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An automata network predator-prey model with pursuit and evasion is studied. The local rule
consists of two subrules. The first, applied synchronously, models predation, birth, and death
processes. The second, applied sequentially, describes predator pursuit to catch evading preys. The
model contains six parameters: the birth and death rates of preys and predators and two parameters
characterizing the motion of preys and predators. The model has three fixed points. The first is
trivial; it corresponds to a stationary state with no living individuals. The second characterizes a
state with no predators. The third describes a state with nonzero densities of preys and predators.
Moreover, the model may exhibit oscillatory behavior of the local prey and predator densities as
functions of time through a Hopf bifurcation. In this particular case spatial coherence is lost. Spatial
correlations decay with a 6nite correlation length g. Although local densities, measured over a range
of the order of (, oscillate, collective variables are stationary.
PACS number(s): 05.45.+b, 05.50.+q

I. INTRODUCTION

Since Volterra [1] published the first simple predator-
prey model to explain the oscillatory levels of certain fish
catches in the Adriatic, a rich variety of models has been
proposed. Murray's book [2] is a good introduction to
this fast-growing literature.

This paper discusses a rather general predator-prey
model. It is formulated in terms of automata networks

[3,4], which describe more correctly the local character
of predation than differential equations. An automata
network is a graph with a discrete variable at each ver-
tex which evolves in discrete time steps according to a
definite rule involving the values of neighboring vertex
variables. The vertex variables may be updated sequen-
tially or synchronously.

Automata networks are discrete dynamical systems,
which may be defined more formally as follows. Let
G = (V, E) be a graph, where V is a set of vertices
and E a set of edges. Each edge joins two vertices not
necessarily distinct. An automata network, defined on
V, is a triple (G, Q, (f;~i C V)), where G is a graph on
V, Q a finite set of states and f;:Q~ *~ -+ Q a map-
ping, called the local transition rule associated to vertex
i. U; = (j C V[(j,i) C E'l is the neighborhood of i,
i.e., the set of vertices connected to i, and ~U;~ denotes
the number of vertices belonging to U;. The graph G is
assumed to be locally finite, i.e., for all i e V, ~U;~ ( oo.

In our model, the set V is the two-dimensional torus
Z&, where ZL, is the set of integers modulo L. A ver-
tex is either empty or occupied by either a predator, or
a prey. In what follows, according to the process under
consideration, we will consider two different neighbor-
hoods. The predation neighborhood consists of the four
nearest neighbors of a given site, whereas the pursuit and
evasion neighborhood consists of a Moore-type neighbor-

hood which contains (2r + 1)2 —1 sites (r = 1, 2, ..., is
the range of the pursuit and evasion neighborhood).

The evolution of these two populations is governed by
the following rules.

(1) A prey has a probability dh of being captured and
eaten by each predator in its predation neighborhood.

(2) If there are no predators in its predation neighbor-
hood, a prey has a probability bh of giving birth to a prey
at an empty neighboring site.

(3) After having eaten a prey, a predator has a proba-
bility bz of giving birth to a predator at the site previously
occupied by the prey.

(4) A predator has a probability d„ofdying.
(5) Predators move to catch preys, and preys move to

evade predators. The pursuit and evasion neighborhood
is divided into four quarters. A predator (or prey) at the
&ontier between two quarters is equally divided between
the two quarters. Predators move to a first neighboring
site in the direction of the highest local prey density. In
case of equal highest density in two or four directions,
one of them is chosen at random. If three directions
correspond to the same highest density the predator se-
lects the middle one. Preys move to a first neighbor-
ing site in the direction opposite to the highest predator
density. If the four directions are equivalent, one is se-
lected at random. If three directions correspond to the
same maximum predator density, preys choose the re-
maining one. If two directions correspond to an equal
highest density, preys choose at random one of the two
others. For r larger than 1, if the selected site belongs
to the predation neighborhood of a predator, preys do
not move. If N = L is the total number of sites of Z&,
and P (respectively, H) the predator (respectively, prey)
density, m~PN (respectively, mhHN) predators (respec-
tively, preys) are sequentially selected at random to per-
form a move [for each individual move, a predator or a
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prey is chosen with probability po
——m&P/(m„P+mhH)

or (1 —pe), respectively]. This sequential process allows
some individuals to move more than others. Since an in-
dividual may only move to an empty site, the parameters
m„and mh, which are positive numbers, represent aver-
age numbers of tentative moves per individual during a
unit of time.

Rules 1, 2, 3, and 4 are applied simultaneously. Pre-
dation, birth and death processes are, therefore, modeled

by a three-state two-dimensional cellular automaton rule.
Rule 5 is applied 8equentia/Ly. Our model may be viewed
as an automata network with a mixed transition rule. At
each time step, the evolution results &om the application
of the synchronous subrule followed by the sequential one.

II. MEAN-FIELD APPROXIMATION

The mean-Geld approximation ignores space depen-
dence and neglects correlations. It assumes that the
probability that either a predator or a prey occupies a
lattice site is proportional to the density of the corre-
sponding population. In lattice models with local inter-
actions, quantitative predictions of such an approxima-
tion are not very good. However, it can give interesting
information on the qualitative behavior of the system in
the limit mp ——mh, m oo.

Let P(t) and H(t) denote the densities at time t of,
respectively, predators and prey. We have

These 6xed points are stable if the absolute value of
the eigenvalues Ai(H, P) and A2(H, P) of the Jacobian
matrix

(2.6)

are less than 1.
Since f(1,0) = 0, P = 0 is a solution of Eq. (2.4). In

this case Eq. (2.5) can have two different solutions, either
H = 0 or H = 1. The solution (0, 0) is always unstable
if bh g 0. The solution {0,1) is stable if the condition
d„—4b„dg) 0 is satis6ed.

If P g 0, Eqs. (2.4) and (2.5) may have another so-
lution which will be denoted (H', P*). The expression
of the Jacobian matrix J(H', P') is rather complicated
and it is easier to study numerically the stability of this
6xed point. An interesting feature of the model is that
(H', P") may lose its stability, and a limit cycle becomes
stable through a Hopf bifurcation. Figure 1(a) represents
a limit cycle obtained within the mean-Geld approxima-
tion for the values b„=0.6, d„=0.2, bh

——0.2, and
dq = 0.9. Figure 1(b) represents a nontrivial fixed point
obtained with a lower birth probability bz ——0.2 for the
predators, the three other parameters are unchanged.

P(t+ 1) = F, (P(t), H(t))
= P(t) —dpP(t) y AH(t) f(1,di, P(t)), (2.1)

H(t + 1) = F2(P(t), H(t))
= H(t) —H(t) f(l, d&P(t))

+[1 —H(t) —P(t)]f(1 —P(t), bgH(t)), (2.2)

where the function f is defined by

f(pi p2) = pi —(pi —p2)'. (2.3)

bpH f(1,dh P) —d~P = 0, {2.4)

(1 —H —P)f(1 —P, bhH) —H(t) f(l, dhP) = 0. (2.5)

The expression of f(pi, p2) is easy to derive. If p2 =
dh, P(t), then p2 represents the probability that, at time t,
a prey is eaten by a predator located at a speciGc site of
the predation neighborhood. Then 1—(1—p2)

4 = f (1,p2)
is the probability that, at time t, a prey is eaten by a
predator located at any of the four sites of the predation
neighborhood. If pi ——1 —P(t) and p2

——b~H(t), then pi
represents the probability that, at time t, a speci6c site is
not occupied by a predator and p2 the probability that,
at time t, a prey gives birth to a prey at a speci6c site.
Then pi —(pi —p2) = f(pi, p2) is the probability that
a prey gives birth to a prey at any of the four sites of
the predation neighborhood if there are no predators in
this neighborhood. Note that, within the framework of
this approximation, the interaction terms are not bilinear
as in most population dynamics models [5—?]. Nonbilin-
ear interaction have recently been shown to exhibit very
difFerent dynamic behaviors [8].

The 6xed points are the solutions of the equations

III. SIMULATIONS

A. Pursuit and evasion

It is interesting to Grst examine the influence of the mo-
tion (Rule 5), independently of the predation law (Rules
1—4&. Figure 2 represents patterns obtained with r = 2
after m„=mg ——10000 tentative moves, starting with
equal number of predator and prey (Ho ——Po ——0.1)
distributed at random. Only the pursuit-evasion pro-
cess (Rule 5) is applied. In all patterns, predators (re-
spectively, preys) are represented by black (respectively,
white) squares on a gray background. As expected, there
is a tendency to form small clusters with predators sur-
rounding one or a few preys and preventing them &om
escape. The remaining preys then move more or less ran-
domly, with the constraint that they should avoid those
clusters. Similar patterns have been obtained at large
time with very difFerent motion rates (as mg/m„= 100).
For nonequal rates, the main difference is in the time
necessary for predators to build clusters around preys.
The mean size of these clusters is weakly dependent on
mi, /my.

B. Simulations with r = 1

The inBuence of motion is emphasized with two sets of
parameters for the predation law: the former leading to a
nontrivial fixed point in mean-field approximation [Fig.
l(b)], the latter corresponding to a cyclic behavior [Fig.
1(-)]
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FIG. 1. Mean-field approximation. (a) Stable limit cycle obtained with b4 = 0.6, d4 = 0.2, bz = 0.2, and dz = 0.9. (b) Fixed
point obtained with b„=0.2, d„=0.2, bh,

——0.2, and dq ——0.9.
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FIG. 2. Patterns obtained after 10 000 and 10 100 tentative moves of predators and preys, starting from an equal concentration
c = 10% of predators and preys distributed at random. Only the pursuit and evasion process i8 applied. In all patterns, predators
(respectively, preys) are represented by black (respectively, white) squares on a gray background.
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FIG. 3. Variations of the 6xed point
(H', P') for I = m~ = mq going from

m = mp to 500. Here, bp: 02 dp: 02,
bg ——0.2, and dq ——0.9. The cross indicates
the mean-6eld expectation. The inset shows

the behavior of (1 —H') and P' close to the
critical value mp = 0.350.
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We first study the behavior of this automata network,
for mz ——mg ——m, as a function of m. There is a

threshold m = mo below which the trivial Axed point
(H* = 1,P* = 0) is obtained. For m ) mal, the sta-
tionary state when t ~ oo corresponds to a nontrivial
fixed point. The evolution of this fixed point (H*, P*),
for m varying from mo to 500 is shown in Fig. 3. The
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FIG. 4. (a) Patterns obtained after a few hundred time steps, starting from a random distribution of 10%%uo of predators and

10'%%uo of preys on a 512 x 512 lattice with mi, = mq ——1. (b) Corresponding time evolution of the densities (H, P) Here b~ = 0.2, .

d„=0.2, bh,
——0.2, and dg ——0.9.
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cross represents the mean-field prediction (0.317,0.098),
which would be exact for random moves at m -+ oo.
As expected, since the pursuit and evasion moves are
not random, the mean-6eld approximation only gives the

qualitative behavior.
For m close to mp, (1 —H') and P' behave as

(m —mp)~ with mp ——0.35060.001 and P = 0.60+0.02
(see inset). This value is in reasonable agreement with
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FIG. 6. (a) Pattern obtained after about a few hundred time steps, starting &om a random distribution of 10% of predators
and 10% of preys on a 512 x 512 lattice. (b) Time evolution of the densities II, P. Here b~ = 0.6, d~ = 0.2, bz = 0.2, and
dp, ——0.9; m = m„=mg ——0.02.
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(Ho —H') and (P' —Po) for m —+ 0.
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the critical exponent of the two-dimensional directed per-
colation, as expected, since the predation density plays
the role of the order parameter as the density of wet sites
in directed percolation.

Figure 4(a) represents a typical pattern obtained after
a few hundred of time steps with m = 1 and Fig. 4(b)
the evolution in the (H, P) plane as a function of time,
starting &om a random con6guration with equal concen-
tration (10'%%up) of preys and predators at t = 0. Figure

5 represents a pattern obtained in the same conditions
with m = 100

Local cyclic behavior: bp 0 8& dp 0 2& 6+ 0 2&

dp, ——0.9

With this set of parameters, allowing a higher predator
birth rate b~, a nontrivial fixed point (Ho = 0.696, Po =
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FIG. 9. Same as Fig. 6, with m„=mh, ——100 and a few thousand time steps.

0.0615) is obtained for m = 0. At low m (i.e. , m (
0.1), patterns obtained in the large time limit look similar
to that observed in the previous case (see Fig. 6). The
variations of the fixed point (H', P') as a function of
m = mh, ——m„are represented in Fig. 7. For m w 0,
(Ho —H*) and (P' —Po) behave as m~ with P = 0.92
(see inset).

For large values of mh, and mz, patterns look com-
pletely different. Figures 8(a) and 9(a) represent typical
patterns on a 512 x 512 site lattice obtained, respectively,
for mh, ——mz ——10 and mz ——mh ——100. Patterns are
inhomogeneous with a coexistence of (i) growing prey
domains with few predators and a high prey density, (ii)
large clusters of preys surrounded by predators and col-
lapsing (the preys cannot evade and will all be eaten),
(iii) regions with a majority of predators dying &om food
scarcity. It is clear that the size of these domains in-
creases with m.

The time evolution of predator and prey densities,
starting &om a random distribution with H = P = 0.1
look also quite different [see Figs. 8(b) and 9(b)]. There
is a very long transient with large cycles and some noisy
behavior remains in the large time limit (i.e., after a few

thousands of time steps). The amplitude of this noise
decreases if we increase the lattice size and the global
densities H and P are stationary in the limit N -+ oo
and t ~ oo.

The loss of spatial coherence is generally characterized
by a decay of the spatial correlations with a finite corre-
lation length. We have measured on a 512 x 512 lattice
the correlations functions:

where H and P are the stationary values of the global
concentrations of preys and predators for N m oo; H(i)
and P(i) are local concentrations measured on 8 x 8
squares centered at site i. The brackets represent the
mean value performed on all pairs (i, j) with distance
d(i, j) = l. To improve the statistics, our values are aver-

ages over patterns obtained during 300 time steps after
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C (~) = ([P(i) —Pl[P(j) —P]) (3.2)

FIG. 10. Semilogarithmic plot of spatial correlation func-
tions C„and Cg for the local concentrations of predators and
preysintermsofl/m . o: m=1;e: m=3; x: m=10;
+: m=30.
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PIG. 11. Noisy cyclic behavior of the local concentrations
measured on a subset of size N' = 64 x 64 of a 512 x 512
lattice, with the parameters corresponding to Pig. 9. Pour
hundred iterations are shown after a transient of about one
thousand time steps.

a transient of a few hundred to one thousand time steps.
A semilogarithmic plot of C„and C„asa function of

I/~m is represented in Fig. 10 for various m = mh = m„
ranging &om 1 to 30. The correlation functions de-

cay roughly exponentially with a correlation length ( =
4.9~m.

The short-range mixing corresponds to a diffusion pro-
cess which moves individuals over a distance ~m at each
time step. The correlation length appears to be of the
order of the "eH'ective" range of the global rule defined
for this model.

Figure 11 represents the time evolution of the local
densities of predators and preys measured, for m = 100
on a subset of size 64x64 (i.e. , roughly (x() of a 512x 512
lattice. We observe a noisy cyclic behavior, while the
global concentrations tend to a fixed point (see Fig. 9).

Similar behaviors with spatial disorder and station-
ary collective variables have been obtained in one-
dimensional lattices of coupled logistic maps with pe-
riodic boundary conditions [9—11], (more striking non-
trivial collective behaviors have been observed in higher
dimension [12]).

We have also recently studied a simpler cellular au-
tomaton rule with short-range moves which exhibit a
chaotic behavior at a local scale, while global variables
are stationary [13].

For similar interaction rules with long range -moves (in-
dividuals move to any site chosen at random on the lat-
tice), the behavior is different. Spatial coherence is ob-
served (( —i oo), while time evolution of collective vari-
ables is chaotic [13] or cyclic [14].

If the lattice size is not large enough with respect to (,
quasicyclic behaviors may persist over many time steps.
As a peculiar illustration we show in Fig. 12 the evolution
of the predator and prey concentrations over 3000 time
steps for a 256 x 256 lattice with mp: 30 and mh ——100.

R

~ ~ ~

N
r

I

III! 'I ~ry —.

NiJ' I.
" '! C

%r%' ' 7!I I ci !.. ' '~'Ili .."~...==~l f f1 p.--'-: m.'., k'
yy!I~~ '! ' '!y'. '- %!I-.

K..~ i:~~lkl'%I:: I!r,k:%iV.!tsa 5'.

'Vr. P air -Ajb.:::.'- «''":p".
rrr.» . . .', ' i P .If . 'f»'

«

4 ' ' ''. 'Jhr . .4"AA+ . ;:. .A.' .. .. iC kt. .J4.'r =.

"I IIP

r—« ~rr I ~

aiIII''

I' 1rt,
I'I

s.~I4(,.:~i.I~

0.3

0.2—

0.0
0.0

I I I I I I I I I I I

0.4

R
I I I I I I I I I I I I

0.2 H o.s

FIG. 12. Noisy cyclic behavior of the concentrations (H, P) observed over 3000 time steps on a smaller size (N = 256 x 256)
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FIG. 13. Same as Fig. 6 with m„=30 and mh, ——100 and a few thousand time steps. Subregions corresponding to all steps
of a cycle obtained on a smaller lattice (cf. Fig. 12) coexist on the pattern.
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FIG. 14. Trivial Bxed point (H = 0, P' = 0) obtained with predators much faster than preys m~ = 50 and mz = 10 and the
same parameters bp: 0,6 d~ = 0.2, bz = 0.2, and dp, = 0.9. (a) Typical pattern after about 20 time steps starting from equal
concentrations of preys and predators (Ho = Pp = 0.1) distributed at random. There only remains clusters of preys encircled
by predators that prevent them from escape. (b) Time evolution of (H, P).
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For comparison, the pattern and time evolution for the
same parameters on a 512 x 512 lattice is given in Fig.
13.

By the way, this figure shows that asymmetric moves
with preys faster than predators give similar results. n
contrast, if predators move faster than preys, the trivial
fixed point (H' = O, P* = 0) can be reached. As illus-

trated in Fig. 14, with m„=50 and mh ——10, if predators
are much faster than preys, they can more easily build
up compact circles around clusters of prey. When they
have eaten all preys inside these clusters, they die.

Hence, with the parameter set considered in this sub-
section, the qualitative local behavior of the system in the
l' it, —+ oo is predicted by the mean-field.
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m = ms =, p =

b = 0 2 and ds = 0.9. (b) Corresponding time evolution of the concentrations ~H,bp,
——02, an
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approximation. However, if these four parameters b„,d„,
bh, dp are close to a boundary between a fixed point and
a cyclic behavior, the mean field prediction might be ir-
relevant.

For example with bz ——0.5, dz ——0.2, bp,
——0.2, and

d» = 0.9 a local cyclic behavior is still observed (see
Fig. 15), while the mean-field approximation gives a fixed
point.

C. In8uence of the range r of the pursuit-evasion
neighborhood

Qualitatively, similar behaviors have been observed
with a larger range of the pursuit and evasion neigh-
borhood: r = 2. As a simple illustration, we just give
here the pattern obtained at large time with b„=0.5,
dz ——0.2, b» ——0.2, d» = 0.9, mz ——m» = 100 (Fig. 16).
There are minor diHerences in the patterns. For exam-
ple, there are here large regions with a local prey density
equal to 1. This is due to the fact that preys look at
larger distances and avoid moving near a predator (see
Sec. I). In a region encircled by predators, vacant sites
can appear after a predator has eaten a prey but can-
not difFuse within the cluster of prey. In contrast, this is
possible with r = 1.

IV. CONCLUSION

A realistic predator-prey interaction with pursuit and
evasion has been modeled using an automata network.
Our simulations confirm that two-dimensional infinite
systems with local interaction do not exhibit nontrivial
collective behaviors [12].

In the limit of large motion rates, the mean-field ap-
proximation still provides useful qualitative —although
not exact—information on the general temporal behavior
of such a system as a function of the parameters.

For some parameter sets, the oscillatory behavior of
the predator and prey populations predicted by the
mean-field approximation is not observed for large lat-
tices. However, an interesting behavior with quasicyclic
concentrations on a scale of the order of the mean dis-
placements of the individuals has been obtained. Cyclic
behaviors which have been observed in population dy-
namics have received a variety of interpretations [2]. Our
results suggest another possible explanation: approxi-
mate cyclic behaviors could result as a consequence of
the finite habitat.
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Note that the study of this model for short-range moves
is incomplete. The cycles observed in this case for con-
centrations of individuals are related to the finite size of
the lattice. We have checked that for larger lattice sizes,
global variables are stationary in the t ~ oo limit.
























