(k) [16]. In the limit k =0 the hydro-
dynamic modes correspond to the density and momen-
tum eigenvectors of C and the other rapidly decaying
modes correspond to the stress and ghost eigenvectors of
C.

A wave-vector-dependent kinematic shear viscosity
[16] is defined for each shear mode as v(k) = —zi(k)/k,
while a sound velocity and a sound damping constant is
defined for the sound modes as c,(k)= —Im[z+(k)/k]
and I (k) = —Re[z+(k)/k ], respectively. In classical
hydrodynamics, the transport coefficients are k indepen-
dent by de6nition. However, when this situation does not
hold, but the hydrodynamic modes are still clearly
separated from the kinetic modes, one can speak of a gen. -

eralized hydrodynamic regime [16], with transport
coefBcients which are slowly varying functions of k. In
lattice-based models, the transport coe%cients might also
depend on the direction of the wave vector, refiecting an-
isotropies due to the symmetry of the lattice. By comput-
ing the transport coeScients through the spectral
analysis of the evolution operator and looking at their k
dependence, one can judge the range of validity of the
classical and the generalized hydrodynamic regime. In a
previous analysis [16],for the simplest lattice gas Frisch-
Hasslacher-Pomeau (FHP-I) model with a density of
p= 1.8, generalized hydrodynamics were shown to be val-
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id up to k =0.4 for certain directions of k (Fig. 3 of Ref.
[16]}.

IV. RESULTS FOR GENERAL MODELS

We have done an extensive analysis of the hydro-
dynamic behavior of the models detailed in the Appendix

for various values of the parameters and in various direc-
tions in k space. We summarize our results in this sec-
tion and give representative plots of —Re[z(k}/k ] and
—Im[z (k }/k], which indicate the hydrodynamic
behavior as discussed above. We will display results prin-
cipally for the D3Q14 model since this is the more
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FIG. 1. Hydrodynamic behavior of the D3Q14 BGK model along an arbitrarily chosen direction k ~ (I,II), p ) [p=(1+&5)/2] for
several values of the relaxation time parameter ~. Plots (a}, (b), (c), and (d) are for ~=

3 4 2 and 2, respectively. For each value of ~
the upper plot shows —Rez(k)/k against k and the lower plot —Imz(k)/k against k, for all eigenmodes determined by Eq. (15) in
the main text. The soft hydrodynamic modes have Rez = 0 (k ) and Imz = 0(k) or 0 as k = ~k~ ~0. On these plots such modes ap-
pear as horizontal lines as k~0; deviations from constant behavior indicate the limits of validity of classical hydrodynamics in the
LB fiuid. The hard, kinetic modes start to appear on these plots for larger k and they limit the range of validity of generalized hydro-
dynaH11cs.
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eScient method for three-dimensional simulations. The
hydrodynamic behavior of other models follows qualita-
tively the same trends.

Figure 1 shows the hydrodynamic behavior of the
D3Q14 BGK model for k in an arbitrary chosen, fixed

direction (1,{(I,p ) [ItI being the golden mean
(1+v 5)/2=1. 618], for four values of the relaxation pa-
rameter ~. Clearly relatively good hydrodynamic
behavior is achieved for ~( 1, whereas very poor hydro-
dynamic behavior is seen for r ) 1. The behavior at w= 1

is a special case and will be discussed in Sec. V. The
trend of improved hydrodynamic behavior as ~ decreases

past unity is re@ected in all the models.
For the r= ,' —D3Q14model Fig. 2 shows the behavior

in various directions in k space. There is some depen-
dence on direction and one particular point to note is
that z~O at some isolated points kPO, for example,
k =(m, 0,0) in Fig. 2. These are the staggered momentum
modes and correspond to spurious conservation laws [16].
They are arti6cial effects due to the lattice and are
present in all models.

Hydrodynamics for the generalized BGK model with

3
and 0 = —1 is shown in Fig . 3. The hydro-

dynamic behavior has been further improved when com-
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FIG. 2. Hydrodynamic behavior of the 03Q14 r= —' BGK model along various directions in k space. Plots {a},{b),and (c) are for

k~ (1,0 0), (1,1,0), and (1,1,1), respectively. For the behavior for k ~ (1,$$ ) see Fig. 1(b).
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pared with the previous ~= —,
' BGK model for which

A, =o = —4. An extensive range of classical hydro-
3

dynamics is obtained: almost constant transport
coefficients are obtained up to k =2.0 in all directions in
k space.

Finally, in Fig. 4 we look at the effect of adding rest
particles, on the D2Q7 r= —,

' BGK models for a change.
The range of classical hydrodynamics and generalized hy-
drodynamics is not greatly affected by the change. The

speed of sound is reduced on increasing the weight in the
rest particle state and the sound dissipation constant is
increased towards the kinematic viscosity.

V. v = 1 BGK MODEL

The BGK model with unit relaxation time ~= 1
deserves special attention because computationally it is a
very efficient algorithm:
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FIG. 3. Hydrodynamic behavior of the D3Q14 generalized BGK model with parameters A. = —
—, and o = —1 (see main text for

definition of this model), along various directions in k space. Plots (a), (b}, {c),and {d) are for k ~ (1,0,0), (1,1,0), and (1,1, 1), and
(1,1I),p ), respectively.
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c2
k + (d —1)-fold degenerate

2(D +2)
' 1/2

c
z~ =+ik

D

ZJ

c (D —1) kz
2D (D +2}

An expansion in k may be made and the eigenvalues
and the eigenvectors extracted after some tedious alge-
bra, making use of Eqs. (2). They are, for k~O (where

Thus we identify the kinematic viscosity v=c /2(D +2),
the speed of sound c, = t/(c /D), and the sound damping
constant I =c (D —1)/2D (D +2). The kinematic
viscosity is in agreement with Eq. (13}and the speed of
sound is also as expected.

Figure 5 shows plots of —Re[z(k)/k ] and
—Im[z(k)/k] for various directions in k space. While
the calculation above gives the behavior as k~O, the
plots reveal some interesting behavior at nonzero k
values. There are divergences in the behavior at some

(a) D3Q14 x = 1 BGK (reduced matrix) k (1, 0, 0) (b) o3Q(4 z = I BGK {reduced suatrix) k ~ (i, i, ())
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FIG. 5. Hydrodynamic behavior of the D3Q14 r= 1 BGK model as determined from the reduced matrix H, defined in Eq. (17) in

the main text. Plots (a), (b), (c), and (d) are for k sx: (1,0,0), (1,1,0), (1,1,1), and ( l, p, p ), respectively.
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places in k space, for example, at k=(n. —cos '
—,', 0,0),

which can be traced to zero eigenvalues of the matrix H
(i.e., z —+ —~ or e'~0 at these k values). Such diver-
gences distort the hydrodynamic behavior, which, conse-
quently, is not as good as that seen for the ~ & 1 models.

VI. CONCI. USION AND DISCUSSION
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f;(r) = +
2
E &c; (r&+c,&/A. ),pD

bc
(19)

where A, is again the stress mode eigenvalue, represents a
uniform shearing flow with

J
Q& E~pfp

It is readily checked that (19) solves (1) independent of
the model. This type of solution cannot be constructed in
a periodic box and requires boundary conditions such as
moving walls to maintain it; thus it is missed by the
Fourier transform which underlies the k-dependent
wave-vector analysis we have been discussing. Its ex-
istence indicates that the rich hydrodynamic behavior of
the LB equation is not completely revealed even by full
wave-vector analysis.

The trends found in the preceding section are very
clear. BGK models with ~& 1 have a very poor range of
classical and generalized hydrodynamics. Much better
ranges of validity are found in models with ~&1. Also
the v = 1 BGK model, while being a simple algorithm to
implement, does not have a particularly wide range of
classical hydrodynamic behavior. These trends were
common to all the models studied.

At the price of a slight increase in complexity, even
better ranges for classical and generalized hydrodynamics
can be achieved for the two-parameter BGK models,
again provided the appropriate stress relaxation time
—1/A, (1. The additional ghost relaxation time —1/cr
may conveniently be set to unity. Thus for the model
shown in Fig. 3, near classical hydrodynamics holds for
k =2.0, in all directions in k space. The increased com-
plexity lies in the construction of the collision matrix,
which is defined in Eq. (12}. However, such a step only
has to be performed once in the initialization of a LB
simulation and the net computational cost is fairly slight.

The biggest computational cost in reducing the relaxa-
tion time ~ is the corresponding reduction in kinematic
viscosity. The time taken for the fluid to reach a steady
state in a simulation box of size L is of order L 2/v; thus a
reduction in v inevitably means an increase in this time.
This is of significance in the simulation of colloidal sus-

pensions, for instance, where a separation of time scales
between the dynamics of the fluid and the dynamics of
colloid particle relaxation must be maintained.

Finally we note that there are valid hydrodynamic
solutions to the LB kinetic equation (1) that cannot be
constructed out of the type of solutions we have been dis-
cussing up to now [22]. For example,

APPENDIX

%e give below details of four common models. Again
we use the notation of Qian, d'Humieres, and Lallemand

[9], in which DdQn denotes an n-link model on a d-

dirnensional lattice. Link weights and directions are m,

and c; and associated parameters are b, D, and c . In
terms of an underlying LGA, these parameters can be in-

terpreted as the number of particles per node, an efFective

dimension, and the square of the particle velocity, but in

general they must be regarded as being determined by
Eqs. (2) in the main text. The speed of sound in all the
models is given by c, =i/(c /D), but specification of ki-

nematic viscosity requires the stress mode eigenvalue X

and is given by Eq. (13}in the main text.
D2Q6 is a two-dimensional model on a triangular lat-

tice with six inks per node to the nearest neighbors

c;=(+1,0),(k —,', +v'3/2) with w;=1. The parameters
are b =6, D =2, and c = 1.

D2Q8 is a two-dimensional model on a square lattice
with four links per node to the nearest neighbors
c;=(+1,0),(0, +1) with w; =4 and four links per node to
the next-nearest neighbors c, =(+1,+1) with w, = 1. The
parameters are b =20, D =

—,', and c =
—,'.

D3Q14 is a three-dimensional model on a simple cubic
lattice with six links per node to the nearest neighbors
c;=(+1,0,0), (0, +1,0),(0,0, +1) with w, =8 and eight
links per node to the next-next-nearest neighbors
c; = (+ 1,+1,6 1 ) with w; = 1. The parameters are b =56,
D =7, and c =3.

D3Q18 is another three-dimensional model on a simple
cubic lattice with six links per node to the nearest neigh-
bors c;=(+1,0,0), (0,+1,0),(0,0, +1) with w, =2 and
twelve links per node to the next-nearest neighbors
c, =(+1,+1,0), (+1,0, +1),(0, +1,+1) with w;=1. The
parameters are b =24, D =4, and c =2.

In these models one may also include a rest particle
state, with c;=0, in which case the model becomes a
DdQ(n +1) model. The weight in the rest particle state
must also be given to fully determine the model: The pa-
rameters b, D, and c may again be determined from Eqs.
(2). Adding a rest particle state of weight r to the models
above we obtain b =6+r, D =2(6+r)/(6 —r),
and c =6/(6 —r) for D2Q7; b =20+r, D =2(20+r)/
(16—r), and c =24/(16 —r) for D2Q9; b =56+r,
D =2(56+r)/(16 —r), and c =48/(16 —r) for D3Q15;
and b =24+r, D =2(24+r)/(12 —r), and
c =24/(12 —r) for D3Q19.

In terms of models already considered in the literature,
D2Q6 clearly derives from the original FHP-I LGA [1]
and D3Q18 derives from the three-dimensional projec-
tion of the four-dimensional face centered hypercubic
LGA [2]. Although D3Q14 is suggestive of a seven-
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dimensional LGA (since D =7), we have been unable to
construct one that projects down to the particular set of
link vectors and weights in this model. If the rest particle
state in D3Q15 has weight r =8, we obtain a model used

by Alexander, Chen, and Grunau [23] with b =64,
D = 16, and c = 16. By setting r = 16 in D3Q15 we ob-
tain one of the models considered by Qian, d Humieres,
and Lallemand [9] for which b =72 and
c /D =c /(D +2)=

—,
' (no solution can be obtained for D

and c separately unless one allows formally D, c ~00
with D/c fixed at 3).

The three-dimensional models can be projected down

to two-dimensional models simply by ignoring the value
of c;, and combining those links with the same (c;„,c;„).
Thus D3Q14 and D3Q18 both project down to D2Q9
with r =8 and 4, respectively (a common factor may be
divided out of the weights for the D3Q14 projection).
The values of b, c, and D are unchanged in such a pro-
jection and the hydrodynamic behavior is simply given by
the k, =O hydrodynamics of the original versions, al-

though some of the hard kinetic modes will be lost.
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