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Surface shape and local critical behavior: The percolation problem in two dimensions
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The critical behavior of site percolation confined to the interior of a parabola is investigated.
At the percolation threshold, conformal mapping is used to derive analytical expressions for the
pair correlation function and the local order parameter in the case of free and fixed boundary
conditions, respectively. Numerical results obtained by intensive Monte Carlo simulations are in
excellent agreement with the analytical expressions. The numerical data for the oK-critical local
order parameter with free boundary conditions show that correction to scaling terms are important
and the leading correction exponent is estimated to be ~ 0.18.
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I. INTRODUCTION

The local critical behavior of a given system may be
in6uenced by the shape of its surface. This effect was
first noticed some years ago by Cardy [1], who studied
the case of a corner or wedge geometry for which varying
local exponents are obtained [2,3]. More general shapes
were later considered for which the surface is located at

in two dimensions or in a section of the system in higher
dimensions [4]. For an isotropic system, the coefBcient
C transforms as C' = bs iC under rescaling by a factor
b. When k & 1, iterative rescaling causes C' to diverge
ultimately and the system behaves as if its surface were
Hat. It follows that taking the Hat surface Gxed point
as a reference, one may consider 1/C as a scaling field
with an anomalous dimension y~ ——1 —k which is re-
lated to the surface shape. For an isotropic system, any
quantity Q(u, t, C i) is assumed to have a generalized
homogeneous form:

b'
Q(u, t, C ') = b *&f i

—,b'i t,
i, b' ' C
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where t describes the deviation from the critical point,
zq is the anomalous dimension associated with Q, and
v is the bulk correlation length exponent. The variable
C plays the same role as the linear size L of a system
in finite-size scaling [5]. In the corner geometry (k = 1),
y~ vanishes so that the surface shape becomes a marginal
perturbation and the local exponents depend on C which
is related to the opening angle of the corner. Finally,
when k & 1 the perturbation induced by the surface is
relevant and an alternative local critical behavior is ob-
tained.

In the past few years, a number of critical systems
with the surface shape defined by Eq (1.1) have been
studied. For the Ising model in two dimensions, the cor-
relation functions between a point at the tip of the sur-
face curve (1.1) and the bulk (tip-bulk correlation func-

tions), and the local order parameter were shown to dis-

play a stretched exponential behavior [4,6,7]. For a con-
fined polymer, anisotropic k-dependent exponents were
obtained for the radius of gyration [8]. In the case of
anisotropic critical systems, the scaling dimension yc be-
comes 1—zk, where the dynamical exponent z = v~~/v~ is
the ratio of the correlation length exponents. For the di-
rected walk with z = 2 the marginal shape is the parabola
and the same type of behavior as for the Ising model was
obtained in the relevant case [9,10]. More recently, di-
rected percolation was also considered [11].

In the present paper, we investigate the local critical
behavior of the site percolation problem confined inside
a generalized parabola as given by Eq. (1.1). In Sec. II,
the correspondence between the site percolation and the
q-state Potts model in the limit q m 1 is used to find the
expression of the local order parameter. In Sec. III, we

apply conformal invariance to derive analytical results
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at the critical point: for &ee boundary conditions the
tip-bulk correlation function is deduced &om the con-
formal transformation which maps the half plane onto
the interior of the generalized parabola and the profile of
the order parameter along the axis of the parabola is ob-
tained for 6xed boundary conditions. The algorithm used
for the Monte Carlo simulations is presented in Sec. IV.
The numerical results obtained at the critical point are
then coxnpared to the conformal invariance predictions in
Sec. V. We eventually show in Sec. VI that corrections to
scaling have to be explicitly taken into account in order
to ensure satisfactory scaling for the data obtained for
the ofF-critical profile of the order parameter. The last
section gives a summary of the results.

II. POTTS MODEL AND PERCOLATION

The bond percolation problem is well known to cor-
respond to the lixnit q ~ 1 of a usual q-state Potts
model [12—14], while the site problem corresponds to a
Potts model with multispin interactions in the same limit

[15,16]. In this section, we summarize this equivalence
which enables us to write conveniently the local quanti-
ties such as the local order parameter.

Consider a lattice l: of N sites with a coordination
number z. In order to define site percolation on l'. , we

introduce a covering lattice C, with its 2Nz sites located
on the edges of 8 [16]. The q-state Potts variables n;
(n; = 0, 1, . . . , q —1) are located on each lattice site i
of 8, and coupled via z-site interactions K/k~T. The
state n; = 0 is, furthermore, stabilized when a magnetic
field H/k JEST is applied. In order to infer local properties,
one has to add a local magnetic field Hg/k~T acting on
a particular site labeled 8 which will be called the origin
site hereafter. The Haxniltonian for this model is written,

the sites are occupied with a probability p when neigh-

bor spins are in the same state. The &ee energy of the
system in the limit q ~ 1 can be de6ned by

F()=i
~q Jq i

(2.4)

thus, in the thermodynaxnic limit N m oo the contribu-
tion of the infinite cluster vanishes when H ~ 0+ and
the free energy is written as a sum over finite clusters
«y (E'):

F( ) ) [
—BH~( ) + (8H+—H/)~ ( )] (2 5)

p( ) l
Bfkik ) ' JV(s)

H-+0+
(2.6)

and the local order parameter is given by

&s
Pg(p) = lim = 1 —) JVs(s).H~ 0+ BHs

Hc-+0+ e

(2.7)

The local order parameter is thea the probability that
the origin site belongs to the in6nite cluster.

The critical exponents for the percolation problem in
two dimensions can thus be deduced from the known val-
ues for the two-dimensional Potts model [14,17].

where JV(s) is the average number of clusters of s sites
which do not contain the origin site, while JVr(s) is the
probability that the origin site belongs to a cluster of
8 sites. The 6rst term in the right hand side of equa-
tion (2.5) is the bulk contribution Fkik(p), while the sec-
ond proceeds from the local term Fg(p)

The probability of percolation P(p) is then defined by
the derivative of the &ee energy per site:

—p'R = K) (qb(n;) —1)

+H) (qbo(n ) —1) + Hr(qbo(nrj —1), (2.1)

III. CONFORMAL ASPECTS

The conformal transformation,

—qK (2.2)

the partition function Z~ ——Tre ~+ can be written,
omitting an unimportant prefactor:

where b(n;) = 1 if the z spins surrounding the site i of
8 are in the same state and 0 otherwise while bo(n;) = 1
if the surrounding spins are in the state 0. Defining the
probability p,

siU' "
z = i cosh

~

is known to provide a conformal xnapping of the two-
dimensional half plane z = z + iy = re'~ onto the inside
of a generalized parabola in the m = u+ iv = pe' plane
[4,7]. This transformation can also be written

x+ iy = —sinhn sinp+ i cosho, cosp,

where we have introduced the variables

qa(bo f~' )—&) qH~ (~o (nc )—1)
h ~

(2.3)

~pl —k

o. = cos[(1 —k)8],2C 1 —k

The correspondence with the percolation problem is ob-
tained via a graph expansion, each configuration of the
Potts variables being represented by a graph g where

The surface of the semi-infinite system y = 0 is then
mapped onto a curve whose equation is a parabola when
k = 1/2,
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Q2
p(l —cos8) =

2
' (3.4)

IV. MONTE CARLO SIMULATIONS
FOR PERCOLATION IN TWO DIMENSIONS

while for other values of k ( 1, the equation of the con-
fining surface asymptotically is

v = +au". (3.5)

Under a conformal mapping, the correlation function at
the critical point is transformed according to [18]

G(1vl 1v2) = b (Zl ) b (Z2) G(Z1, Z2), (3 6)

where z is the bulk magnetic exponent and the local scale
factor b(z) in our case is given by

dz
b(z) =

&
(sinh o. + sin P) ~ .

2+pk
(3.7)

Starting from the algebraic decay of the correlation func-
tion of the semi-infinite system [1],

1 4yiy2
G(Zli Z2)

( )
P(&)& ld (3.8)

where g(u) is a scaling function, one can deduce the cor-
relation function G(tv1, 1v2) in the parabolic geometry.
For the correlations between the origin site and a dis-
tant site on the u axis (p = u, 0 = 0), this two-point
correlation function takes the simple form

1ru' "
x tanh*

~ ~

g(~).q2C1 —k )
(3.9)

G(u) u * exp ~—
1rzru' " )
2C1 —k )

(3.10)

Similarly, one can derive an expression for the profile of
the local order parameter along the axis of the parabola,
when all the border sites are connected to the infinite
cluster, Rom the corresponding profile in the half-plane
geometry with fixed boundary conditions. In this latter
geometry, the profile Pg(y) is given by a power law,

A(u) = &u (3.11)

A stretched exponential behavior is recovered as in an-
other context [7] in the limit u (( 1 if one takes account of
the asymptotic power-law behavior of the scaling func-
tion Q(~) u ' (see Sec. V), where x1 is the surface
magnetic exponent:

We study site percolation on a restricted area A of the
square lattice, which is bounded by the curve of equa-
tion v = +Cu" and the straight line of equation u = D
(Fig. 1). Due to the discretization of space, the continu-
ous curve is approximated by a set D of points with inte-
ger coordinates, u„=0, 1, . . . , I and v„=+[Cu"], where
[o.] denotes the integer part of o.. Since these points fall
either slightly inside or exactly on the continuous curve,
they are systematically incorporated into area A.

Site percolation is defined in the usual way: the sites
in A are randomly colored black (white) with probability
p (1 —p) and two nearest-neighbor sites belong to the
same percolation cluster if both are black. The algorithm
used to grow percolation clusters is now brie6y described.
Initially, the color of the sites in A is not defined, except
for the origin site E(u, v = 0) which is colored black. One
percolation cluster is then constructed iteratively from
this growth site. At each iteration, one of the growth
sites is chosen and each of its four nearest-neighbor sites
is updated according to the following rules.

(i) If it has been previously colored, then it is left un-
changed.

(ii) If its color has not been defined yet, it is colored
(1) white with probability 1 —p;
(2) black with probability p and, in this case, it is

added to the current list of growth sites.
When all of its four nearest neighbors have been updated,
the selected site is removed from the list of growth sites.
This process is repeated until the list of growth sites is
exhausted (finite cluster) or until a site on the cutoff
line u = D becomes a growth site ("inf1nite cluster" ), as
illustrated in Fig. 2.

This algorithm was used to grow percolation clusters
for different p values above and below the percolation
threshold of the infinite square lattice, p, = 0.592 7460+
0.000000 5 [19]. The fact that detailed information about
the "infinite" clusters, i.e., clusters that reach the cutofF
length, is not required, allowed us to increase significantly
the speed of our algorithm for p & p, . In practice, the
current growth site was systematically chosen to be the
one closest to the cutoH' line, u = D. As a consequence,
the arms of the percolation clusters were systematically
explored rightward and, for an infinite cluster, the cut-
ofI' line was reached much faster than in the case of a
random choice for the current growth site. For each p
value considered, N = 10 clusters were generated and

According to the transformation law

P~(~) = b (z)&~(z)

we obtain

7r ~ul —k

(3.12)

(3.13)
0

D

for the local order parameter for a given origin site E(u, 0) .
Intensive numerical simulations of site percolation in the
parabolic geometry were performed in order to test the
analytical results predicted by conformal invariance.

FIG. 1. Representation of the parabolic geometry defined
in the text.
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set of black sites in II was chosen to be the seed and a
percolation cluster was grown &om it. This way, we got
information about Pg (u, p ) for all the u values simultane-
ously. Here also, Pr (u, Ji,) is systematically overestimated
because of the cutoK at u = D. In practice, this bias was
observed to be appreciable for u sufBciently close to D
and negligible near the tip of the boundary curve.

V. NUMERICAL RESULTS AT THE CRITICAL
POINT

The analytical expression derived by using conformal
invariance for the correlation function [Eq. (3.9)] can be
checked by plotting the scaling function,

7rui
x tanh (5 1)i2C1 —k )

'

as a function of the variable u which is expressed in terms
of the parameters entering the parabolic geometry:

7ru' "
~ = 4 cosh

i

„

i
cosh

i

7r & /' 7rui
x cosh

( 2&(I —k) ) &2~(I —k) )i

—cosh
i

(5.2)

The bulk magnetic exponent is known to take the value
x = 5/48. A log-log plot of our numerical data is pre-
sented in Fig. 3. Clearly, the scaling function i/I(w) ap-
pears to be independent of the parameters C and k for
large ~ values. However, finite-size effects appear as
a deviation from the straight line behavior when w is
small. These finite-size efFects are more important for
wide parabolas (k close to 1 and C large) than for nar-
row ones as demonstrated by Fig. 4. This figure provides
a comparison between the data obtained with two difFer-
ent values of the cutofF D. %'e observe that, while there
is no detectable infiuence of the cutoff for k = 1/4, the
cutoff effect is important for k = 3/4 and it appears for
larger and larger w values as C is increased. This finite-
size effect can be understood easily by noting that for a
small cutofF Di, many clusters which are considered to
be infinite (i.e., reach the cutoff line u = Di) are in fact
finite as they do not reach the cutoff line u = D2 & Dq.

The straight line behavior observed for the large ~ val-
ues in Fig. 4 can be related to the asymptotic behavior of
the scaling function i/I(ur). On the semi-infinite system.
the correlation function between a point close to the sur-
face (yi 1) and a point far in the bulk (y2 ———

y) is
expected to decay algebraically at the critical point,

G(y)- (5.3)

Equation (3.8) is in agreement with this form, provided
that the scaling function has the following power-law be-
havior: i/I(ur) sr*'. The slope of the log-log plot in
Fig. 4 is indeed found to be roughly equal to 0.3, a value
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FIG. 4. Same as Fig. 3, with two different cutoff lengths
Di = 500 and Ds = 1000. For k = 1/4 there is no detectable
efFect of the cutoff and the asymptotic regime is reached, while
for k = 3/4 the finite-size efFects are responsible for the devi-
ation from linear behavior.

FIG. 5. Log-log plot of r(u) vs u. The data points have
been calculated for C = 1, 2, 3, and 5 and, from top to
bottom, for k = 1/4, 1/2, and 3/4. The straight lines are
linear fits to the data as explained in the text.
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In this equation, ( t " represents the bulk correlation
1

length with its exponent t = 4/3, R, C!-& the char-
acteristic length associated with the parabolic geometry
and P = 5/36 is the critical exponent for the percolation
probability in the bulk.

Keeping the ratio e = ~ constant, we thus expect
that a plot of Pgt ~ as a function of A = —" will give a(
universal curve. However, our numerical results for Pg do
not follow the expected scaling behavior (Fig. 7). This
deviation &om a universal behavior may be due either to
finite-size effects or to correction terms which do not ap-
pear in Eq. (6.2). The first possibility is definitely ruled
out by comparing the Pt(u) profiles computed with two
values of the cutofF length, D = 1000 and 2000, since the
corresponding profiles are identical for u & 1000, within
numerical accuracy. To test the second possibility, we
introduce an extra term in Eq. (6.2) which reads now

Pt (u, t, C ') = t~f(A, K) [1 + t'g (A, r.) ] . (6.3)

Far kom the tip of the parabola, i.e. for A -+ oo, the
scaling functions f and g assume constant values f and
g independent of K, k, and C, since Pg is asymptotic to
P t which is the bulk percolation probability. As a
consequence, Eq. (6.3) reduces to

(6.4)

difFerent values of C and t by averaging the corresponding
profiles Pt(u) in the range u E [1800,2000]. A least-
squares fit of the data points to a curve of equation y =
A + ln(1 + Bt') gives

e = 0.179 + 0.016. (6 5)

(6.6)

for two independent systems which are oK the critical
point. With the choice u$Cy —tl2tg the same A value is
recovered on both systems and we obtain

K=0.943
J

!

This result confirms our assumption that the corrections
to the simple scaling behavior given in Eq. (6.2) are sub-
stantial. Now that e is known, we can use Eq. (6.3) to
determine the correction function g. We again keep K

fixed and allow A to vary. Equation (6.3) gives then

Figure 8 is a plot of y = ln P —P ln t as a function of t in
the case k = 1/2. The values for P were computed for

0.3 .~() I ()(.)

K=0.354

0.25

0,2

0.15

y=O. !84

g() !()() !"() ! ((!

0.1

0.05

0
0 0.2 0.4 0.6 0.8

(f) !() 7(!

FIG. 8. A least-squares fit (line) to the curve y
=A + ln(1 + Bt') of the numerical data (+) for

y = lnP —P lnt as a function of t The parameters are.
k = 1/2, C = 1, 2, 3, and 5.

FIG. 9. The scaling function f and the correction to scal-

ing function g plotted as functions of the reduced abscissa
A = u/(. The parameters are k = 1/2, ( = 1, 2, 3 and 5,
and the temperatures are chosen in order to get 6xed ratios
K = R /( = 0.943, 0.354, and 0.184. The asymptotic val-

ues f and g in the bulk (A large) appear to be constants
independent of I(. , C, and t.
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Tg 2 —1
~( ) (6 8) K=0.943

where

t'tg& ~ Pr(u„tg,C, ')
(tg ) Pg(u2, tz, C2 )

{6.9)

s ~ ~
sN 8~Q+Jt vP

K=0.354
Finally, we compute the scaling function f as

Pr(ug, tq, C~ )t~ Pt(u2, 2, C2 ) 2

1+ t;g(A) 1+ t;g(A)

5Q ]4
+

1.2
I

K=0.184

(6.10)

In practice, f(A) was taken to be the average of these
toro expressions. The numerical data obtained for K, =
0.184, 0.354, and 0.943 co~fi~m the above analysis (see
Fig. 9). We indeed verify our basic assumption that f
and g are constants. We also observe that g(A) can be
approximated by a constant, g —0.452, with good
precision. The crucial test of Eq. (6.3) is now to plot

0.8

0.6

0 10 20 30 40 50 60 70 80

P&(u, t, C-')t-~
1+ t'g (6.11)

as a function of A and to check that a universal curve
is obtained. This test was successful, as can be seen in
Fig. 10. As a consequence, the scaling assumption given
in Eq. (6.3) is confirmed.

FIG. 10. Universal behavior of the scaled order parameter
including correction to scaling, Pgt /(I+t'g ), as a function
of A = u/(. The parameters are h = 1/2, C = 1, 2, 3, and 5,
and K = R, /t' = 0.943, 0.354, and 0.184.

VIX. SUMMARY

Confined systems are known to display critical behav-
iors which may depend on the geometry. In this paper,
we have investigated the case of the site percolation prob-
lem for a two-dimensional system limited by a parabolic
surface. Scaling arguments show that this shape corre-
sponds to a relevant geometric perturbation. We have
performed intensive Monte Carlo simulations at the crit-
ical point for the tip-bulk correlation function. Our nu-
merical results are in agreement with an analysis using
conformal invariance. The correlation function along the
axis of the parabola exhibits a stretched exponential be-
havior as already encountered for other confined models.
The order parameter profile has been computed at the
critical point for fixed boundary conditions. The data
again are in excellent agreement with the analytic expres-
sion of the profile deduced &om the conformal mapping.
Finally we have analyzed the oK-critical order parame-
ter profile including corrections to scaling. The leading

correction to scaling exponent has been estimated and it
was shown that the correction to scaling function g(A)
does not vary significantly.
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