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Diffusion in lattice Lorentz gases with mixtures of point scatterers
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Monte Carlo simulations are carried out to evaluate the diffusion coefficient in some lattice
Lorentz gases with mixtures of point scatterers in the limit of a low concentration of scatterers.
Two models on a square lattice are considered: (a) right aud left stochastic rotators plus pure
refiectors and (b) right and left stochastic mirrors plus pure refiectors. The simulation data are
compared with the repeated ring approximation (RRA). The agreemeut is excellent for models in
the absence of pure re8ectors, suggesting that the RRA gives the correct difFusion coefficient for
those cases. As the fraction z~ of re8ectors increases, the difFusion coefficient decreases and seems
to vanish at zs 0.8 (percolation threshold) with a critical exponent p, 2 (stochastic model) or
p 3 (deterministic rotator model).

PACS number(s): 05.20.—y, 05.40.+j, 51.10.+y

I. INTRODUCTION

Lattice gas cellular automata have been a subject of
great interest in the last few years as models of nonequi-
librium fiuids [1]. In the special case of Lorentz lattice
gases, a moving particle follows ballistic trajectories in
a d-dimensional regular lattice with a fraction p of the
sites occupied by fixed scatterers randomly distributed.
Upon hitting a scatterer, the moving particle modifies its
direction of motion according to stochastic or determin-
istic collision rules. In addition, the scatterers can be of
a single type or not, and they can have excluded volume
or not [2,3].

The main transport property in Lorentz gases is the
diffusion coefficient D(p), which is defined by the Einstein
relation

(r'(t)) = 2dD(p)t, t -+ oo,

where the system has been assumed isotropic. In the case
of lattice Lorentz gases, the Green-Kubo formula for the
diffusion coefficient reads

(2)

where

is the velocity autocorrelation function. In Eq. (3), (. . .)
denotes an average over different trajectories in a given
lattice realization, followed by a subsequent average over
difFerent realizations. In Eq. (2) and thereafter, the par-
ticle is assumed to move with»~it speed and the nearest
neighbor distance is taken as the length unit.

If the collision rules include the possibility of backscat-
tering, correlated collisions contribute to the diffusion
coefficient as much as do uncorrelated collisions, even
in the low-density limit (p + 0) [4,5]. In that case,
the Boltzmann prediction for D is incorrect. Recently,

van Beijeren and Ernst [6] used an exact analytic enu-
meration method to derive the exact expression for
lim~~o pD(p)—:D' in the case of identica/ point scat-
terers. Subsequently, Ossendrijver, Santos, and Ernst [2]
obtained analytical expressions for D* by resumming all
the contributions associated with the so-called repeated
ring collisions [7]. Since repeated ring collisions consti-
tute only a subset of all retracing trajectories, the re-
sults obtained in Ref. [2] are in general only approxi-
mate. Nevertheless, the low-density diffusion coefficient
given by the repeated ring approximation (RRA) coin-
cides with the exact result in the special case of identical
point scatterers. Consequently, in that case the effects
associated with nonring collisions cancel out.

The aim of this paper is to evaluate the diffusion coef-
ficient in mixtures of point scatterers by means of Monte
Carlo computer simulations. By an adequate space and
time scaling, the simulations are carried out in the limit
p -+ 0 directly. Two models have been considered on a
square lattice: (a) right and left rotators and (b) right
and left mirrors, both with and without pure reflectors.
To preserve the symmetries under rotation and reflec-
tion, the fractions of left and right scatterers are equal.
The simulation results are compared with the RRA. It
is found that the agreement is excellent in models in the
absence of reflectors. As the fraction x~ of reflectors in-
creases, the RRA systematically underestimates the dif-
fusion coefficient. In fact, the RRA predicts a percola-
tion threshold x& ——3, while the simulations suggest a
threshold value x& 0.8. On the other hand, the dif-
fusion coefficient obtained &om simulation decays faster
(i.e., with a larger critical exponent) as it approaches
percolation than predicted by the RRA.

This paper is organized as follows. The models of mix-
tures of point scatterers studied in this paper are briefly
described in Sec. II. The corresponding diffusion coeffi-
cients according to the Boltzmann approximation (BA)
are also given. The known exact result for the case of
identical point scatterers is used in Sec. III to define the
average scatterer approximation (ASA). Section IV sum-
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marizes the results obtained kom the RRA. Some details
about the simulation method are given in Sec. V. Section
VI is devoted to the comparison between the simulation
and the BA, the ASA, and the RRA. Finally, the conclu-
sions are discussed in Sec. VII.

are oriented —45 with respect to that direction. %hen
a particle hits a mirror, it has a probability o. of being
transmitted, a probability P of retracing its trajectory,
and a probability g = 1 —a —P of being specularly re-
flected. The collision matrices of the mirrors are

II. DESCRIPTION OF THE MODELS

WR ——
n b p

penh
(~ p g a)

(4)

Let us consider a square lattice with a fraction p of
the sites occupied by point scatterers of diH'erent types.
Let x be the &action of scatterers of type a, so that

z = 1. When the particle moves along the direc-
tion i and hits a scatterer a, it has a probability W,~

of being deflected along the direction j. The set of
4 x 4 matrices W (or, equivalently, the set of eigenvalues
ur r, E = 0, 1, 2, 3) define the collision rules of the model.

To fix ideas, we consider two models: the rotator model
and the mirror model. Their collision rules are sketched
in Fig. 1 of Ref. [2]. In the rotator model, a fraction
x~ of the scatterers are right rotators, a fraction xL, are
left rotators, and a fraction x~ ——1 —x~ —xI. are pure
reflectors. If the particle hits a right (left) rotator, it
has probabilities n, P, p, and b = 1 —n —P —p of
being transmitted, reflected, deflected to the right (left),
and deflected to the left (right), respectively. If it hits
a pure reflector, it is reflected with probability 1. The
corresponding collision matrices are

(n p P 0)
n 0 P

R P 0
&0P ~

(9)

(n 0 P
OnpP
Ppa0

(ppOn)
with eigenvalues

~RO ~I 0 1 ~R1 ~L3 1 2p
~R2 = ~L,2 = 1 —2'7

& ~R3 = ~l.i = —& + 2~

lim pD(p) = —
~

—
o + —

o ip~o 4 (A', A', )
0

In the deterministic case (p = 1) and in the absence of
pure reflectors (z~ = 0), this model reduces to the one
introduced by Ruijgrok and Cohen [9]. Notice that the
deterministic mirror model in the presence of reflectors
does not exhibit diffusion, since all the trajectories are
trapped between two reflectors with intermediate colli-
sions at the mirrors.

In the Boltzmann approximation, which only accounts
for uncorrelated collision sequences, the low-density dif-
fusion coefflcient is [2]

( happ
p b a p

)

where

Ag —1 —) z~lU~r

(0 0 1 0~0001
1000

(0 1 0 0)
Their eigenvalues are

n)RI = mL~
——n+ P(—1) +. p( —i) + bi

(6)

In the above models with z~ = zl. =
~ (1 —z~), one has

1
D; = —[1 —n+ P+z&(1+ n —P)]0

The BA fails if backscattering is present, i.e. , if z~ P 0
andior P g 0. In particular, if all the scatterers are pure
reflectors (z~ = 1 or P = 1), one has D* = 0, while the
Boltzmann approximation yields D0 = 4.

~ae = (—1) (8)
III. THE AVERAGE SCATTERER

APPROXIMATION

In the deterministic case (p = 1), this model reduces
to the one introduced by Gunn and Ortuno [8]. These
authors construct a mean-field theory for the transition
from all trajectories being localized to some being ex-
tended.

In the mirror model, there are right mirrors, left mir-
rors, and pure reflectors with fractions x~, xl. , and

x~ ——1—x~ —xL„respectively. Right mirrors are oriented
+45 with respect to a given direction and left mirrors

By exactly enumerating all possible trajectories on a
Cayley tree, van Beijeren and Ernst [6] were able to eval-
uate the low-density diffusion coefBcient in the special
case of identical point scatterers. For models defined on
square lattices, the result is

1(1 1)
lim pD(p) = —

~

+ —
ip~o 4 (Ai A3)
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where

1 —mg
Ag

——2y , 8=1,3.
1 —we+ (1+wr)y

(16)

A&
——2y)x,/ = 1,3, (22)

1 —w r+ (1+w r)y
'

and y is the physical root of the polynomial equation

(1 —w, )y

1+w2+ (1 —w2)y

1 —my

1 —wt + (1+wt)y

In Eq. (16), y is the real root of the cubic equation

) ~ (1 —w2)y 1 —w t

(1+tU 2+(1 —tU 2)y 1 —w t+(1+w t)y

= 0 (17)
1 —ws + (1+ws)y

that satisfies the condition y & l.
Equations (15)—(17) can be used to define the average

scatterer approximation for a mixture of scatterers [2].
In the ASA, the different types of scatterers are replaced
by a single average scatterer with a collision matrix W
defined as

W=) z.W. ,

whose eigenvalues are tUr = g z w r Then, Eqs. (15)—
(17) are used with wr replaced by tUg.

In the rotator and the mirror models,

tUg = n(l —xgy) + [P(1 —zgy) + z~](—1)
.r+ (+(&+~)(1 —») 2

where h = 0 in the mirror model and we have assumed
that xR = zL, = 2(1 —x~). In that case, At ——As, and
Eq. (17) becomes a quadratic equation. If tU2 ———tUt,
Eq. (17) reduces to a linear equation. That happens if
3n + P = 1, in which case the ASA yields

(1 — R2)y
(1 —z~) .+( — .)y

1 —mRz

1 —tUJtt + (1 + %Vent)y

1 —mR
~

—2x~ ——0 .
1 —wRs + (1+wRs)y)

(24)

The parameter y monotonically increases with the &ac-
tion x~ of reBectors and goes to infinity as x~ approaches
the threshold value xB ——3. The general behavior of y
when x~ is slightly smaller than 3 is

(1
y=A/ ——xa

I (25)

where

2 (1+wR2 1 —wItt 1 —w~s)A= —
/

+ +
9 (1 —wa2 1+wRt 1+w~s)

(26)

= 0. (23)
1 —w s+ (1+w s)y~

For the models considered in this paper, the above equa-
tion is cubic:

3 ct(1 —z~)
4 1 —2n(1 —zgy)

(20) Consequently,

As can be easily verified, if z~ = 0 and P = 0, then y = 1
and both the BA and the ASA are exact.

3, t'1
DRRA =

4 i, 3
(27)

IV. THE REPEATED RING APPROXIMATION

The simplest correlated collision sequences are the so-
called ring collisions. They are of the form AA, AAA,
. . . , where the particle experiences uncorrelated collisions
between successive visits to the same scatterer A. Typ-
ical nonring correlated sequences are ABAB (repeated
crossings) and ABBA (nested rings). By using resum-
mation methods of kinetic theory [7], one can account
for all repeated ring collisions. In the low-density limit,
the diffusion coefficient obtained from the RRA is [2]

where, as will be assumed in the sequel, we have taken
x~ ——xL, . Thus, the RRA predicts that the diffusion
coefficient tends to zero (i.e., the system approaches per-
colation) as the fraction of reflectors tends to s. More
generally, one can write

D' = A(x~ —zg)", xg w x~ .

According to the RRA, x& ——
3 and p, = 1. As a simple

illustrative case, let us consider the rotator model with
n = P = p = b =

4 (i.e., the rotators become isotropic
scatterers). In that case, Eq. (24) reduces to a linear
equation and one simply gets

where

1 t 1 1
»m~D(~) = —

l pRRg+ pRRAp E I 3
—DRRA &

9 (1
DRRA -

I

——»
8 &3 )

Nevertheless, the behavior (27) is not universal. If the
parameters of the model are such that A = 0, the right-
hand-side of Eq. (25) is replaced by the subleading term,
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i.e., y (s —z&) ~ . This only happens in the deter-
ministic rotator model (p = 1) introduced by Gunn and
Ortuno [8], in which case

1
DRRA 2(1 —zii)

1 3xjg

1+x~
(30)

and p 2'
If the parameters of the model are such that A = 0,

the model becomes trivial. This happens if o;+P = 1 and
also in the mirror model with P + p = 1. In both cases
the trajectories are restricted to one-dimensional subsets
and the diffusion coefficient vanishes (except if a +P = 1
and z~ = 0, in which case D' = z&). As an illustration,
let us consider the mirror model with n &( 1. Then,

nal path with a nonzero area) are simply ignored on Cay-
ley trees. However, "loops" have a negligible probability
in the low-density limit, so that the diffusion coefEcient
for models on Cayley trees is identical to the one on the
corresponding regular lattice [5]. Rather than performing
simulations for finite p and then extrapolating to p —+ 0,
we have directly worked in the limit p + 0. This has been
done by introducing the scaled distance 8* = pS and time
t* = pt. In the low-density limit, 8* and t* become con-
tinuous variables. The probability density for 8* is the
Poisson distribution P(E') = lim~ o P(I—) = e ~ and

Eq. (2) becomes

D* = lim D*(t'),

where
1 —3x~

DRRA = n, x~$0,
4za 1 —xgy

(31)

(34)

DRRA ~'~', ~& —0.
8P

(32)

V. THE SIMULATION

Since we are interested in transport properties in the
limit of a low density of scatterers, we have considered
the diffusion on Cayley trees [6]. On a Cayley tree (or
Bethe lattice), each scatterer is connected by branches
to b neighbors (b = 4 in the case of a square lattice),
located in one of 6 fixed lattice directions with respect
to the first one. The intervals between scatterers have
a length 8 = 1, 2, 3, . . . sampled &om the distribution
P(8) = p(l —p)~ i, so that the mean free path is

(&) = p . The particle moves from scatterer to scatterer
along the branches of the tree. Consequently, those corre-
lated collision sequences on a regular lattice in which the
particle revisits a scatterer along a "loop" (i.e. , a polygo-

In our simulations, we have evaluated C (t') at t*

j At, j = 0, 1, . . . , M by averaging the dot product v(0)
v(t') over N trajectories. Obviously, the reliability of
the results is limited to times for which

I

4 (t')
I

is signif-
icantly larger than X i~2. Then D'(t*) is numerically
evaluated by applying Simpson's rule and the diffusion
coefBcient D* is obtained by extrapolating to t* ~ oc.
We have typically taken At = 10, M = 250, and
N =2x105.

Figure 1 shows
I
O(t')

I
for the case of isotropic scat-

terers, i.e. , rotator model with o. = P = p = b =
4 and

z~ = 0. The corresponding curve for D'(t*) is plotted
in Fig. 2. For times t* ) 15, D*(t') has reached a sta-
tionary value in excellent agreement with the exact value

3D* 8'
As another test of the simulation, it is instructive to

consider the extreme case in which all the scatterers are
reffectors (z~ = 1 or P = 1), so that all the trajectories
are trapped between two re8ectors and the diffusion co-
efficient vanishes. Figure 3 compares

I
C(t')

I
obtained

I I I I I I0 0 0 0 0000

o -'=-

00

Ai&
-"

b, ~ ~ ~&+AD~~

0 0

FIG. 1. I og-log plot of the absolute value
of the velocity autocorrelation function C (t')
for the model of isotropic scatterers. The
Monte Carlo data points are denoted by open
circles. The estimated errors in the Monte
Carlo results are shorn as open triangles.
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FIG. 2. Plot of the time-dependent difFu-

sion coefficient for the model of isotropic scat-
terers. The Monte Carlo data points are de-
noted by open circles. The broken horizontal
line represents the exact asymptotic value.
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FIG. 3. Log-log plot of the absolute value
of the velocity autocorrelation function 4 (t')
for the model of pure re8ectors. The solid
line is the exact result. The Monte Carlo
data points are denoted by open circles. The
estimated errors in the Monte Carlo results
are shown as open triangles.
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FIG. 4. Plot of the tame-dependent ddFu-
sion coefficient for the model of pure re6ec-
tors. The solid line is the exact result. The
Monte Carlo data points are denoted by open
circles.
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from simulation with the known exact result [10]. The
corresponding results for D'(t') are shown in Fig. 4.

VI. RESULTS

A. Models without reflectors

Let us first consider models in the absence of pure re-
flectors (z~ = 0). As a consequence, the particle is never
trapped in a closed trajectory. As a representative ex-
ample of the rotator model we have considered the case
o. = P = (1 —p)/2, h = 0. The diffusion coefficient ob-
tained from the simulation is compared in Fig. 5 with
the Boltzmann approximation, the average scatterer ap-
proximation, and the repeated ring approximation. We
observe that the agreement of the RRA is excellent for
all the values of p. The ASA seems to be a fair approx-
imation only in the region of small p. The BA is a very
poor approximation, except in the limit of deterministic
rotators (p = 1).

As a first example of the mirror model, we have chosen
n = p = (1 —P)/2. The results are plotted in Fig.
6. Again, the RRA reproduces the simulation results
within the error bars. The ASA is a fair approximation
that correctly takes into account that D* —+ 0 in the limit

P —~ 1.
A more interesting case is the mirror model with P =

p = (1 —o,)/2. Figure 7 shows that, as before, the RRA
agrees with simulation. The extrapolation of this agree-
ment to n -+ 0 suggests that the behavior (32) might be
correct. As shown in Fig. 7, the ASA predicts diffusive
behavior DAsA

——(1+~33)/48 ~ 0.14 even at n = 0.

B. Models with reflectors

As said in Sec. IV, the RRA predicts a percola-
tion threshold when the concentration of pure reflectors
reaches the critical value x& ——3. In order to test this
expectation, we have carried out simulations with differ-

ent values of x~. Let us first take the model of isotropic
scatterers plus reflectors. The diffusion coeKcient as a
function of x~ is plotted in Fig. 8. Except when the
concentration of reflectors is small, the RRA is a poor
approximation. Not only is the critical value z& clearly
larger than 3 but the critical exponent p is larger than

On the other hand, it is interesting to note that the
ASA is only correct at, but not near, x~ ——0 and fails to
predict a percolation threshold.

Similar conclusions can be drawn from the mirror
model with n = P = p = —,as can be seen in Fig. 9.
Again, the RRA seems to reproduce the diffusion coeK-
cient and its slope at x~ ——0, but underestimates D* at
finite x~. The ASA, however, overestimates D* even at
x~ ——0.

As seen in Sec. IV, the RRA predicts for the determin-
istic rotator model (p = 1) a critical exponent (p, = 2)
difFerent from the general one (p = 1). This is the main
motivation for considering this model. Its difFusion coef-
ficient is plotted in Fig. 10 as a function of the fraction
of reflectors. As in the two previous cases, the RRA
seems to be correct in the region of low concentration of
pure reflectors, but strongly deviates from simulation for
x~ ) 0.2. It is interesting to note that, in contrast to
what happens in the two previous cases, the ASA predicts
for the deterministic rotator model a diffusion coeKcient
smaller than the correct one if x~ & 0.4.

Comparison between the simulation results of Fig. 10
and those of Figs. 8 or 9 indicates that in the first case
the critical exponent p takes a different value than in
the other two cases. More specifically, p is larger in the
deterministic rotator model than in the stochastic rotator
and mirror models. This behavior is just the opposite of
what is expected from the RRA. Although our simulation
data are not sufBciently close to the percolation threshold
to allow for an accurate determination of p, they are
consistent with the values p = 2 for stochastic scatterers
and p = 3 for the deterministic rotator model. This
can be observed in Fig. 11, where D' ~" (with p, = 2 or
p, = 3) is plotted versus x~ for the three cases considered
before. It is quite interesting to note that the percolation

I I I I
t

I I f ( I 1 I I I

BA

RRA

~~AS A

FIG. 5. Diffusion coefficient for the rota-
tor model with a = P = (1 —p)/2 in the
absence of reBectors. The Monte Carlo data
points are denoted by open circles. The solid
lines correspond to the Boltzmann approxi-
mation (BA), the average scatterer approxi-
mation (ASA), and the repeated ring approx-
imation (RRA).

QH
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0.3

FIG. 6. Same as Fig. 5, but for the mirror
model with u = p = (1 —P)/2 in the absence
of re6ectors.

0.0
0.0 0.2 0 4 0.6

p 4

& 0.3 FIG. 7. Same as Fig. 5, but for the mirror
model with P = 7 = (1 —n)/2 in the absence
of reBectors.

0 0 I I

Q Q 0.2 0.3 0.4 0.5

0.5

0.3
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0. 1

FIG. 8. DifFusion coefficient as a function
of the fraction z~ of reBectors for the rotator
model with u = P = 7 = h = — (isotropic
scatterers). The Monte Carlo data points
are denoted by open circles. The solid lines
correspond to the Boltzmann approximation
(BA), the average scatterer approximation
(ASA), and the repeated ring approximation
(RRA).
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FIG. 9. Same as Fig. 8, but for the mirror

model with a = P = p = —.

RRA

0 0 I I I I

0.0
I I I I I I I I I I I I

0.2

0 0
I I f I I ! ! I ! I I I P I IDI I rhea !~I & I I l~l

0.4 0.6 0 8

0.5 ( I I I I I 1 I I I

p 4

Li
FIG. 10. Same as Fig. 8, but for the deter-

ministic rotator model (p = 1).
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FIG. 11. Plot of D' ~" as a function of
the fraction x~ of pure reflectors for isotropic
scatterers (p, = 2, triangles), stochastic mir-

rors with o. = P = p = — (p = 2, squares),
and deterministic rotators (p = 3, circles).
The Monte Carlo data points are denoted by
the symbols. The solid lines are linear Sts.

0.0
0.4 0.5

B



50 DISCI-USION IN LATr ICE LORENTZ GASES %ITH MIXTURES. . . 4585

threshold seems to occur at the same fraction of reflectors
in all cases, namely, x& 0.8. This "universal" character
of x& is predicted by the RRA, although in that case
the value is much smaller (x& ——s). The linear fits of
the simulation data give the values A 0.35 (isotropic
scatterers), A 0.27 (stochastic mirrors), and A 3.7
(deterministic rotators) for the amplitude defined in Eq.
(28).

By using a mean-Geld theory for the deterministic ro-
tator model, Gunn and Ortuno [8] have estimated that
all trajectories are localized (absence of percolation) if
zQ Q 3 Since diHusive behavior is a sufficient condi-
tion for percolation, our simulation results show that the
percolation threshold is clearly larger than x~ ——3.

VII. CONCLUSIONS

In this paper we have performed Monte Carlo simula-
tions to obtain the difFusion coefficient D in some lattice
Lorentz gases with mixtures of point scatterers. Two
different models on square lattices have been considered:
the rotator model and the mirror model, in both cases
with and without pure reflectors. In all cases, the moving
particle has a nonzero probability of backscattering upon
collision, so that correlated collision sequences are signif-
icant even in the limit of low concentration of scatterers
(p ~ 0). The simulations have been carried out directly
in the above limit by a convenient time and space scaling
on a Cayley tree. This allows us to evaluate the scaled
diffusion coefficient D:—lim~~o pD(p) directly.

In the absence of backscattering, correlated collision
sequences have a vanishing weight in the limit p -+ 0
and the Boltzmann approximation, which accounts for
all uncorrelated collisions, gives the correct diffusion co-
efficient. When backscattering is present, the only exact
analytic enumeration of all possible trajectories we are
aware of has been done by van Beijeren and Ernst [6] in
the particular case of point scatterers of a single type. It
turns out that the repeated ring approximation (RRA),
which only accounts for a subclass of correlated collisions
(the so-called ring collisions), yields the correct diffusion
coefficient in the case of scatterers of the same type [2]. It
is then natural to compare our simulation results with the
RRA predictions in order to assess the degree of validity
of the approximation when applied to mixtures of point
scatterers. The following points summarize the most im-
portant conclusions drawn &om our study.

(1) The agreement between the simulation data and
the RRA is excellent for those models in which there are
no trnpped trajectories, i.e., models with a vanishing frac-
tion (xi' = 0) of pure reflectors. This allows us to con-
jecture that the RRA gives the exact diffusion coefficient
for those models, even when the scatterers are not of the
same type. This would mean that the contributions to
diffusion associated with all the correlated nonring colli-
sion sequences cancel out. Although we have considered
only a limited number of cases, they are sufficiently rep-
resentative to support our conjecture.

(2) Given a model, the diffusion coefficient is a non-
linear function D'(x~) of the fraction of pure reflectors.
Our simulations suggest that the RRA gives not only the
correct difFusion coefficient at z~ ——0 but also the slope
(BD'/Bx~) o.

(3) As the fraction x~ increases, the RRA systemati-
cally predicts a smaller diHusion coefficient than the cor-
rect one and becomes a poor approximation. This means
that nonring collisions involving pure reflectors must have
a positive net contribution to diHusion.

(4) Nevertheless, the RRA succeeds in predicting that
there exists a certain threshold value x& for the con-
centration of reflectors beyond which trapped trajecto-
ries become dominant and the difFusion coefficient van-
ishes. The critical exponent p describing the behavior
near threshold, see Eq. (28), takes for the deterministic
rotator model a value different from the one for general
stochastic models.

(5) At a quantitative level, on the other hand, the
threshold behavior predicted by the RRA is clearly incor-
rect. According to this approximation, x& ——3, p = 1
for stochastic models, and p, =

2 for the deterministic
rotator model. The respective values observed in the
simulations are z& 0.8, p 2, and p 3. This also
shows that the percolation threshold (xti = s) estimated
by Gunn and Ortuno for the deterministic rotator model
[8] is not correct.
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