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We express correlation functions in chaotic systems as averages over correlation functions along

periodic orbits and use the thermodynamic formalism and the cycle expansion to obtain high pre-

cision results.
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I. INTRODUCTION

The correlation function C~tr(t) between two observ-
ables A(x) and B(x) along a trajectory (x(t)) is defined
as the average,

] T
Cdttt(t) = lim — A(x(r + t)) B(x(r)) dr .

Taboo T 0

If the dynamics is ergodic, almost all trajectories give
the same correlation function. Then Cdogs (t) may also be
obtained from the invariant measure dp(x),

C(tx) x= / A(x(t; xp)) B(xp) dtt(xp), (2)

where now x(t; xo) denotes the point reached after a time
t by a trajectory starting &om xo. In chaotic systems
with few degrees of freedom, Eq. (1) is the form most
useful in practice since it can be applied directly to time
series obtained &om experiment or computation. The
second form is usually less useful because the invariant
measure, often a nonuniform distribution supported by a
fractal set, is rather difficult to characterize [1].

Some progress can be made if the dynamics is hyper-
bolic. Then periodic orbits are dense in the invariant set
and can be used to approximate the measure [1—4]. zeta
functions and the cycle expansion can be used to tame the
exponential proliferation of orbits, thus allowing accurate
computations [5—7]. This technique has been applied to
computations of spectra in maps and fiows [8—10]. Here,
we extend the formalism to obtain full correlation func-
tions. We will mainly focus on maps, but the formulas
for time continuous systems will be listed as well.

The outline of the paper is as follows. In the next
section, we discuss the thermodynamic formalism for the
calculation of averages &om periodic orbits, the specific
form for correlation functions, the extension to time con-
tinuous systems, and some computational aspects. In
Sec. III we apply the formalism to the tent map and a
perturbed tent map. We conclude with some final re-
marks in Sec. IV.

II. THERMODYNAMIC FORMALISM
FOR AVERAGES

As Eq. (2) suggests, C~rt(t) emerges as the average of
the quantity a(xo) = A(x(t; xo) )B(xo) over the invariant
measure. Thus, correlation functions may be obtained
&om phase space averages of a special kind of observable.
We, therefore, treat the general formalism for averages
first before specializing to correlation functions.

A. Generalized evolution operator

To relate phase space averages of any observable a(x)
to periodic orbits, consider the generalized evolution op-
erator [11,12],

Z~(y, x) = b(y —f(x))e

and its nth "iterate, "

"
(dt, t)x= xf dx„, .dxtdp(yx ,),„

n —1

x Zs(xs, xs g) f~(xg, x)
~ x x ~

k=2

= b[y —f("l(x)]exp (I ) a(f "l(x)) . (4)

This evolution operator carries information about both
the discrete time dynamics and the observable of interest.
Periodic orbits are selected by taking the trace of l:q

n —1

trl. = dxbx —f x exp q a f x
k=o

= ) u)(x~("i)e~ ("
(n)Xp

where x& are the points periodic after n iterations, and
where
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n —1

a(xp ) = o.p = ) a(f~"l(xp~"l)),
I =o

(6)

is the sum of the observable along the trajectory starting
at x& . The we1ghts of the periodic points are given by

(n)

—1

m(xp ) = mp = det[l —Df~"l(xp )] (7)

with the derivative matrix

n —1
Df~" (xp ) = Df(f~"l(xp )),

~ 4 h

Ic=0
(8)

(9)

Asymptotically, for diverging period n, we expect (a)„ to
approach the average a of a over all of phase space and
thus an exponential behavior of the trace, viz.

the product of the derivatives Df of the map along the
orbit.

Within the thermodynamic formalism [4,13],one views
this trace (5) as a kind of canonical partition function.
The average of the ap's may then be obtained as the
logarithmic derivative of a suitable generating function.
The average (a)„of the observable a computed from all
periodic orbits of period n is one nth this value, since the
a~'s include a summation over all points of the trajectory.
Thus,

canonical partition function can be derived [6]. Note that
for all points along a periodic trajectory, m~ and a~ take
on the same values, since only the order of summation in
(6) and the order of products in (8) change when shifting
the initial point. Moreover, if a periodic orbit is traversed
r times, these quantities become multiples and powers of
the ones for a single traversal, respectively.

Thus, replacing the summations in (11) by sums over
all primitive periodic orbits p with n„different points, the
derivative matrix D„[Eq. (8)] for the primitive periodic
orbit (raised to the power r), and summed observable a„,
we find [6]

(14)

We now define the zeta function Z~(z) such that its nega-
tive logarithmic derivative with respect to z equals A~(z),

For q = 0, this zeta function becomes the Predholm de-
terminant of the evolution operator [15]. By the usual
expansions [6], this zeta function can also be written as
an infinite product over periodic orbits. But for most
purposes, including numerical calculations, this form is
satisfactory (see Sec. IIE).

C. Correlation functions

for n m oo. (10)

This asymptotic behavior is most easily extracted from
the poles of the grand canonical partition function,

Any observable a can enter in the generalized evolution
operator (3). Correlation functions are obtained for the
choice a(xo) = A(x(t;xo))B(xo). Specifically, for maps
a(x) = A(f'(x))B(x) and, thus,

Its leading pole behaves like ze(q) e is, so that the
average is given by

d
a = ——1nzo(q)], ,

dg

This formula simplifies slightly if we take into account
that the leading pole for a hyperbolic map is zo(q = 0) =
1, whence,

ap = ) A(f~"+'l(xp))B(f~" (xp)),

where x~ is a point on the periodic orbit P. Except for
a division through the period np of the orbit this expres-
sion equals the correlation function (1), for A and B along
the periodic orbit. As one might have anticipated, the
canonical formula (9) thus expresses the ergodic correla-
tion function as a weighted average of correlation func-
tions along periodic orbits. The grand canonical parti-
tion function and, in particular, the zeta function also
lead to a weighted average over periodic orbit correlation
functions, but now the interpretation is less obvious.

In principle, one could compute a from these averages
directly. However, one can improve on this by going to
the ( functions [6,7,14].

B. zeta function

Using the periodic orbit expression for the trace of
l:~, Eq. (5), a zeta function representation for the grand

D. Time continuous systems

For time continuous systems the main difference is that
discrete time n has to be replaced by continuous time t
[16]. Taking the trace as in Eq. (5) at some time t,
one now finds a contribution only if there is a periodic
orbit with primitive period Tz ——t or a multiply traversed
shorter orbit with rT„= t. The weight of such an orbit
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can be evaluated by a transformation to a coordinate
systexn with one coordinate parallel to the trajectory and
all others perpendicular. If M„denotes the linearization
of the map in a plane perpendicular to the trajectory,
then the weight of a primitive periodic orbit is given by

mp ——ldet (1 —Mp) l (17)

e s,~equipP

,-„;ld t[1-(M.)")I
(19)

In the case of discrete maps (Sec. IIB), the next steps
were to write this as a logarithmic derivative of a zeta
function and to expand the zeta function. This was done
in the variable z, counting the discrete periods of the
orbits. For time continuous systems the spectrum of pe-
riods is still discrete but usually not quantized to integer
multiples of a fixed period, unless the system is peri-
odic. However, a quantized "length" of orbits may al-

ways be introduced by counting the number of crossings
of a Poincare surface of section. In addition, this sur-
face of section xnay be used, very much as in the discrete
time case, to introduce a symbolic coding for trajecto-
ries. We, thus, extend the above expression by including
in each contribution the term z"p", where nP is the num-
ber of crossings of a surface of section or the number of
symbols in the primitive periodic orbit and where r is
the number of traversals of this primitive periodic orbit.
This variable z is used for the expansion only and is set
to one in the final calculations. We then write the grand
canonical partition function as a logarithmic dervivative
with respect to s,

d
O~ (a) = —ln Zv(a, z)

ds z=1
(20)

where the zeta function is given by

zTllp e p7 eq@pF

I& I
—( )')I )

In actual calculations, one expands this expression in
powers of z, keeping again only terxns with powers up
to the largest period (nu~ber of crossings) 1V for which
all periodic orbits are known. The averages we are in-
terested in now emerges as the derivative of the leading
zero se(q, z = 1) with respect to q at q = 0,

d
a = —so(q, z = 1)

dq
(22)

q=O

There is no logarithm here since s has to be identified
with —lnz when compared to the discrete dynamics.

and the sum of the observable over the trajectory is re-
placed by

Tp

a~ = a(x(t)) dt.
0

The grand canonical partition function is now obtained
&om an integral over all times,

Ov(s) = e "trodi'l dt
0

E. Computational aspects

The calculation of periodic orbits required for this
formalism proceeds xnost conveniently with a xnulti-

point shooting method, perhaps coxnbined with an adi-
abatic following technique if periodic points cluster in
some regions of phase space. Details are described in
Refs. [10,17].

To evaluate the zeta function, one most conveniently
first computes the coefficients bI, in the representation,

+mdz

exp —) b),z"
),=i

&mdz

cgz
j=O

n denotes both the largest period for which all pe-
riodic points are known as well as the highest power to
which the expansion can consistently be computed since
the coefficients c~ depend on all bI, with k & j. In cases
where the zeta function is entire, the higher order co-
efBcients decay faster than exponential (see, e.g. , [21]),
thus allowing for efficient computation of the leading zero
which contains the desired information.

III. APPLICATION TO TENT MAPS

A. General features

Shifted tent maps on the unit interval are among
the simplest hyperbolic systems [22,23]. Using a
parametrization by the shift s of the tip of the tent &om
its symmetric position at z = 1/2, they are given by

2z/(1+ 2a), 0 & z & -', + s

(2 —2z)/(1 —2s), —+ s ( z & 1. (25)

Symbols L and B may be introduced according to a tra-
jectory point xq visiting the intervals to the left or right
of the maximum. This encoding is complete, there be-
ing a one-to-one correspondence between periodic symbol
strings and periodic orbits. The fixed points are xL, ——0
with derivative DL, = 2/(1 + 2a) and zR = 2/(3 —2s)
with derivative DR = —2/(1 —2s). Because of the uni-
formity of the derivatives in each interval, derivatives for
longer orbits factorized into products of powers of Dl.
and D~, specifically, D„= D& D&", where nl, and n~
with n~ + nL, ——nP are the n»rnbers of I. and B symbols
in the string p.

The Fredholm determinants for this system can easily
be computed and factorized according to [6,9]

Ze=s(z) =
j=O

1 —zi 2+
IDRID'R)

(26)

Z~(z) = exp —) br, z"
~=i )

and then uses the recursion relation of Plemelj and
Smithies [18—20] to compute the approximate power se-

ries expansion,
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FIG. 1. Eigenvalues of the tent map (25) for different val-

ues of the shift s and for j = 1, . . . , 6. Note that vo = 1.
Eigenvalues for odd j cross through the zero for s = 0 and
approach —1 for a ~ —1/2 and +1 for a -+ 1/2. Eigenvalues
for even j are always positive and approach 1 at the bound-
aries of the interval. The eigenvalues for j = 1 and 2 cross at
a = 1/6.

The zeros of this expression are the inverses of the eigen-
values v~ of the evolution operator. As a function of the
shift s, the largest ones read

+ ID~I
vi ——lDl, l

'D~'+ lDRl 'D~' = 2a,

» = IDr I
'DL, '+ ID"I 'DR' = I/4+»'

vs ——lDl, l
'D~ + lDgl 'D~' = a+4a,

and so forth. They are displayed Fig. 1. One notes
degeneracies of eigenvalues, for example, at a = 1/6,
where vi ——vq

——1/3. The degeneracies show up in
correlation functions in the form of a tv behavior.
The infinite degeneracy at a = 0 of all odd resonances
is compensated by the fact that all &equencies vanish,
vg —v3 —v5 — . ——0, and, thus, no pecularities arise.

TABLE I. Average and autocorrelation function for the
variables A(z) = B(z) = sin z —(sin z) for the tent map (25)
for three values of the parameter s. Periodic orbits up to
period 13 are used. Listed are those digits which agreed in
calculations using periodic orbits up to periods 12 and 13,
respectively. The average does not depend on s since the
invariant density is the same constant, namely 1, in all cases.
Thus the number of significant digits listed is a first indication
of the accuracy that can possibly be achieved for correlation
functions.

sin x
1=0

1
2

3
4
5
6
7
8
9

s=0
0.45969 76941 32
0.061353673303
0.00427 90545 48
0.00104 98206 94
0.00026 12382 57
0.00006 52339 57
0.G0001 63037 71
0.00000 40756 48
0.00000 101889
0.00000 025
0.00000 015

s =0.2
0.45969 7693
0.061353673
0.02829 2220
0.012398026
0.00528 2112
0.00221 37
0.00091 8
0.0004

s = —0.2
0.45969 76941 33

0.061353673303
—0.021013101188

0.010131011031
—0.00350 72419 87

0.00162 72066
—0.00057 2997

0.00025 92
—0.00009

ized evolution operator. This is demonstrated in Fig. 2
for the observable sinz for s = 0 and diferent values of
t. Clearly, the convergence cannot set in until the period
of the orbits included exceeds t, since a longer time delay
probes correlations which can only be contained in orbits
of suKciently large periods.

As the parameter s deviates Erom zero, convergence
slows down. Clearly, as a + +1/2, one fixed point is only
marginally unstable and hyperbolicity is lost. Also, in the
spectrum, all eigenvalues cluster at +1, causing a slower
and perhaps no longer exponential decay in correlations.
As shown in Table I, for s = +0.2 correlations could be
determined up to t = 6, and up to t = 7 for s = —0.2.
For negative s, the alternations in sign of the correlations

B. Correlation functions
x x Q)

We have computed correlation functions for several ob-
servables and several parameter values. As a typical ex-
ample, we pick the observable sinx. Values for the aver-

age (sinz) and for the autocorrelation of A(z) = B(z) =
sinz —(sinz) for different time shifts as obtained from
periodic orbits up to period 13 are listed in Table I. One
notes the rapid decay of the correlations for s = 0 and
the loss of signi6cant digits as the time parameter in the
correlation function is increased. In our calculation using
periodic orbits up to period 13, no signi6cant digits are
left beyond t = 9.

It is known that the cycle expansion for the Predholm
determinant for the usual Frobenius Perron operator con-
verges faster than exponential [15,24,21]. Our n»clerical
results suggest that this is also the case for the general-

I

I

t=3 '; t=6 .

t=9 x

I

10
I

12

FIG. 2. Convergence of the autocorrelation function for
sinz for a = 0 and different time delays t = 0, 3, 6, 9 (Ta-
ble I). Shown is the decadic logarithm of the error (difference
between current and exact value) vs the highest period n in-

cluded. All autocorrelation functions converge rapidly and
faster than exponential once the period n of the orbits in-

cluded exceeds the delay t.
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TABLE II. Average and correlation function for the vari-
ables A(z) = z and (z —1) for the tent maps (25) at s =.1/6.
Significant figures were estimated &om zeta function results
with periods 12 and 13. Within this accuracy, the data are
compatible with the analytical formulas as given in the last
line.

(A)
t=0

1
2
3
4
5
6
7
t

A(z) = z
0.5

0.083333333333
0.02777 77777 78
0.00925 92592 59
0.00308 64197
0.00102 88065
0.00034 294
0.00011
0.00004
3-*/12

A(z) = (z —1)2
0.333333333333
0.08888 88888 88
0.04814 8148148
0.02222 22222 22
0.00946 50205
0.00384 08782
0.00150 89
0.00057 9
0.0002
(8+ 5t)3 '/90

C. A perturbed shifi; map

Christiansen et al. [8] in their study of the spectra of
maps used an asymmetrically perturbed shift xnap on the
interval [0, 1],

—3.5 + 5/0. 4z + 0.49, 0 & z & 0.8
—0.5 + 5/0. 4z —0.31, 0.8 & z & 1. (28)

In Table III, we present the correlation function of the
fluctuations of the observable A(z) = z around its mean.
Convergence is as good as in the previous case, thus
demonstrating the ease of use for perturbed maps.

and the eigenvalues seem to help convergence a bit.
As mentioned in section III A, there is a degeneracy of

eigenvalues at s = 1/6. To test for the linear modifica-
tion of the exponential decay, we have computed correla-
tion functions for the observables z and (z —1)2 (minus
their averages). In Table II we list the digits that agree
in approximations using orbits up to period 12 and 13,
respectively. The data are compatible with a pure ex-
ponential behavior C(t) = 3 t /12 for the linear variable
and C(t) = (8+ 5t)3 /90 for the quadratic variable.

All calculations here could, in principle, be done ana-
lytically, using a matrix representation of the evolution
operator acting on powers of z [23]. However, the advan-
tage of the periodic orbit formalism is that it carries over
without change to perturbations of the linear map (25).

TABLE III. Correlation function for the variable

A(z) = z —(z) for the perturbed shift map (28). The av-

erage of the observable is 0.5 with an accuracy of 10

C(t)
0.0833333334
0.04166 66669
0.01628 33339
0.00336 00038

—0.00166507
—0.00262 49
—0.00202 92
—0.0012

IV. CONCLUSIONS

We have expressed the classical correlation function
as a weighted average over correlation functions along
periodic orbits. The calculations show that rather rapid
convergence sets in once the period of the orbits included
exceeds the time delay in the correlation function. Qual-
itatively, the rate of convergence is controlled by the res-
onance nearest to the eigenvalue 1.

Applications of the above formalism to many other hy-
perbolic systems are rather straightforward. For non-
hyperbolic systexns one encounters the usual problems
[6,7,14]. If the symbolic dynamics is not generated by a
subshift of finite type, one cannot expect faster than ex-
ponential convergence [15]. And if there are marginally
stable orbits with [A[ = 1 or close to one, the zeta func-
tion is not entire and the convergence is very slow, per-
haps algebraic rather than exponential. In principle, the
methods of Artuso et al. [25] for marginally stable or-
bits should be applicable, but they will become cuxnber-
soxne in practice because of the exponential proliferation
of the number of periodic orbits with period. Besides
these technical points, there is no difference in the for-
malism.

The above calculations also shed some light on similar
expressions in semiclassical mechanics. It is gratifying to
note that just as in the case of the spectrum, there is
a similar expression within the semiclassical approxima-
tion for quantum systems [16,26,27]. The main difference
lies in the weights: whereas classically one adds probabil-
ities, quantum xnechanically one has to add amplitudes,
thus introducing the square root of the classical weight
and phase factors due to caustics. Of course, the quan-
tum observables also have to be represented by suitable
Wigner transformed phase space densities. The present
calculations show that the periodic orbit formulas given
in [27] can, in principle, be summed to yield the corre-
lation functions. Unfortunately, there is no sixnple quan-
tum system in which this could as yet be done.
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