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Steady states of a column of shaken inelastic beads
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We study dynamical properties of N inelastic beads shaken by a vibrating plane. These systems
exhibit three kinds of steady states, depending on the inelasticity of the beads: a gas, a partially
condensed phase, and a collapsed phase. In the one-dimensional case, we show that these phases
are characterized by the parameter p = N(1 —r)), where g is the restitution coetficient measuring
the energy dissipation during the collisions. For p ( 0.1 and 1.5 ( p ( 3.1, good agreement is
found between the one-body distribution function obtained by numerical simulations and analytical
solutions.

PACS number(s): 05.20.Dd, 05.40.+j, 05.70.Ln, 46.10.+z

I. INTRODUCTION

Currently, the phenomena associated with granular
materials are studied within a variety of scienti6c and
engineering disciplines. For instance, experimental in-
vestigations have dealt with avalanches [1—3], segrega-
tion phenomenon [4], and instabilities in sandpiles [5,8]
submitted to external vibrations, where convection and
self-difFusion regimes have been observed [6]. For the
description of granular ffows [9], various theoretical ap-
proaches, based on continuum description [10] as well as
kinetic theory [11]or stochastic methods [12], have been
done together with computer simulations [13]. Some pa-
pers report on two-dimensional granular systems, using
experimental techniques [14] or numerical methods where
inelastic microstructure also is investigated [15,16]. How-
ever, the notion of fluidization [7], in vibrated particulate
matter, is still unclari6ed.

One-dimensional models often facilitate the under-
standing of speci6c problems in statistical physics. Here
we attempt to describe and quantify the three difFer-
ent phases of vibrated granular media in one dimension,
namely, a gas, a partially condensed phase, and a col-
lapsed phase can be observed. By using the same vi-
bration, these three phases appear inside the medium
when the damping is increased. We provide analytical
solutions of one-body distribution functions and compare
them with solutions obtained by numerical simulations.

Consider a column of N beads, in a constant gravita-
tional field g, bouncing on a vibrating plane. For sim-
plicity, all particles have the same mass. At time t, the
positions are denoted z;(t) and the velocities v;(t). The
inelasticity of the collisions is described by the restitu-
tion coefficient rl (rl ( 1) as follows. Two particles i and

i —1 with incident velocities v, and v; q bounce back
with velocities v,' and v,'

(1 —q)
VI y

—Vi + (Vi 1 —V—i))

(1 —rl)
V =Vg

2
Vi —1 —Vg

If particle 1 hits the vibrating plane of infinite mass, its
new velocity is vy = 2Vp v& where V„ is the plane
velocity at the collision time.

The plane has a periodic motion z„(t) with a period
7p. The mean square velocity V is de6ned as

V = — V (t)dt where V„(t) ==1 dz„(t)
'Tp p

p dt

Without loss of generality, z~(t) = V7ph(t/Tp), where
h(t) is a periodic function of period 1 which satisfies

j h(t)dt = 0 and f hz(t)dt = 1.
For particles in the bulk, the loss of kinetic energy at

each collision is (rP —1)(v; q
—v;) z/4. However, when the

lowest bead collides with the vibrating plane, it bounces
back with a larger velocity on average. The plane behaves
like an energy source. For a given initial situation, the
system reaches a steady state after a transient regime.
A permanent energy How between the vibrating plane
and the column remains because the energy provided by
the plane is continuously dissipated during the inelastic
collisions. These general features (energy dissipation due
to the collisions, an energy source supplied by the plane,
and a system out of equilibrium) are also relevant in two
or three dimensions.

The parameters describing the evolution of the cob~mn
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(N, g, g, rp, Vj can be reduced to three dimensionless pa-
rameters (N, g, g~p/V). Two-dimensional quantities de-
fine the units. Therefore, V and g scale velocities and
accelerations, respectively. Time and distance are given
in units of V/g and V /g.

In the following, the parameters p (see [18]) and w

P = N(1 —i1),

g~p/V1./2

(3)

(4)

are chosen instead of g and g7p/V. For a small number
of beads (N ( 10), various particular behaviors (periodic
orbits, bifurcation, and a chaotic transition [17]) can oc-
cur. Here only systems with a large number of beads are
considered, for which generic behaviors are expected.

In this publication, it is shown that this model can be
described by the reduced set of parameters (p, w), i.e. , for
fixed p and large N the behavior does not depend on ¹

p measures the effective dissipation in the bulk. Equation
(3) allows us to consider the thermodynamic limit (N ~
oo). Moreover, in real matter g goes to 1 as the radius of
the beads decreases. Thus, for a given material, different
values of p can be reached for sufficiently small radius
and large ¹

An analogous model is studied in [18] in the absence
of gravity, with a stationary plane. In that case, the
column collapses against the plane at p = p, 3, while
a simple model of independent collision waves provides
the main properties of the bounce of the column and gives
p, = m' for large N. For larger p, our simulations show
that the heap collapses on the plane at each period of the
vibration, that the number of collisions goes to infinity
in a finite time, and that the relative velocities decrease
exponentially.

In the following, this collapsed phase is not investi-
gated. Our study is restricted to values of p smaller than
3. We only study the gas phase and the partially con-
densed phase where a cluster of particles appears at the
bottom of the heap. Numerical simulations of this model
have been performed with h(t) chosen as a sawtooth func-
tion or a piecewise quadratic function for a wide range of
parameters.

The model studied here is basically time dependent.
However, all equations are time independent. In princi-
ple, all the distribution functions should always be peri-
odic functions of time (with the period 7p of the plane).
However, this dependency is irrelevant at small T. For
small T, this model has the advantage of simplicity &om
both numerical and analytical points of view.

This publication is organized in the following manner.
The relevant parameters of this model are presented in
Sec. II. In Sec. III, the idea of pseudoparabola is intro-
duced and used to estimate the constraints in numerical
simulations. Section IV is devoted to the small damping
regime (gas phase) and Sec. V to the strong damping
regime where a cluster appears above p 2.6. Conclud-
ing remarks are presented in Sec. VI.

II. THE RELEVANT PARAMETERS

The first relevant parameter is p rather than g and
N. This fact already appears in previous papers [19,20].

This has been validated numerically for various N and g.
Only a few numerical results are presented here. Figure
1 shows that the density profile p(z) does not depend
separately on N and q if N is large enough (say a few
tens). We checked that this remains true for all p between
0 and 3.

Indeed, if N is large enough (and 7 is small), the one-
body distribution function P(z, v) [f P(z, v)dzdv = 1]
in the bulk is described by a Boltzmann equation which
reads (see Appendix A and [21,22])

vO, P —gB„P = — dviP(z, vi)ci„
2

x [~v
—vi~P(z, v)(v —v, )].

0. 1 N= 1084
N=256

64
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FIG. 1. Comparison of normalized density profiles p&(z)
at p = 0.3 and v = 0.001 for various values of ¹ (a) Density
profiles, and (b) ratio piv(z)/pip24(z).

This equation depends on N only through the parameter
The boundary conditions are the following: P(z, v)

goes to zero as z or v goes to infinity and at z = 0,
P(z = 0, v ) 0) (just after the bounce on the plane) is
related to P(z = O, v ( 0) (just before the bounce) by
the velocity distribution of the plane. These conditions
are independent of N. Thus, in this limit P(z, v) should
depend only on p.

On the other hand, T can be seen as a renormalized
period of the plane. For all p & 3, when T is of the
order of 1, the beads vibrate in phase with the plane.
Small values of T correspond to high frequencies for the
plane: there is no phase locking between the plane and
the heap and the motion of the plane can be considered
as random. This property strongly simplifies the analyt-
ical approach and we restrict this study to small values
of w. Figure 2 shows that the density profile p(z) is inde-
pendent of T, provided 7 is small enough. All numerical
results presented in the following are for small values of
T.

In previous experimental studies [14], the parameter
gap/V is considered instead of 7. If this parameter is less
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FIG. 2. Comparison of normalized density profiles p(z) at
p = Ov3 and N = 256 for various values of 7. 0.5

than some constant (say I/2z), the acceleration of the
plane becomes smaller than the gravity and the column
sticks to the plane. This is correct for large enough p.
But, in the elastic limit (p = 0), this solution becomes
unstable. Therefore, the threshold of this sticking must
depend on p and the previous criterion is not correct.
The choice of r instead of geo/V is justified in Sec. IV.
The difference between these two parameters is impor-
tant only for small p. Indeed, for small p, we never 6nd
that the column sticks to the plane.

III. REMARKS ON NUMERICAL SIMULATIONS

For simplicity, we choose a sawtooth function or a
piecewise quadratic function of time for h(t). For small
values of N, the dynamics is not always ergodic. For ex-
ample, at p = 0.01 and N & 5, the trajectories exhibit
fixed points in the velocity space when h(t) is a sawtooth
function; at larger p, no 6xed point has been observed.
This problem is characteristic of the one-dimensional dy-
namics and in higher dimensions the dynamics is ex-
pected to be mixing. So, for our purpose, the shape
of the plane function does not change the basic physics
of the problem, as long as il g 1 and N is sufficiently
large. Numerical simulations have also been done using
a sinusoidal function h(t) [19].

When g = 1, the velocities are exchanged during the
collisions. Thus it is simpler to consider all trajectories
as a set of parabolas. At g = 1, these parabolas are
independent (this is only true in one dimension). For
)7 g 1, the parabolas become "pseudoparabolas" (PPs)
(see Fig. 3), because they have angular points at each
collision corresponding to energy dissipation (see Fig. 3
at p = 3). The collisions couple the PPs together and
make the system mixing. These pseudoparabolas can be
derived from the Boltzmann equation [Eq. (5)]. Indeed
the right-hand side of Eq. (5) is just a derivative with
respect to v. Thus the force acting on a particle is —g-
~z f dva&(z vi) lv —»l(v —vi) &(z, v) can be s«n as a
linear combination of pseudoparabolas

1
f(z, v) = —b(v —U(z))

lvl

1000 2000 1000 2000
t,/~,

FIG. 3. Example of "pseudoparabolas" for systems of
N = 10 beads and ~ = 10 for various values of p.

provided U(z) satisfies

where

dU/dt = UdU/dz = —g ——G(z, U),
2

G(z, U) = PU —v)P(z, v))U —v~dv.

Except at a collision, a bead belongs to only one PP;
thus the number of PPs is equal to the number of beads.
In order to reach the steady state, it is important that
each PP undergoes a large enough number no of collisions
with the plane. When the coupling between the PPs is
weak (p « 1), no is estimated by considering the PPs to
be independent. Let us call U„, the velocity of a PP just
after the nth collision with the plane. At each collision
with the plane, the variation of U„ is of the order of V.
As shown below, U„ follows a diffusion process in the
velocity space and a typical velocity is of the order of
V/~p. Therefore, no is of the order of the n»mber of
steps of a random walk in the velocity space going &om
0 to V/~p by step V. Thus no scales as I/p. At large
p, the coupling between the PPs is strong and the system
reaches a steady state very rapidly; therefore, no is chosen
to be 1. In all cases, the total number of collisions with
the plane scales as N/p and the total n»mber of collisions
as N /p, in order to reach a steady state.

The central function studied in this paper is the steady
one-body distribution function P(z, v). It is calculated
by evaluating the exact amount of time spent by each
particle in the range [z, z+ Ez] and [v, v + Ev]. We take
a grid of 200 points in z and 200 points in v. A typical
run consists of ten blocks of N/p collisions with the plane
( Nz/p collisions in the bulk). In the first half of the
runs, we check if equilibrium is reached: for each block,
the energy provided by the plane, the maximum height of
the column, the total number of collisions, and the time
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spent per block are computed. In the second half of the
runs, P(z, v) is computed.

IV. THE LIMIT OF SMALL p

The purpose of this section is to find the limit of P(z, v)
at small damping p. But, as p goes to 0, the energy and
the height of the heap diverge. In this limit the trajec-
tories obeying Eq. (7) should be close to parabolas. The
natural approximation is to suppose, on the right-hand
side of Eq. (8), that the particles follow exactly a &ee
dynamics; thus we set P(z, v) =P(0, (v2 + 2gz) i~2) and
U (z) + 2gz = U (0). Integrating Eq. (7), the resulting
damping for a complete parabola starting at z = 0 with
velocity U is

—U(1 —k(U)) = —[~(U') + U'1"' (10)

To first order in p, Eq. (9) provides, after integration
with respect to z,

U 4 OO

k(U) = — 2 dvv P(0, v) + —U dvv P(0, v)
g 0 3

U

dvv PIO, v)}.
0

The next step is to tackle the interaction of the PP with
the plane. In Appendix 8, we show that the dynamics is
equivalent to a diffusion process leading to an invariant
probability distribution

t'

P(O, U) = Cexp — k(v)vdv2Vz
II )

for U ) 0. But, at first order in p, P(z, v) is a function
of v2 + 2gz and therefore

l1 i/'v +2gz

P(z, v) = Cexp — k(x)zdz2Vz
II )

with the normalization condition

U /2g

b(U /2) = —p dzG(z, U(z)).
0

Thus a PP, starting with a velocity U & 0 at z = 0, later
hits the plane with a velocity

I I
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-" o.o4 — (
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0
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distribution P(z, v) independent of p. Thus the main
consequence is that, as p goes to 0, the typical velocity
is V/~p and the typical height is V /gp.

The computed velocity distribution P(0, U) and den-

sity profile p(z) are shown in Figs. 4(a) and 4(b). These
distributions agree with the theoretical results. P(0, U)
becomes symmetric as p goes to 0. At large 6, the veloc-
ity distribution is roughly Gaussian as in a perfect gas
and the density distribution decreases exponentially.

The convergence to the theoretical curves is fast as p
goes to 0. As p increases, the dissymmetry of P(O, U)
increases [see Fig. 4(a)j. In Fig. 5, we compare the
function k(U) obtained from this theory and by diKeren-
tiation of the numerical P(0, U). Such a difFerentiation of
numerical results magni6es statistical Buctuations. Nev-

ertheless, reasonable agreement is found at p = 0.01.
But, at larger p, k(U) increases with U well above 1,
which implies that P(0, U) vanishes more rapidly than a
Gaussian function. For the sake of clearness, the asymp-
totic behaviors at small and large velocities are not re-
ported in Fig. 5, but Eqs. (B3) and (B4) of Appendix B
are a good approximation up to v = 3 and 3.5, respec-
tively.

It is important to determine the values of w for which
the model is valid. This model is based on the hypothe-
sis that the duration of a pseudoparabola is much larger
than the period 70 of the vibration. For a particle having
an initial velocity V/~p, the condition reads r (( 1,
where w is defined in Eq. (4). In the (p, r) plane, the
validity domain of this model is around the origin. In
this domain, the results do not depend on the shape of
the vibration of the plane. Indeed, &om numerical sim-

ulations with a piecewise parabolic shape, we found the
same results within statistical uncertainties.

1 = dz dvP(z, v)
0 —OO

dz dvP(0, gvz —2gz)
0 —OO

OO

dUP(O, U)U .
g 0

(14)

uo —5

~ —1O

10 20
I I I ~I I

30

Equations (11), (12), and (14) provide a closed set of
equations for P(0, U), k(U), and C. In Appendix B, we
solve this set of equations. Using the new dimensionless
variables v = U~p/V and z = zgp/Vz, we obtain a set

of equations for k(v) = k(U~p/V)/p and the probability

z=gzy/V2

FIG. 4. Comparison of the velocity distributions obtained

by numerical simulations and by the theory at small p. (a)
Velocity distribution at the bottom of the column P(0, U);
and (b) density profile p(z).
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FIG. 5. Comparison of the function k(z) obtained by nu-
merical simulations at small p with the solution of the set of
equations (82).

V. THE STRONG DAMPING REGIME
(1.6& f&3}

0 —
]

0.5 1

gz/V~
1.5

In the previous case (p (( 1), we used a symmetric
distribution of velocities at each abscissa maximuxn at
v = 0. When p increases, this distribution becomes more
and more asymmetric. The upward particles have a ve-
locity significantly larger than that of the downward par-
ticles. Fortunately, a solution of the Boltzmann equation
for large p can be found, which works in the case of a
sawtooth vibration of the plane. This is achieved with a
self-consistent solution of Eqs. (7) and (8), where P(z, v)
in Eq. (8) is the density corresponding to the PP solu-
tion of Eq. (7) ~ Thus all PPs have the same trajectory
(see Fig. 3). Let v+(z) & 0 [v (z) ( 0] be the velocity of
the upward (downward) particles. Thus P(z, v) can be
chosen as

P(, ) = (Cg/V)([1/ ( )]b( — ( ))-[1/v- (z) l~(v —v- (z) ))
where C is a dimensionless constant and Eq. (8) reads

Cg (v+ —v )2

V v~
(16)

In Appendix C, we find a solution of Eqs. (7) and (16),
provided 1.5 & p ( 3. From p = 1.5 to p 2.5, we
found good agreement with the simulations (the case of
the sawtooth vibration) (see Fig. 6).

Above p 2.5, simulations present a sharp peak in
p(z), close to the plane and growing with p. This peak
corresponds to the appearance of a cluster of beads al-
most at rest and in levitation near the bottoxn of the
heap. More precisely, this system may be seen as an en-
semble of PPs and a bunch of new trajectories almost at
rest which never reach the plane. The cohesion of this
cluster is ensured by its inelastic collisions with the PPs.
This is what we call the partially condensed phase. In
Appendix C, we show that another analytical solution
appears at p = v 6 2.45. This solution will be used for
comparison with numerical simulations for p & ~6.

Figure 6(a) shows the density profile for different val-
ues of p. The dashed curves hold for the predicted densi-
ties [Eq. (C3) of Appendix C]. Good agreement with the

FIG 6 Density pro6les at p ) 1 5 Full line numerical
simulations results; dash lines, theoretical curves. (a) Density
profiles [Eq. (C3)] and (b) integrated density profile present-
inga step at z=0for7& ~6.

predicted location of the top of the stack was found. The
singularity in 1/i/z —z for the density near the top is
the direct consequence that the velocity distribution is a
well defined Dirac function. Figure 6(b) shows the inte-

grated density profile. For p & ~6, the theoretical curve
has a jump at z = 0 corresponding to the peak supposed
to be at the bottom, while in the simulation the peak is
at a small altitude zo (larger than the amplitude of the
vibration). But they both give approximately the same
height for the jump.

For p close to 1.5, the velocity distribution consists of
two very sharp peaks. As p increases the peaks slowly
stretch. For p & ~6, near the bottom, the negative peak
becomes a rough heap around zero.

Before we used a sawtooth vibration. It is important to
look at a more general vibration in order to check whether
the transition to a partially condensed phase is relevant.
For a piecewise quadratic vibration, the analytical calcu-
lations are much more difBcult. On the plane, an incident
particle of small velocity v will produce an output veloc-
ity in the range [vz/V, Qv V]. Thus we should be far from
the result of the sawtooth vibration. In particular, the
velocity distribution is no longer a Dirac function and
therefore the singularity of p(z), at the top of the heap,
does not exist anymore.

In Fig. 7(a), we compare the integrated density for
the sawtooth and the piecewise quadratic xnodels. For
the sawtooth vibration the xnaximum of the density is at
the top, while for the piecewise quadratic vibration the
density is decreasing. The maxixnum values for z are of
the same order of magnitude, but are different.

For fixed p the mean square velocity V should be
rescaled in order to compare these models. Indeed, as

increases, the velocity of the incident beads decreases.
Thus the collisions with the plane occur when the plane
is near its maxixnum. Consequently, the plane velocity
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FIG. 7. Comparison of partially condensed phase in the
two models. (a) Integrated density pro61e: full lines, sawtooth
vibration; dotted lines, piecewise quadratic vibration. (b) Ra-
tio of the clustered beads just above the plane: full line, ana-
lytical solution of the sawtooth vibration model [Eqs. (C6)];
triangles, numerical simulation estimations with a sawtooth
vibration; squares, numerical simulation estimations with a
piecewise quadratic vibration.

during a collision diminishes as p increases. On the other
hand, for the sawtooth vibration, the plane velocity is al-
ways V.

Although the density functions may differ, we see, in
Fig. 7(b), that the size of the cluster, at the bottom
of the heap, yo is the same in these two models and in
agreement with theoretical values (for p & 2.6, the cluster
is loosely packed and it is practically dificult to estimate
its size). Thus the partially condensed phase seems well
defined by p, which is the only dimensionless parameter.
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APPENDIX A

The stationary Boltzmann equation for the one-body
distribution function P(z, v) [fP(z, v)dzdv = 1] reads

vO, P —gB„P = F(P), (A1)

function h(t) becomes a general model for any twice dif-
ferentiable function h(t) (with nonzero and finite curva-
ture at the maximum), while the sawtooth function h(t)
is still a different model. It is therefore important that
these models provide the same thresholds and the same
ratio of clustered beads.

The partially condensed phase can be explained as fol-

lows. The dissymmetry of the velocity distribution in the
bulk increases as p increases or z decreases. Thus the ac-
celeration for a test bead at rest (U 0), given by Eq.
(7), is maximum at z = 0 and increases as p increases. At

p = v 6, the sawtooth model shows that the term G(0, 0)
compensates for the gravity. The acceleration at the bot-
tom of the heap is just 0. For larger p, the acceleration
at the bottom should be positive. Thus a new kind of
trajectory can occur: trajectories which never reach the
plane. In fact, the system chooses to pack a cluster of
beads at rest at the bottom of the heap ensuring that the
maximum acceleration is always 0 at the bottom. This
mechanism is not specific to one-dimensional models and
we expect the same kind of transition for more realistic
models in two or three dimensions.

VI. CONCLUSION

Our simulations have been carried out with a sawtooth
and a piecewise quadratic function h(t).

For small p (p & 0.1), the results do not depend on
h(t). This has been shown analytically [for any choice of
square integrable h(t)] and numerically.

For large p (p ) p ) the heap collapses on the plane (at
least during a fraction of the period of the plane). The
precise determination of the critical p will be subject of
another paper.

For intermediate p (1.5 & p & 3), the mean square ve-

locity V must be slightly corrected [only the top part of
h(t) is accessible to the collisions] and the density distri-
butions may vary with the shape of h(t), but the impor-
tant result is that the transition between the gas and the
partially condensed phases does not depend on h(t) and
is only defined by p. As p increases, the velocity of the
incident beads decreases; thus only the top part of the
function h(t) becomes relevant. The piecewise quadratic

The second collision term corresponds to the increase
of the density as a particle of velocity e2 hits another
particle and the resulting particle velocity falls into the
interval [v, v + dv]. For each unit of time, this collision
term gives

N P(z, v2)dzdv2P(z, vi)[v2 —vi[dvi (A3)

with v = v2 —(1 —q)(v2 —vi)/2 and dvz(l + g)/2 = dv.

where F(P) describes the collisions between particles.
In fact, F should depend on the correlation func-

tion P2(z, vi, v2), but at first order P2(z, vi, v2)

P(z, vi)P(z, v2). For completeness, we quickly derive
this equation, which has already been established in [22].
Let us calculate the collision terxn F(P). At given z and

v, the variation of the number of particles NP(z, v)dzdv

per unit of time due to collisions is estimated. The first
term corresponds to the decrease of the density as a par-
ticle of velocity v hits another one:

N P(z, v)dzdvP(z, vi) [v —vi[dvi.
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The difference of these terms [Eq. (A3) minus Eq. (A2)]
provides

N dzdeP(z, u}) iv2 —u}iP(z, e2)2 2

1+g
—iv —v} iP(z, v) dvz.

In the limit of small 1 —[7 (large number of particles), we

get, to first order,

2
$2 v&IP(z, v2) Iv —v&IP(z, v)1+g

1
2

+iv —vi iP(z, v))

2N B„[(v—v} (P(z, v) (v —vq)],

leading to the Boltzmann equation (5) after integrating
the collision term with respect to v~.

APPENDIX 8

In this appendix, we provide the solution of P(z, v) at
small damping p. Let us first solve the boundary condi-
tion at the bottom of the plane. For fixed V [Eq. (2)]
and ro, as p goes to zero, the bead velocities increase
to infinity and the time between two bounces diverges.
In this limit, our model becomes equivalent to a random
model where the collisions with the plane occur at z = 0
and the plane velocity V„at each bounce may be chosen
at random with the law r(V~)dV~, the probability distri-
bution of V„(t).

Let U„be the velocity of a PP just after the nth col-
lision with the plane. Just before the (n, + 1)th collision
with the plane, this velocity is —U„{l—k(U„)), accord-
ing to Eq. (10). Thus, after the (n+ 1)th collision, we

have

diffusion process with drift

E = E(U„+g [U„) —U„k—(U„)U„+ 2V /U„

and variance

One obtains f(U) = C'Uexp[ —
fp k(~)~&~/2V ]. f(U)

is the flow of the particle through z = 0, that is, f (U) is

proportional to UP(0, U), and thus we get Eq (1.2).
Idet us now give the final solution for P(z, v). Equa-

tions (11), (12), and (14) provide a closed set of equa-
tions for P(0, U), k(U), and C. Using the scaling

k(z) = k(zV/~p)/p, P(z) = P(0, zV/~p)V /(gp ),
and C = P(0) = CVs/(gps~z), one expresses the previ-
ous equations as a dimensionless set of equations inde-

pendent of p:

P(z) = Cexp
~

—— k(y)y&y ~,
2 p

1 = 2 dzz P(z),
0

k(z) = 2 dyy P(y) + —z dyyP(y)
0 3

dyy'P(y)
3x Q

(B2)

Asymptotic behaviors of k(z) are found in the two lim-

its of small and large x. For small x, we Gnd

where

o = E(U„+~~U„) —E(U„+g~U„) 4V .

The invariant probability distribution f(U), associated
with this drifted diffusion process, is the solution of

1—(9U (r2f —Ff = 0.

U„+g ——[1 —k (U„)]U„y2V~. (B1)

It is important to notice that the probability to find a
velocity V„, at the (n + l)th collision, is proportional
to the relative velocity (V„+ U„) and to r(V„)dV~ (we
assume (U„~ && ~V~) so that Vz+ U„ is positive). So, such
an iteration occurs with probability (1+V„/U„)r (V~)dV„.
Thus the conditional expectations of U„+p and U +y are

M„= dxP x z"

are the moments of P. For large x, we find

(z)1 +Q[exp(z2/4)M /s —
s)

X2 3
(B4)

E(U rr[U )=f dVrr(Vr)([1 —„)r(U )]U + 2Vr}„
x(l+ V„/U„)

= [1—k{U„)]U„+2V'/U„,

E(U„*,[U„) = fdV r(V )([1—k(U„)]U + 2V }
x(l + V~/U„)

= [1 —k(U„)]'U„'+ 8V'.

The sequence of U can be approximated by a continuous

Equation (B3) provides the shape of P(z) at small z:
P(x) = C} exp( —M} ~z~ /9). From Eq. (B4), we obtain

at large z,P (x) = C2x 4)' exp( —x /4).
The system of Eqs. (B2) can be solved numeri-

cally by iterations. Starting from the simplest form

k(x) = M}x/3 for x ( z~ = 3/M} and k(x) = 1

for x ) z~, P(x) is computed, then the normalization

condition is applied, and a new function k(x) is ob-
tained. This method converges within few iterations giv-

ing C = P(0) = 0.063 554 16, M} ——0.47308784, M2 ——1

[see Eq. (14)], and M4 ——8.035 23393. k(z) is presented

in Fig. 5 and P in Fig. 4(a).
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APPENDIX C

v+ —u = Vy/C,

v++ u = pVy /3C+ VCg/y,

B,y = —(Cg/V)(1/v+ —I/v ),

(Cl)

where C and Cq are dimensionless constants to be deter-
mined. At the top of the column, the boundary condi-
tion reads y = 0, and v+ ——v = 0, which yields C~ ——0.
Therefore, the solution for y is

y= — 1 —gl —z, z=
] ~

(z „—z).g t'4Cp) '

(C2)

In this appendix, we calculate the density profile and
the velocities of the PPs, in the case of a sawtooth vibra-
tion, by solving Eqs. (7) and (16). Instead of z, we use
the variable y(z) (omitting the z dependency of e+, v

and y): y = (Cg/V) f [I /v+(z') —I/n (z')] dz'. y(z)
represents the &action of particles above the abscissa z.
Thus, after integration of Eq. (7) we have

The conditions 0 & —v (0) & V provide now the domain
of validity 1.5 ( p & 3.

Now let us show that for p = 2.5, another solution ap-
pears, which is in fact the stable solution. This solution
corresponds to a cluster of No particles at an altitude zo.
To model this phenomenon, we replace this cluster by
a b function in the distribution p(z) and therefore y(z)
has, at zo, a step of yo

——Xo/N Ab.ove zo, the previous
set of equations [Eqs. (C2)] remains true, where C and
z „are fixed by new boundary conditions. Assuming
that the cluster is at rest at zo, the velocities v+ and v

above (zo+) and below (zo ) the cluster, are related by

r' I + gb~+(z')/~+(z ) =
I

"
I

= e = &-(zo )/&-(zo )2 j

where n = pyo/2 and Eq. (1) is used to treat the suc-
cessive collisions with the No beads at rest. Assuming
also that only a few particles are under the peak in

p(z), the boundary conditions at the bottom now read

v+(zo ) = —v (zo ) + 2V and v+(zo ) —v (zo ) = V/C,
that is„

g 4C p 1+ Q(1 —z)
V2 3 z(1 —z)

The two parameters C and z are fixed by the bound-
ary condition at z = 0. There we have y = 1 and
v+ ——2V —v if we assume that the collisions with the
plane occur only when the plane moves upward. This
hypothesis reads 0 & —v (0) & V. Thus we obtain
C = p/6 and

Zm~x
V2/ 9

(C4)

In contrast with the case of small p, no particle can be
found above z „,where y vanishes. The density profile
is given by

"(.) = V
— [1+1/(2C)],

v (zo+) = Ve [1 —1/(2C)].

Substituting these expressions into Eqs. (Cl. ) with y =
1 —yo leads to

(1 —yo) [sinh(a) + p(1 —yo)/3 cosh(n)] = 2C,

(1 —yo) [cosh(o.') + p(1 —yo)/3 sinh(a)] = 1.

If yo
——0, we recover the previous solution. Another

nonzero solution for yo appears at p = ~6 2.45. This
new solution has been used for comparison with numeri-
cal simulations for p ) ~6. Figure 7 shows the compar-
ison of the solution yo of Eqs. (C6) and yo obtained by
numerical simulations for both vibrations.
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